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Abstract

We estimated a non-Stationary dynamic factor model and used it to generate
artificial episodes of disinflation (permanent changes in the mean inflation
rate). These datasets were used to test the forecasting abilities of alternative
underlying inflation indicators (i.e. measures that capture sustained movements
in inflation extracted from information in a disaggregated set of price data).
We found that the out of sample forecast errors of the benchmark underlying
inflation measures (based on unobserved trend extraction) are more severely
affected by disinflation than the alternative simpler methods (based on exclusion
or re-weighting approaches). We also show that a non-stationary dynamic factor
model may be employed for the extraction of the unobserved trend to be used
as an underlying inflation measure.
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1 Introduction
Headline inflation measures can be volatile and ‘noisy’. The fluctuations associated
with measurement errors and changes in relative prices can make it difficult for
policymakers to give an accurate judgement of the underlying state of, and the
prospects for, aggregate price level dynamics. Therefore, estimates of ‘underlying’
(‘core’) inflation are widely used by academics and central banks, not only as a
statistical measure, but also as an analytical tool.
The literature describes different approaches for constructing indicators of underlying
inflation, and proposes different criteria for measuring their performance in terms
of the desirable empirical properties of the underlying inflation. One caveat is
that these methods are mostly examined in advanced economies where the inflation
rate is well-anchored around its long-term mean value. This is not the case in
emerging market economies. In fact, for many central banks in emerging market
countries it is not uncommon to attempt to bring the inflation rate to a level that is
lower than the observed average (in other words, to achieve disinflation). When
successful, such a policy generates a structural break in the inflation-generating
process (for example, a mean shift), and affects the forecasting performance of
underlying inflation measures accordingly. Interestingly, Smith (2005) reports changes
in the performance of underlying inflation measures after the introduction of inflation-
targeting in the advanced economies (see García-Cintado et al. (2015, 2016) and
Hałka and Szafrański (2018) for other examples of structural breaks that could affect
the inflation-generating process). Obviously, if underlying inflation measures are
to continue serving as analytical tools, the evolution of their properties in these
circumstances should be examined (or, preferably, predicted).
The Bank of Russia transitioned to a fully flexible exchange rate and inflation-
targeting regime in 2015. The inflation rate subsequently declined, and it has
fluctuated close to the target value of 4 per cent per annum. Presumably, this
disinflation may have caused a structural break in the inflation-generating process
and affected the performance of underlying inflation measures. This paper examines
the potential implications of this transition and the subsequent disinflation for the
performance of the underlying inflation measures in Russia. For this purpose, we
employ Monte Carlo experiments, which are commonly applied in the analysis of
trend/cycle decomposition (see e.g. Nelson 1988, Basistha 2007, Drehmann and
Tsatsaronis 2014 and Gonzalez-Astudillo and Roberts 2016). There are several
arguments in favour of using artificial datasets to assess the performance of underlying
inflation indicators. First, this approach allows us to generate a large number of
disinflation episodes (containing longer post-disinflation series), and to conduct a more
reliable evaluation of the properties of the underlying inflation measures, as well as
to predict the yet unobserved evolution of these properties. Secondly, by designing
the experiments appropriately, we are able to isolate the effect of disinflation on the
properties of the underlying inflation measures from the effects of other developments
that affected the historical outcome. Naturally, the limitation of this approach is that
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the design of any Monte Carlo experiment is always somewhat arbitrary. In order
to generate the artificial datasets, we use a newly-developed non-stationary dynamic
factor model that allows us to introduce appropriate structural breaks in the modelled
price developments.
The rest of the paper is structured as follows. In Section 2 we provide a description
of the underlying inflation measures. Section 3 presents the non-stationary dynamic
factor model and outlines the design of the Monte Carlo experiments. In Section 4,
we describe the formal evaluation tests and the results of the empirical and Monte
Carlo analyses. Section 5 concludes the paper.

2 Underlying inflation measures
Our choice of underlying inflation measures is based on the paper by Deryugina et al.
(2018), in which a range of underlying inflation measures in Russia is estimated and
their performance examined. In this paper we only analyse the measures that were
found to perform well historically. The common feature of these methods consists
in the utilisation of the cross-section of consumer price index (CPI) components (see
Table 2 in Appendix A) to extract a relevant signal (Deryugina et al. (2018) found that
using larger datasets comprising real and monetary variables does not improve the
results sufficiently). This dataset is the most detailed CPI disaggregation available for
Russia for a relatively long time sample. Accordingly, we use the following approaches.

2.1 Unobserved trend models
As a benchmark model we choose the approach of Cristadoro et al. (2005). Note
that various versions of unobserved trend models, such as the ‘pure inflation’ model
of Reis and Watson (2010), were tested by Deryugina et al. (2018). For brevity we
only test the best-performing of these specifications in this paper. In this approach,
inflation is decomposed into two stationary, orthogonal, unobservable components –
the common χjt and the idiosyncratic εjt. Subsequently, the common component can
be divided into long-term (or smoothed) and short-term components by applying the
band-pass filter:

πjt = χjt + εjt = xL
jt + xS

jt + εjt, (1)

where xL
jt is the smoothed component for the j-th price indicator at time t obtained

by summing up the waves with periodicity [−π/h, π/h] using spectral decomposition,
and xS

jt is the short-term component.
The long-term component measures underlying inflation and omits idiosyncratic
shocks that are not common to all CPI components and short-term fluctuations,
since these are irrelevant for monetary policy.
The common component can be written as

χjt = bj(L)ft, (2)
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where ft = (f1t, ..., fqt)′ is a vector of q dynamic factors, and bj(L) is a lag operator
of order s.
The static representation of the model is

πjt = λjFt + εjt, (3)

where bj(L)ft = λjFt, Ft = (f ′t , f ′t−1, ..., f
′
t−s)′ are the static factors, and λj are the

factor loadings.
We use a dataset of the 44 seasonally adjusted monthly price indicators (for CPI
and its components). The number of dynamic factors is selected to ensure that each
subsequent factor increases the share of variance explained by the common component
by no less than 10% (Forni et al. 2000). As a result, we use q = 3 and assume s = 12
(we found that using a smaller number of lags worsened the historical properties of
the indicator). The underlying inflation is estimated by following Cristadoro et al.
(2005)’s three-step procedure.
We set h = 24 for the benchmark model (BP-DFM ).
We also calculate the indicator based on a dynamic factor model without using band-
pass filters (DFM ) and also solely on the basis of band-pass filters with h = 24 (BP).

2.2 Exclusion method
Following Lafleche and Armour (2006), we calculate underlying inflation excluding
22 of the most volatile components of CPI, using the weights of the remaining 22
components in the consumer goods basket to construct the aggregate. The volatility
of each CPI component is measured by the standard deviation of the monthly inflation
rate of this component.

2.3 Re-weighting method
The re-weighting approach to underlying inflation is similar to the exclusion method
(see, for example, Macklem (2001)). In this approach the weights of the CPI
components are selected in inverse proportion to their historical volatility, calculated
in a moving 24-month window. There are no excluded components.

2.4 Trimming method
The trimming method selects only a part of the empirical distribution of the monthly
inflation of certain CPI components for the underlying inflation index (normally, the
tails of the distributions are cut off; see, for example, Meyer and Venkatu (2012)). We
calculate the underlying inflation indicator by discarding the CPI components with
inflation rates below the 25th and above the 75th percentiles of the distribution in a
given month.
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2.5 Domestically generated inflation
We examine the performance of inflation of prices for services, which may be regarded
as an observed indicator for domestically generated inflation (see Bank of England
(2015) for a discussion). This indicator is the weighted average inflation for all services
reported in Table 2 in Appendix A with the exception of ‘Other services’. We also
tested other domestically generated inflation measures such as nominal unit labour
cost and housing price growth rates. For brevity, we only report the performance of
the best performing of these, the inflation indicator for services.

3 The non-stationary dynamic factor model and
design of the experiments

Modelling permanent disinflation with standard statistical models is not a
straightforward task. First, we need a model that can identify permanent and
transitory shocks. Secondly, we need to model jointly the dynamics of a large set
of indicators required for the estimation of the underlying inflation measures. We
therefore set up a non-stationary dynamic factor model (NSDFM) in the spirit of
Barigozzi et al. (2016). This type of approach is not unprecedented. See, for example,
the paper by García-Cintado et al. (2015, 2016), which applies an earlier version of
the NSDFM proposed by Bai and Ng (2004) to the analysis of inflation rates. We set
up the model as follows:

Xt = χt + ξt, χt = ΛFt (4)

S(L)(1− L)Ft = Q(L)ut, (5)

where, in (4), Xt is an N × T matrix of de-trended observations decomposed into
the sum of two unobservable components: χt the common component, which is a
linear combination of r factors Ft with factor loadings Λ, and ξt the idiosyncratic
component (t = 1, ..., T ). Xt, Ft and ξt are assumed to be I(1). In the same way as
Barigozzi et al. (2016), we assume that Xt, Ft and ξt are I(1) even though some of
their coordinates may be I(0). For Monte Carlo experiments, we set ξt ∼ I(0) for
simplicity. Setting ξt ∼ I(1) does not change the results of the exercise.
The factors Ft are driven by q common shocks ut, d of which have temporary
fluctuations, while τ shocks have a permanent effect on common trends. Note that
temporary fluctuations do not have a long-run effect on the observed variables. To
construct this type of shock we introduce zero restrictions to impulse responses in an
infinite horizon. For the permanent shocks there are no restrictions to infinity.
S(L) and Q(L) are r × r and r × q matrix polynomials; L is a lag operator.
The fully-dynamic representation is as follows:

Xt = Λ [S(L)(1− L)]−1
Q(L)ut + ξt. (6)
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We estimate the model following Barigozzi et al. (2016):

1. We extract the common factors and their loadings by principal component
analysis. The factor loadings are extracted from ∆Xt = Λ∆Ft + ∆ξt, that
is, (4) in first differences. The common factors are estimated as Ḟt = N−1Λ̂′Xt.

2. We then consider a VECM with c = r − q + d cointegration relations for
the common factors. ∆Ft = αβ′Ft−1 + G1∆Ft−1 + wt, where the matrix of
cointegration vectors β is estimated by the Johansen approach, and α and
G1 are regression coefficients. A VECM can be rewritten as a VAR process
A(L)Ft = wt. The residuals wt are transformed to q primitive shocks ut:
wt = Kut, where K denotes the rescaled first q eigenvectors of the sample
covariance matrix of the wt (see, for instance, Stock and Watson (2005), Bai
and Ng (2007), and Forni et al. (2009)).

3. We choose the orthogonal q×q identification matrix H to achieve the conditions
under which τ common trends are detected among q common shocks.

We set the number of factors r = 7, common shocks q = 4, and common trends
τ = 2 based on the results of different tests for the determination of the number of
factors (Bai and Ng (2002, 2007), Hallin and Liška (2007), Barigozzi et al. (2016))
(see Appendix C).

3.1 Design of experiment
The Bank of Russia transitioned to a fully flexible exchange rate and inflation-
targeting regime in 2015. The inflation rate subsequently declined, and it has
fluctuated close to the target value of 4 per cent per annum. Presumably, these
developments represent permanent disinflation. The goal of our exercise is to increase
the number of disinflation episodes artificially so that the rates are similar to the
observed rates available for analysis. We also use the artificially created observations
to extend the dataset and possibly to predict the yet unobserved evolution of the
properties of the underlying inflation measures. Note that, since we are interested
in identifying the effect of disinflation on the underlying inflation measures, we want
to eliminate the impact of the large fluctuations in the inflation rate that happened
immediately prior to disinflation in early 2015 (see Figure 1).
For this purpose, we estimate the NSDFM for the 43 components of the headline
CPI (see Table 2 in Appendix A) from February 2002 to September 2014 (T = 152
months):

xit = λiFt + ξit i = 1, ..., N, t = 1, ..., T, (7)

A(L)Ft = KHut. (8)
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We begin generating artificial observations in September 2014 using estimated
parameters λ̂i, Â(L), K̂, Ĥ. The artificial series are 15 years long. We run the
simulations until we obtain 100 replications with the following properties:

1. During the first 12 months the innovations are driven by ut ∼ N(0, σ2
u · Iq).

Over the next 36 months, we introduce a negative drift ut ∼ N(−1, σ2
u · Iq),

where σ2
u = 3 (this choice allows us to keep the variance of the simulated CPI

close to the variance of the actual data).

2. We select only those simulations for which the inflation rates of the majority of
the CPI components (more than 37 of the 43 components) are, on average, lower
than the actual rates (the last 10 years of simulations are compared with the
last 10 years of actual data). Thus, we only analyse the cases where disinflation
occurred across most of the cross-sections.

3. We calculate the headline CPI for the simulated component using the respective
weights of 2018. We select only those simulations where the CPI year-over-year
growth rate does not fluctuate outside the 0 per cent to 10 per cent band,
starting from 2021. This prevents the gradual dispersion of CPI inflation rates
towards the end of the simulation and represents actual inflation being anchored
around the Bank of Russia’s target. Each idiosyncratic component is drawn from
a normal distribution ξit ∼ N(0, 1) rescaled so that it accounts for a quarter of
the total variance.

The distribution of the artificial CPI growth rates obtained is presented in Figure 1.
The artificial datasets obtained represent disinflation episodes with a magnitude
similar to the observed instances, but with different short-term dynamics. We use
these datasets for Monte Carlo experiments as described in Section 4.3.

4 Evaluating the properties of underlying inflation
measures

Arguably, the most valuable and clearly defined criterion for assessing the quality
of an underlying inflation measure is its ability to forecast actual inflation (see, for
example, Wynne (1999), Mankikar and Paisley (2004), Amstad et al. (2014) and
Wiesiołek and Kosior (2010)). We choose to assess this property for the 12-month
horizon (which is arguably relevant for monetary policy).
We proceed by examining the evolution of the forecasting performance of the
underlying inflation measures during the observed and artificial episodes of
disinflation. For that purpose, we calculate our underlying inflation measures (that
is, we estimate the models, determine the excluded components or the weights for
re-weighting, and so on) in pseudo-real time (i.e. we use appropriate time samples
but not vintage data or recursive seasonal adjustment) using five-year-long rolling
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Figure 1: Actual CPI inflation and distribution (median, min and max) of artificial
year-over-year CPI growth rates (%)
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sub-samples of data (we found that using a recursively expanding time sample does
not improve the performance of the underlying inflation measures). We employ
two alternative approaches to evaluate the usefulness of these measures for inflation
forecasting.
We use the standard ‘regression-based’ method (see, for example, Lafleche and
Armour (2006)) to assess the forecasting properties of underlying inflation:

πt+12 − πt = α+ β(πU
t − πt) + ut+12, (9)

where πt are the annual CPI growth rates, the πU
t are the annual underlying inflation

growth rates, and α and β are regression coefficients.
The regression is estimated recursively over the expanding time sample, and
12-month-ahead forecasts are produced using the alternative underlying inflation
measures. The results are reported in terms of the root mean squared errors (RMSE)
of these forecasts. In addition to testing the set of underlying inflation measures, we
estimate the forecast errors using the currently observed CPI rate as a forecast for
the CPI rate 12 months ahead (i.e. a random walk process, RW ).
An alternative, more demanding, approach implies setting α = 0 and β = 1 in the
forecasting equation without estimation – the ‘direct’ method (which essentially treats
the calculated underlying measure as a forecast of the future CPI rate):

πt+12 − πt = (πU
t − πt) + ut+12. (10)

We report both measures of forecasting accuracy, but regard the direct forecasts as
the primary approach to evaluation.
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4.1 Historical analysis
First, we evaluate the historical performance of the underlying inflation measures by
estimating the RMSEs over the 2005-2018 time sample. The results obtained using
both the ‘regression-based’ (equation (9)) and the ‘direct’ (equation (10)) approaches
are reported in Table 1. In line with the findings of Deryugina et al. (2018), the
BP-DFM appears to be the best performing model.

Table 1: Cumulative RMSEs over 2005-2018 time sample

Regression-based Direct
Measure RMSE Measure RMSE
BP-DFM 0.037 BP-DFM 0.039
Inflation for services 0.039 BP 0.043
BP 0.041 Trimming 0.043
Re-weighting 0.042 RW 0.043
Trimming 0.042 DFM 0.043
DFM 0.042 Exclusion 0.043
Exclusion 0.042 Re-weighting 0.044
RW 0.043 Inflation for services 0.049

We proceed by examining the changes in the performance of the underlying inflation
measures after the disinflation. For this purpose, we calculate the RMSEs over
three-year-long rolling sub-samples. The results are reported in Figures 2 and 3.
The performance of the measures estimated using the exclusion, re-weighting, and
trimming approaches prove to be similar. Therefore, for illustrative purposes, the
respective RMSEs are labelled ‘Other’ in Figures 2–3 and 5–7. The results indicate
that the RMSEs of all measures deteriorate significantly in the 2014-2016 sub-sample
(for all indicators, the errors are significantly higher than the average for 2005-
2018). The performance of the measure based on BP-DFM was still good in relation
to its competitors, although the inflation for services indicator outperformed the
benchmark.
Note that these results are determined not solely by disinflation caused by the
adoption of the inflation-targeting regime and the transition to a flexible exchange
rate, but by all of the events that took place in 2015 in Russia (most notably the drop
in oil prices and the ensuing depreciation of the ruble and temporary acceleration of
inflation).

4.2 NSDFM-based measure of underlying inflation
Although the main purpose of the NSDFM is as a data generator for Monte Carlo
analysis (Section 4.3), it may be appropriate to employ this model to estimate
underlying inflation when the actual inflation rate is presumed to be affected by
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permanent shocks.
We estimate the NSDFM as described in Section 3 for the dataset containing the de-
trended indicators of the headline CPI and its 43 components over the time sample of
2002-2018 (starting with the first 24 months). Notably, in this case we use recursively
expanding time sample instead of rolling sub-samples as in Section 4.2. For each
iteration, we calculate the underlying inflation measure by extracting two common
trends (τ) in the headline CPI dynamics and adding the extracted trend during the
data transformation. The year-over-year growth rate is calculated as the product of
12 monthly underlying inflation rates.
We test the historical performance of the NSDFM-based measure as described in
Section 4.1. The results are presented in Figure 4 in comparison with the benchmark
BP-DFM measure. The NSDFM-based measure performs as well as (or slightly worse
than) the BP-DFM prior to disinflation, and it performs better in direct forecasting.
Admittedly, these are preliminary results, as we do not have enough data on post-
disinflation developments. Nevertheless, we believe that the NSDFM approach may
be promising in such circumstances.

Figure 2: RMSEs of regression-based forecasts estimated over three-year-long sub-
samples
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Figure 3: RMSEs of direct forecasts estimated over three-year-long sub-samples
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Figure 4: RMSEs estimated over three-year-long sub-samples
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4.3 Monte Carlo experiments
We proceed by estimating the RMSEs for the datasets extended with artificial
observations (generated as described in Section 3.1). The RMSEs are averaged across
all datasets. Admittedly, under this setup, the evolution of the performance of the
alternative underlying inflation measures over the artificial sample is still, at least
partially, determined by historical developments. Therefore, in Appendix B, we cross-
check our findings using fully artificial datasets.
The main results are presented in Figures 5–6. Our exercise predicts that the
performance of all measures will deteriorate during disinflation, but not that the
deterioration is as bad as we observe empirically. In fact, for the BP-DFM, the
highest values of the RMSEs obtained for the artificial sample are still lower than
the average error in 2005-2018. We therefore conclude that the deterioration of the
empirical RMSEs is mostly driven by factors unrelated to disinflation.
Interestingly, and in contrast to the empirical data, the BP-DFM is not supposed to
remain the best-performing indicator. In fact, the regression-based forecasts obtained
with the BP-DFM are predicted to be the worst among all the models during the first
three years after disinflation, and the direct forecasts are predicted to be the worst
from the third to the fifth years after disinflation.

Figure 5: RMSEs of regression-based forecasts estimated over three-year-long sub-
samples
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As regards the competitor models, the Monte Carlo experiments do not provide a
clear recommendation for the regression-based exercise. As for direct forecasting, the
measures based on the exclusion and re-weighting methods produce the best direct
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Figure 6: RMSEs of direct forecasts estimated over three-year-long sub-samples
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Figure 7: Median errors of direct forecasts
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forecasts over the period of three to six years after the disinflation. At least partially,
this result may be attributed to the systematic negative bias of the forecasts based
on these measures (see the median errors presented in Figure 7), which accidentally
helps to improve the forecasts during disinflation. This finding is confirmed by the
analysis presented in Appendix B. This observation indicates that, in Russia, the
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volatile components of CPI have, on average, higher inflation rates.
In contrast to the empirical case, the inflation for services does not outperform the
competitors. Arguably, this means that the relatively good historical performance of
this indicator is due to its ability to filter out the temporary inflationary shocks in
early 2015. Another notable finding is that the simpler methods of unobserved trend
extraction (BP and DFM ) generally outperform the BP-DFM on the artificial sample.
Six to seven years after the disinflation, the RMSEs of the underlying alternatives
converge, and the performance of the BP-DFM ’s improves.

5 Conclusions
The Bank of Russia transitioned to a fully flexible exchange rate and inflation-
targeting regime in 2015. The inflation rate subsequently declined and has fluctuated
close to the target value of 4 per cent per annum. Presumably, this disinflation may
have caused a structural break in the inflation-generating process and affected the
performance of underlying inflation measures.
We conducted empirical analysis and confirmed that the ability of the underlying
inflation measures to forecast actual inflation deteriorated after 2015. However,
based on the results obtained from the Monte Carlo experiments, we believe that
this deterioration was mainly due to a temporary rapid acceleration of inflation in
early 2015 after the ruble exchange rate depreciation.
Other findings of the Monte Carlo analysis indicate that the benchmark underlying
inflation measures (based on unobserved trend extraction) are more severely affected
by disinflation than the alternative simpler methods. The simple indicators based on
the exclusion and re-weighting approaches may be preferable for measuring underlying
inflation during disinflation.
Alternatively, a more complex non-stationary dynamic factor model may be employed
for the extraction of the unobserved trend to be used as an underlying inflation
measure.
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A

Table 2: CPI components in the cross-section

Meat Products Fish Products
Oils and Fats Milk and Dairy Products
Cheese Eggs
Sugar Confectionery
Tea and Coffee Bread and Bakery Products
Macaroni and Grain Products Fruit and Vegetable Products
Alcoholic Beverages Public Catering
Clothing and Linen Furs and Fur Goods
Knitted Wear Footwear
Detergents and Cleaners Perfumes and Cosmetics
Fancy Goods Tobacco
Furniture Electrical Goods and Other Household Devices
Publishing and Printing TV and Radio Merchandise
Computers Communications Equipment
Construction Materials Passenger Cars
Gasoline Medical Goods
Household Services Passenger Transport Services
Communications Services Housing and Public Utility Services
Education Services Culture Organisations Services
Medical Services Foreign Tourist Services
Other Food Products Other Non-Food Products
Other Services

Data source: Russian Federal State Statistics Service (https://www.gks.ru).
All data are in monthly growth rates and seasonally adjusted using TRAMO/SEATS software

B
The results presented in Section 4.3 are obtained using combined datasets that contain
both historical and artificial data. We cross-check our findings by conducting Monte
Carlo experiments over fully artificial datasets. For this purpose, we replace the
historical data observed prior to disinflation with 10-year-long artificial series. The
series are generated using the NSDFM model described in Section 3. We select only
those simulations where the year-over-year CPI growth rate does not fluctuate outside
the 10 per cent to 20 per cent band. The disinflation and post-disinflation periods
are generated as described in Section 3.1. The resulting distribution of CPI inflation
rates is presented in Figure 8.
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Figure 8: Distribution (median, min and max) of artificial year-over-year CPI growth
rates (%)
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Figure 9: RMSEs of regression-based forecasts estimated over three-year-long sub-
samples
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We proceed by conducting the Monte Carlo experiments as described in Section 4.3
and calculate the errors in the forecasts for the alternative underlying inflation
measures (Figures 9–11). The findings reported in Section 4.3 are generally confirmed.
The benchmark underlying inflation measure (based on the BP-DFM model) is more
severely affected by disinflation than the alternative simpler methods. The simple
indicators based on the exclusion/re-weighting approaches, as well as the simpler

E. Deryugina and A. Ponomarenko
CEJEME 12: 91-111 (2020)

108



Disinflation and Reliability of Underlying . . .

unobservable trend models, may be preferable for measuring underlying inflation
during disinflation (although the former have systematically biased errors).

Figure 10: RMSEs of direct forecasts estimated over three-year-long sub-samples
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Figure 11: Median errors of direct forecasts
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C
We use the criteria proposed by Bai and Ng (2002) to identify the number of static
factors, with a maximum number of factors kmax = 10 and penalty functions p1, p2,
p3, p4.

Table 3: Results for the Bai and Ng (2002) criteria (number of static factors)

IC PC
p1 4 9
p2 4 8
p3 10 10
p4 1 4

p1 = N + T

NT
log
(

NT

N + T

)
p2 = N + T

NT
log (min{N,T})

p3 = log(min{N,T})
min{N,T}

p4 = (N + T − k) log(NT )
NT

, k = 1, ..., kmax.

Table 4: Results for the Hallin and Liška (2007) criteria (the number of common
shocks and the percentage of simulations for different penalty functions and window
sizes)

q
Large Window Small Window

pp1 pp2 pp3 pp4 pp1 pp2 pp3 pp4
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 100.0 100.0 100.0 100.0 73.7 83.2 80.6 81.3
2 0.0 0.0 0.0 0.0 21.3 16.2 17.9 17.7
3 0.0 0.0 0.0 0.0 5.0 0.6 1.5 1.0

The test results (presented in Tables 3–5) are somewhat inclusive as regards the
appropriate number of factors. Therefore we set r = 7, as was done by Barigozzi et
al. (2016), which is the average value given by the tests. The number of common
trends is set to two, which is not ruled out by the tests. We experimented with other

E. Deryugina and A. Ponomarenko
CEJEME 12: 91-111 (2020)

110



Disinflation and Reliability of Underlying . . .

specifications (for instance, r = 5, q = 3, τ = 1), but this did not affect the main
conclusions.
We apply the Hallin and Liška (2007) information criteria to determine the number of
common shocks q, and the paper of Barigozzi et al. (2016) for the number of common
trends τ , with penalty functions pp1, pp2, pp3, pp4, large and small windows of 0.1
and 0.01, and number of replications 1000.

Table 5: Results for the Barigozzi et al. (2016) criteria (the number of common trends
and the percentage of simulations for different penalty functions and window sizes)

τ
Large Window Small Window

pp1 pp2 pp3 pp4 pp1 pp2 pp3 pp4
0 2.8 3.5 1.7 2.5 0.3 0.4 0.3 0.4
1 86.3 88.7 81.0 85.2 35.4 39.6 36.9 37.9
2 10.9 7.8 17.3 12.3 48.0 47.8 48.9 48.7
3 0.0 0.0 0.0 0.0 16.3 12.2 13.9 13.0

pp1 =
(√

M

T
+ 1
M2 + 1

N

)
· log

(
min

{√
T

M
,M2, N

})

pp2 =
(

min
{√

T

M
,M2, N

})−1/2

pp3 =
(

min
{√

T

M
,M2, N

})−1

· log
(

min
{√

T

M
,M2, N

})

pp4 =
(

min
{

4

√
T

M
,M2, N

})−1

· log
(

min
{

4

√
T

M
,M2, N

})
,

where M is the nearest integer less than or equal to
√
T/2.
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