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THE POINT NUISANCE METHOD AS A DECISION-SUPPORT SYSTEM BASED 
ON BAYESIAN INFERENCE APPROACH

The article attempts to transfer information from the Point Nuisance Method (PNM) used in Poland 
in the issue of protection of buildings in mining areas, to the system of inference based on Bayesian 
formalism. For this purpose, all possible combinations occurring in PNM were selected. The number 
of numerically generated patterns was 6,718,464 cases. Then, based on Python package Scikit-Learn, 
a classification model was created in the form of the Naïve Bayes Classifier (NBC). The effectiveness 
of three methods used to build this type of decision-support system was analysed, from which the Ca-
tegorical Multinomial Naive Bayes (CMNB) approach was finally selected. With the created classifier, 
its properties were verified in terms of quality of classify and generalization. For this purpose a general 
approach was used, analysing the level of accuracy of the model in relation to training and teaching data, 
and detailed, based on the analysis of the confusion matrix. Additionally, the operation of the created 
classifier was simulated to determine the optimal Laplace smoothing parameter α. The article ends with 
conclusions from the carried out calculations, in which an attempt was made to answer the question 
concerning potential reasons for incorrect classification of the created CMNB model. The discussion 
ends with a reference to the planned research, in which, among other things, the use of more complex 
Bayesian belief networks (BBN) is planned. 

Keywords: Naïve Bayes, Resistance of Buildings, mining area, reliability, Bayes inference framework, 
surface deformations

1. Introduction

In the case of forecasting negative effects from mining exploitation on building structures 
constituting the development of the area, their resistance to the effects of continuous deformation 
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is assessed. Both the resistance of the object and the predicted intensity of mining impacts are 
random [1-6]. Therefore, in order to give the scope of negative impacts from mining exploita-
tion, it is necessary to determine the risk of potential mining damage. According to the theory 
of reliability of structures, the risk is presented in probabilistic notation [7,8]. On the basis of 
knowledge of probability distributions describing the resistance category of a given object and 
the predicted impacts from mining exploitation, it is possible to determine the level of structural 
reliability [1-3].

The so-called Building Resistance Point Method (BRPM) used so far in Poland, also known 
as the Point Nuisance Method (PNM), gives sharp limits of permissible mining impacts, which 
the analyzed structure can carry without safety hazard [2,9,10]. Although it is an effective tool 
in the case of resistance assessment for a large number of buildings constituting the development 
of a given mining area, from the point of view of structural reliability, it does not allow for a full 
comparative analysis with the predicted mining impacts.

The introduction of probabilistic notation in the methodology of assessment of resistance 
of buildings would allow to determine the quantitative level of threat of a large group of build-
ings on the negative influence of forecasted continuous ground deformations caused by mining 
exploitation. Attempts to describe the influence of random dispersion of continuous deforma-
tion indices taking into account their influence on surface development were made both with 
probabilistic methods in [11,12] and with methods based on fuzzy set theory [13]. However the 
problem of including dispersion in the assessment of resistance for a large number of buildings 
remains unsolved [1,3].

In this paper an attempt is made to present the PNM used in Poland in the form of Naïve 
Bayes classifier (NBC). This approach does not change the relations occurring in the original 
method, but it makes them more detailed by the probability value for a given indication. Gen-
erally, the original information contained in the point method was transferred to the Bayesian 
inference framework [14,15]. Such implementation represents the state-of-art approach to the 
field of protection of mining areas, which can be further improved on the basis of new observation 
data.

An analogous research methodology was used in the paper [16], in which an attempt was 
made to assess the technical condition of buildings located in the mining area of Legnica-Glogow 
Copper District (LGCD) using the Bayesian classifier. A similar approach, using probabilistic 
neural networks (PNNs), was also applied in the assessment of the risk of mining damage in 
the event of high-energy mining tremors [17] and in the problem of the risk of damage to the 
underground infrastructure network resulting from the deformation of the continuous area [18]. 
Research is currently underway on the application of the Bayesian Belief Network (BBN) [14] 
to these issues. The key here is the defined damage index for buildings, which is a measure of 
possible mining damage [19]. In all cases, the main purpose of the analyses was to give the 
probability of an event consisting in the occurrence of damage of a given intensity or mining 
damage. In this paper, the use of Bayes’s classifier will allow to give an estimated probability 
of occurrence of a given category of building’s resistance, depending on the structural features 
of a given building and its technical condition. 

In the next part of the work, according to [2], nuisance categories (NC) will be used as 
a measure of building resistance. 
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2. The main principles of the nuisance point method

The Point Nuisance Method (PNM) considers information on structural and material solu-
tions, geometry and technical condition [2]. This information is obtained mainly on the basis of 
in-situ inventory and analysis of available documentation. As a result, for a given building, the 
number of points is determined, which is the basis for classifying the object into the so-called 
 nuisance category (NC). Thus, apart from the indication of a given nuisance category, there is no 
other measure to make the indication more precise, as the points do not provide any interpretable 
information for the construction engineer. The decision about belonging to a given category is 
sharp and does not allow to take into account the uncertainty. This situation is particularly evi-
dent in the case of buildings whose number of points reaches the limits between the categories.

In order to be able to analyse situations where there is uncertainty, as to whether a given 
building belongs to the relevant category, it was decided to introduce an additional measure 
that can be interpreted in an engineering sense. Such situations occur when a building reaches 
a value expressed by the number of points at the intersection of two categories. In view of the 
work of [2], which postulated the possibility to interpret the PNM on the basis of the principles 
of the reliability analysis of the structure, the value of probability was taken as a more precise 
measure of classification. On the other hand, given that in the PNM approach all variables are 
independent of each other, it was decided to adopt Naive Bayesian Classification approach (NBC). 

3. Research methodology

The basic assumption of the applied method was the best possible transformation of the 
information contained in the PNM to the Bayesian classifier (NBC) structure. For this purpose, 
a complete set of all possible combinations for PNM and the corresponding number of points 
was generated. Each variable has been divided into a number of categories corresponding to 
the adopted version of PNM [2]. Finally, a dataset of 12 input variables and one output variable 
with a total number of  6,718,464 cases was generated. It was then divided into a training and 
test set (in proportions: 0,8 : 0,2), which were used to learning and verification the quality of the 
created classifier in relation to the correctness of classification and generalization of acquired 
knowledge. Then, for the set of combinations selected in this way, the number of corresponding 
points from the PNM method was calculated. This was the basis for determining the nuisance 
category (NC) for each case (K0, K2, K3, K4, K5). Thus, the set of input variables was extended 
with a categorized output variable, which was decision variable for analysed problem. The scale 
of categories number for particular input variables of the PNM is presented in Table 1. 

4. Methodological basis of the naive bayesian classification

The Naive Bayes Classifier (NBC) is the simplest method of inference, based on the proba-
bilistic notation [14,15,20]. In the issues related to data mining and machine learning, the NBC 
method is considered independently of the Bayesian belief networks. However, it can be consid-
ered to be a special, and at the same time the simplest, form of Bayesian Belief Network (BBN) 
[21]. This results from the assumption that all input variables from the set n

i iX x  included in 
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the description of a specific decision problem, are conditionally independent of each other with 
respect to the output decision variable y. The decision variable y is expressed separately as a set 
of all states (decision classes) that are assigned to it m

k ky c . On the other hand, the individual 
variables xi are represented by a set of assigned states (categories) in which they can be observed 

iql
i i l

x a . The consequence of such a situation is the possibility of expressing the NBC structure 

with the following equation (1) [20], whose graphic interpretation has been presented in Figure 1.
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In the context of the operation of a classifier, it is assumed that:
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Such a statement allows to finally indicate the decision class ck for a given set of input 
variables n

i ix . Generally, this procedure is based on a ranking that can be described by a re-
lationship (3). 

 

n

k iy i
c P y P x y  (3)

 For this reason, there is the possibility of a broader insight into the classification result 
generated by the model. Ranking is based on the levels of conditional probabilities for each 
category of decision variable. Thus, the model includes all levels of probability of obtaining all 
possible states of the decision variable.

TABLE 1

Number of categories for all variables of the PNM [2]
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In the case of fitting the NBC model from discrete observed data, the problem boils down 
to finding optimal parameters θy = {θy1,...,θyn} describing conditional probabilities between the 
input variables and the decision variable θy = {θy1,...,θyn} ; θyi = P(xi |y). For this purpose, the 
MLE (Maximum Likelihood Estimation) or more generally MAP (Maximum a Posteriori Esti-
mation) procedure is used [14]. For discrete data, a set of parameters θy is sought, corresponding 
to the adoption of multinomial conditional probability distributions. In general, the Dirichlet or 
multinomial Bernoulli distribution is very often used [21]. However, in the course of research, 
using the Sickit-Learn package, an approach based on the adoption of categorical distribution 
for each input variable was applied [20]. The choice of this method was made after the results 
of preliminary studies, in which NBC classifiers were also built using the above mentioned ap-
proaches. But, in case of Dirichlet and multinomial Bernoulli approach much worse classification 
results obtained. From that reason they were abandoned in further studies. 

As a consequence of the categorical approach used, the probability of category ai
l = t in 

input variable xi given class ck is estimated as [20]:

 

k

k

aicl
i i k

c i

N
P x a a y c

N n
 (4)

Where:
 Z = {1,...,m} — index set of the samples,
 m — as the number of samples,
 Nâick = |{z  Z|xiz = ai

l = â, yz = ck}| — is the number of times category â appears in the sam-
ples xi, which belong to class ck of decision output 
variable y,

 Nck = |{z  Z|yz = ck}| — is the number of samples with class ck of decision output 
variable y,

 α — is a smoothing parameter resulting from adopted Laplace method of smo-
othing categorical data [14],

 ni — is the number of available categories states of variable xi.

Fig. 1. Schematic diagram of the structure of the Naive Bayes Classifier (NBC).
Source: own study
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5. Study results

Before the commencement of the numerical analysis, the generated database had been di-
vided into a training set (5,374,770 cases) and a test set (1,343,693 cases).With the training and 
test sets separated, the model of the Naive Bayes Classifier was built by performing calculations 
in the Python programming language with use a Scikit-Learn package [20]. The Categorical 
Multinomial Naive Bayes  (CMNB) approach was used. In addition to CMNB other methods 
dedicated to creating the Bayes Naive classifier have also been tested [20]. Unfortunately, for 
both Multinomial Naive Bayes (MNB) and Bernoulli Naive Bayes (BNB), the level of correctly 
classified patterns has been less than 50% both for training and testing sets. Therefore, it has 
been decided to abandon their use in further research. 

Using the CMNB approach, the estimated probability levels depend on the Laplace smooth-
ing parameter α (see formula 4). In order to test how the choice of the value of this parameter 
affects the quality of the classifier, calculations were made in two variants. In the first variant an 
α value of 0,1 was used. In the second variant an α value of 1 was used.

As a result of the analyses carried out, it was found that a lower value of the α parameter, 
and thus a weaker smoothing of categorized data, results in improved classification results. 
This is particularly evident when analysing the confusion matrix. In the case of the parameter 
α = 1, misclassified cases for a given category cover only those categories that are in the im-
mediate neighbourhood. While the adoption of the parameter α = 1 contributes to spreading the 
classification errors to the further distant categories. This effect is shown in Table 2, where the 
confusion matrices are set up separately for training and test sets. The values of the elements of 
the confusion matrix have been given in [%] and referred to the total number of cases of a given 
category for prediction.

TABLE 2

Indices of accurate classifications for the model (in percentage)

Training set (5,374,770 cases)
α = 0,1 α = 1,0

True category from PNM
K0 K1 K2 K3 K4 K0 K1 K2 K3 K4

Pr
ed

ic
te

d 
ca

te
go

ry
 N

B
C K0 98,23 1,79 0,00 0,00 0,00 98,23 1,77 0,00 0,00 0,00

K1 45,30 52,06 2,64 0,00 0,00 45,30 52,06 2,64 0,00 0,00
K2 0,00 17,92 81,21 0,86 0,00 0,00 17,91 81,23 0,86 0,00
K3 0,00 0,00 28,83 71,14 0,01 0,00 0,00 28,72 71,27 0,01
K4 0,00 0,00 0,00 56,68 39,23 0,00 4,73 1,20 54,80 39,26

Testing set (1,343,693 cases)
α = 0,1 α = 1,0

True category from PNM
K0 K1 K2 K3 K4 K0 K1 K2 K3 K4

Pr
ed

ic
te

d 
ca

te
go

ry
 N

B
C K 0 98,19 1,81 0,00 0,00 0,00 98,23 1,79 0,00 0,00 0,00

K 1 45,22 52,15 2,64 0,00 0,00 45,30 52,15 2,63 0,00 0,00
K 2 0,00 17,95 81,16 0,89 0,00 0,00 17,94 81,17 0,89 0,00
K 3 0,00 0,00 28,54 71,44 0,01 0,00 0,00 28,42 71,56 0,01
K 4 0,00 0,00 0,00 56,95 43,05 0,00 5,35 1,34 52,13 41,19
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The effect of data smoothing is also visible during simulating of model. By marginalizing 
the input variables, the probability levels of occurrence of a given category was predicted. The 
results are presented in the domain of points according to PNM range values. The simulation 
includes all the cases (6,718,463) numerically generated at the beginning of research without 
division into training and test set. The results of such simulations, given separately for different 
values of α parameter, are presented in Figure 2. 

Fig. 2.  Simulated probability values for the individual nuisance categories for the smooth parameter α = 0,1 
and α = 1,0 (colour labels of predicted categories: K4 – green, K3 – cyan, K2 – yellow, K1 – blue, K0 – red)
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As can be seen on Fig. 2, the greatest influence of smoothing is visible for category K4. For 
the parameter α = 1, the values of relatively high probabilities cover categories K3 and K2, and 
even category K1. Taking into account, according to (3), that the values of these probabilities 
are the basis for determining the final classification result, it may cause significant distortions in 
determining the actual category for a given building (even different by 3 categories).

On the basis of these conclusions, it has been decided that, in the framework of these studies, 
the target model will be a classifier which values of conditional probabilities will be estimate for 
the value of parameter α = 0,1. 

Table 3 compares the results of studies on the accuracy of the model classification for the 
training set and the test set for the CMNB approach used. The obtained classification model 
(CMNB) has a high degree of accuracy in relation to the learning data (80,45% of correctly clas-
sified models – Tab. 3). Almost identical level of accuracy was obtained for the test set (80,44% 
of correctly classified models – Tab. 3). This demonstrates good fitting quality of the model, as 
well as no effect of overfitting [15].

TABLE 3

Indices of accurate classifications for the model (in percentage)

The percentage of correctly classifi ed cases 
for the training set
(5,374,770 cases)

The percentage of correctly classifi ed cases 
for the test set

(1,343,693 cases)
80,45 % 80,44 %

Finally, assuming the model for the parameter α = 0,1, based on the results of the simula-
tions presented in Figure 3, an attempt was made to function estimate the distributions for each 
category. The distribution of data for individual categories obtained in the result of CMNB model 
simulation has been estimated with two functions. Categories: K0 and K4 were approximated by 
logistic functions (5). On the other hand categories: K1, K2 and K3 were approximated using 
Gauss functions (6). Table 4 lists the estimated parameters for each of the approximated func-
tions. The results of the estimation are shown in Figure 5.

 k x x
L

e
 (5)

 
x x

a e  (6)

Where: a,x0,σ, L, k — estimated parameters

It should be noted, however, that both the results of CMNB classifier prediction and esti-
mated function for obtained distributions, they do not represent probability density distributions 
in classical terms. They should be understood in the context of Bayesian inference framework 
as belief levels.

However, with appropriate calibration in accordance with the requirements of the prob-
ability theory for functions representing probability distributions, such estimated functions 
may be included in the reliability analysis for buildings in mining areas. This requires further 
verification of the model based on in-situ data. Collecting actual data will allow to tune up the 
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Fig. 4. Simulated probability values for the individual nuisance categories

Fig. 5. Estimated distribution of belief levels for each category of nuisance according to PNM
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model parameters and obtain more accurate classification results. This is in line with the Bayes-
ian theory, according to which the created model CMNB represents the basic prior knowledge 
resulting from expert findings. 

TABLE 4

Lists of estimated parameters of the approximated functions for each category

K0 K1 K2 K3 K4
Logistic – (4) Gauss – (5) Gauss – (5) Gauss – (5) Logistic – (4)
L 1,0 a 0,52 a 0,45 a 0,51 L 0,99
x0 67,36 x0 57,26 x0 41,92 x0 27,63 x0 21,89
k 0,12 σ 15,01 σ 13,70 σ 10,38 k –0,28

6. Summary and conclusions

The results of the carried out research confirm the possibility of transferring the information 
contained in the Point Nuisance Method (PNM) to the structure of the decision-support system 
based on the Bayesian framework of reasoning. During the analysis it was found that in case 
of categorized data, the best method to create such a decision-support system is Categorical 
Multinomial Naive Bayes (CMBN) approach. Finally, a classifier with a very high level of nui-
sance accuracy to the training and testing set was obtained. It also presents how the probability 
distribution of indications for individual nuisance categories (K0, K1, K2, K3, K4) is shaped, 
which was referred to points from the PNM. The influence of Laplace α smoothing parameter, 
which is used in CMBN method for estimation of probability values, is shown. Finally, the value 
of this parameter was determined at the α = 0.1.

The results obtained indicate, however, that there are still some distortions in terms of clas-
sify, which can be seen by analyzing the results presented in the form of a confusion matrix. 
The reason for this is that the distributions of the estimated probability values corresponding to 
the individual nuisance categories overlap. This leads to situations where, for a given case, not 
two adjacent but as many as four possible nuisance categories should be considered. This is, for 
example, the case for a range of points from 15 to 25, cf. Figure 5. The reason for this may be, 
first of all, the lack of specification of the information contained in the PNM. Taking into account 
that it covers 6,718,464 combinations, it should be concluded that it has not been sufficiently 
verified since its creation in the 1960s. Therefore, with the created CMBN model, the informa-
tion contained therein can be considered as prior knowledge. Thus, in accordance with Bayesian 
model fitting, it is possible to further improve its classification quality on the basis of real in-situ 
data. The second reason for some inaccuracies may be the number of analyzed combinations, 
which may not correspond with reality. Therefore, the set of all combinations should be analysed 
in terms of their possible occurrence in construction practice.

A third reason may be the adoption of mutual independence between individual input vari-
ables. For this reason, the planned studies foresee the testing of more advanced Bayesian belief 
networks (BBN).

However, despite the above indications, the proposed methodology may lead in future to 
a solution to the problem of describing mining impacts on buildings based on the reliability of 
building structures.
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