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Constrained Output Iterative Learning Control

KALOYAN YOVCHEV, KAMEN DELCHEV and EVGENIY KRASTEV

Iterative Learning Control (ILC) is a well-known method for control of systems performing
repetitive jobs with high precision. This paper presents Constrained Output ILC (COILC) for
non-linear state space constrained systems. In the existing literature there is no general solution
for applying ILC to such systems. This novel method is based on the Bounded Error Algorithm
(BEA) and resolves the transient growth error problem, which is a major obstacle in applying
ILC to non-linear systems. Another advantage of COILC is that this method can be applied to
constrained output systems. Unlike other ILC methods the COILC method employs an algorithm
that stops the iteration before the occurrence of a violation in any of the state space constraints.
This way COILC resolves both the hard constraints in the non-linear state space and the transient
growth problem. The convergence of the proposed numerical procedure is proved in this paper.
The performance of the method is evaluated through a computer simulation and the obtained
results are compared to the BEA method for controlling non-linear systems. The numerical
experiments demonstrate that COILC is more computationally effective and provides better
overall performance. The robustness and convergence of the method make it suitable for solving
constrained state space problems of non-linear systems in robotics.

Key words: constrained output systems, convergence analysis, iterative learning control,
robot manipulators

1. Introduction

The main idea of the Iterative Learning Control (ILC) is to compensate the
tracking error for systems that have to perform a repetitive job with high precision.
This is done by tracking multiple consequent iterations of the job execution, and
between each one the input signals (commands) are improved in order to correct
the error based on the data collected so far. Thus, in a natural iterative process of
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self-learning, the input signals (commands) for achieving the highest precision
are computed.

The idea of ILC is mentioned for the first time in a scientific publication
by Uchiyama in 1978 [1], which however is in Japanese and therefore does not
gain much popularity. A patent was filed in the United States in 1967, which was
accepted in 1971. Its title is “Learning control of actuators in control systems” [2].
The idea is to memorize the control signals in the computer memory and then to
perform subsequent iterative update of these signals, according to the difference
between the set and the actual behavior of the system. The way in which this
improvement is made is not clearly formulated in the patent. Later, in 1984 ILC
began to be explored in more detail. Then Arimoto et al. [3, 4], Casalino and
Bartolini [5] and Craig [6], independently of each other, published researches
about a method that can, by successive iterations of the same assignment, correct
errors in the mathematical model, as well as the determined system disturbances.
The name Iterative Learning Control was first used by Arimoto after it was
originally called a “bettering process”. The ILC study is mainly related to its
applications in the field of robotics. A 1998 publication of Moore [7] provides a
very good overview of the method studies made so far. At the end of the nineties
and the beginning of the new century, the focus of the studies was shifting away
from a study of the robustness of the method to its design and performance.
Investigations in this direction are by researchers Bien and Xu [8], Norrlof (2000)
[9], Lee et al. (2000) and Longman (2000) [10]. The convergence analysis is
important for the synthesis of the ILC method. For linear systems there are
various proofs of the convergence of the ILC method [7, 8, 10, 11]. For nonlinear
systems the convergence is proven in 1989 by Heizinger [12].

One of the main problems of ILC is the growth of the transient error. The
essence of the problem consists in the possibility of several iterations, in which
the error increases many times before it starts to decrease again and to converge
to zero. This problem occurs in real conditions and which may not allow the
method to achieve the desired result because it can make it impossible to per-
form the necessary number of iterations to achieve the required precision. This
is a serious problem, especially when using the ILC method in real-world con-
ditions, because such a deviation is beyond the real robot’s running capabilities
without disturbing the constraints of the generalized coordinates. This problem
is addressed by Longman, R.W. and Huang, Y. in [13]. Our previous research
made in 2017 confirms the existence of the transient growth problem through
a computer simulation of PUMA 560 robotic manipulator. The result from the
computer simulation is shown in Fig. 1. During the first iterations the tracking
error is increasing but after that the ILC process is convergent [14].

A rather limited number of solutions to the problem of transient error is known
in the scientific literature concerning ILC. A possible solutions to the transient
error problem is the slow learning rate ILC [15], the monotone ILC [16], or the
Bounded-Error Algorithm (BEA) [17].
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Figure 1: The transient growth error problem of ILC [14]

In 2009 Douglas A. Bristow and John R. Singler, in study [11] investigate
whether the slow learning ILC can solve the transient error problem. This method
consists of the following: reducing the influence of the learning operator in order
to achieve a smaller and smoother correction of the input signals of each iteration.
A smaller correction reduces the possibility of a major transient error, but then a
larger number of iterations is needed to reach the desired accuracy. In addition,
in this case, convergence is only proven for linear systems.

A study by Kwang-Hyun Park and Zeungnam Bien in 2002 [16] shows briefly
how to achieve monotonic error convergence. The method proposed there sepa-
rates the time interval [0,T] into subintervals in which the standard ILC scheme is
applied sequentially. Separation is specifically selected so as not to allow a large
transient error to occur. This method violates the ILC requirement for equivalence
of the initial conditions (since once the trajectory has been reached within a given
interval, the beginning is shifted to its end and continued to the next) in the course
of the iterations. Moreover, it is not quite clear how to choose the length of the
subinterval.

The most common and most straightforward solution to the transient error
problem is the use of the Bounded-Error Algorithm (BEA, BEA method, BEILC)
proposed in 2013 [18]. This algorithm deals with the problem by tracking the
magnitude of the error during the iteration itself. As soon as it reaches a prede-
termined limit value, the current execution is terminated. The correction of the
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input signals before the next iteration is performed only until the previous one has
been terminated. This violates the postulate about the uniformity of the duration
of each iteration, but the convergence of the method is proven in [18].

Other major disadvantage of the ILC methods is that they cannot be applied
directly to systems in which there are constraints, e.g. constraints of input (control)
signals, state space constraints or velocity constraints [19, 20]. In the study [21]
appeared in 2009, two methods are proposed to solve the constraints of the input
control signals: the first uses a reference governor to reduce the motion parameters
on the given path so as to obtain an executable trajectory and the second uses
a barrier function that does not allow the generation of an input signal which
violates system constraints. These methods work well and solve the problem of
constraints when the specified trajectory is unfeasible due to constraints in input
control signals [21]. Optimization ILC methods are proposed in [19, 22] which
take into account the dynamics model. As a result, they manage to solve the
constraints problem in the case of a swinging pendulum. Research [20] proposes
a projection method that solves the problem of constrained input signals.

Most studies mainly address restrictions on input signals or speeds [20–22].
The convergence of these methods has not been proven when used to solve
the problem with constraints in the state space coordinates [24], making them
unusable for manipulation robots, for example, in cases where the trajectory
is planned close to the constraints of the generalized coordinates (Fig. 2). In
2013, Guth et al. proposed a variable pass length ILC method for linear state

Figure 2: ILC in constrained state space [23]
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space constrained systems [25]. In 2018, Sebastian et al. proposed a barrier-
function like Lyapunov function to be used to design a new state feedback (or a
proportional derivative controller) in order to ensure that output constraints are
satisfied in the finite time-domain [26]. In 2019, Zamani et al. proposed model
predictive control (MPC) strategy for a constrained and unconstrained linearized
system [27]. Those methods are either developed only for linear systems or they
are too computationally expensive. Our previous research made in 2018 presents
ILC approach which introduces a new condition for the desired trajectory planning
with respect to state space constraints which specifies the value of the norm-
bound ε on the tracking error for implementation of BEA. The norm-bound ε
on the tracking error enables the application of ILC based control scheme within
constrained state space for multiple-input multiple-output nonlinear systems [23].
However, the proposed approach enforces tight restrictions over the possible
output trajectory.

The main goal of this paper is to propose a new general solution for applying
the ILC method within constrained state space. This new solution will be based
over the BEA method, where the learning update law will be altered in order to
allow the executed output trajectory to be into the whole area defined by the state
space constraints. According to the conclusion of our previous research [28] this
will lead to a faster convergence rate.

The paper is organized as follows: Section 2 presents the formulation of the
problem and describes briefly the BEA method. Section 3 presents the new update
law and proof of its convergence. Then, the proposed method for ILC within a
constrained state space is validated and evaluated by computer simulations in
Section 4.

2. Problem formulation

Let’s consider the following class of multi-input-multi-output nonlinear time-
varying state-space equations:

ẋl (t) = f (xl (t), t) + B (xl (t), t) ul (t) + ωl (t),

yl (t) = g(xl (t), t) ,
(1)

where: l is iteration number, for l ∈ {0, . . . ,∞} and all t ∈ [0, T], xl (t) ∈ Rn,
yl (t) ∈ Rm, ul (t) ∈ Rr are not necessarily continuous, and ωl (t) ∈ Rn represents
both deterministic and random disturbances. The functions f : Rn × [0, T]→ Rn

and B : Rn × [0, T] → Rn×r are piecewise continuous in t ∈ [0, T] and g : Rn ×
[0, T]→ Rn is differentiable in x and t, with partial derivatives gx (·, ·) and gt (·, ·).
In addition, the following assumptions hold (adopted from [12, 29]):
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A. For each fixed initial state x(0) with ω(·) ≡ 0 the output
map O : C ([0, T], Rr ) × Rn → C ([0, T], Rm) and the state map
S : C ([0, T], Rr ) × Rn → C ([0, T], Rn) are one-to-one. In this notation
yl (·) = O(ul (·), xl (0)) and xl (·) = S(ul (·), xl (0)).

B. The disturbance ωl (·) is bounded on [0, T] i.e. ∥ω(t)∥ ¬ bω, ∥ · ∥ is the
Euclidean norm.

C. The functions f (·, ·), B(·, ·), gx (·, ·), and gt (·, ·) are uniformly globally
Lipschitz in x on the interval [0, T].

D. The operators B(·, ·) and gx (·, ·) are bounded on [0, T] × Rn.

E. All functions are assumed measurable and integrable.

2.1. Standard ILC procedure

Let us consider the following update law of standard ILC procedure:

ul+1(t) =
(
1 − γ) ul (t) + γu0(t) + L

(
yl (t), t

) (
ẏd (t) − ẏl (t)

)
, (2)

where L : Rm × [0, T] → Rn×m is a bounded learning operator and γ ∈ [0, 1)
allows the influence of a bias term.

Lemma 2 [12]. If {al }, l ∈ {0, . . . ,∞} is a sequence of real numbers such that
|al+1 | ¬ ρ |al | + ε̂, 0 ¬ ρ < 1, then |al | ¬

(
1 − ρ)−1 ε̂ when l tends to infinity.

The proof of Lemma 1 is given in [12].

Theorem 1 [12, 29]. Let the system described by (1) satisfy assumptions A–E and
use the update law (2). Given an attainable desired trajectory yd (t) = g(xd (t), t),
t ∈ [0, T], ud (t) is the corresponding input and xd (t) is the corresponding state
(according to assumption A). If



(1 − γ)I − L
(
g(x, t), t

)
gx (x, t)B(x, t)

 ¬ ρ < 1,

∀ (x, t) ∈ Rn × [0, T],
(3)

and the initial state error ∥xd (0) − xl (0)∥ is bounded by bx0, then, as l → ∞,
the error between ul (t) and ud (t) is bounded. In addition, the state and output
asymptotic errors are bounded. These bounds depend continuously on the bound
on the initial state error, bound on the state disturbance, and γ, as bx0, bω, and
γ tend to zero, these bounds also tend to zero.
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The proof of Theorem 1 is presented by Heinzinger et al. in [12, 29], where
it is proven that there exists λ = λ(T ):

∥δul+1(t)∥λ ¬ ρ̄ ∥δul (t)∥λ + ε̂ , 0 < ρ̄ < 1, (4)

where δul (t) ≡ ud (t)−ul (t), and the time-weighted norm (λ norm) is defined by:

∥δul (t)∥λ ≡ sup
t∈[0,T]

e−λt ∥δul (t)∥ . (5)

Applying Lemma 1 to the inequality (4) yields:

lim sup
l→∞

e−λt ∥δul (t)∥λ ¬
(
1 − ρ̄)−1 ε̂,

lim sup
l→∞

e−λt 

δyl (t)

λ ¬ by, where δyl (t) ≡ yd (t) − yl (t).
(6)

If bx0 → 0, bω → 0 and γ → 0, then ε̂ → 0 and by → 0.
It has to be mentioned that according to Heizinger [12, 29], from (6), the

tracking accuracy of the output trajectory of the standard ILC process (update
law (1)) is µ : µ = 

δyl (t)

∞ ¬ eλT by and 

δyl (t)

∞ ≡ sup

t∈[0,T]


δyl (t)

.

It follows, that the standard ILC procedure with update law ul from (2) is
convergent and successfully compensates trajectory tracking errors caused by
unmodelled dynamics and deterministic disturbances. However, it does not take
into account the existence of the transient growth error problem and due to this
problem cannot be applied to systems with constrained output.

2.2. Bounded-Error Algorithm (BEA) for ILC

Let’s consider the BEA method for solving the transient growth error problem.
Given an attainable desired output trajectory and an error bound ε = eλT by+δ

= µ+ δ, (δ > 0) the Bounded-Error Algorithm (BEA) for the implementation of
the ILC procedure could be formulated as follows:

i. Set the initial iteration number l = 0 and begin the iterative procedure.

ii. Starting from the initial position yl (0) the system is tracking the desired
trajectory under the control ūl (t) until


yl

(
T̄l

)
− yd

(
T̄l

)


 = ε (7)

or the end position yl (T ) is reached. When t = T̄l , T̄l ∈ (0, T] the tracking
process stops.



164 K. YOVCHEV, K. DELCHEV, E. KRASTEV

iii. After the current tracking performance has finished, the learning controller
updates the feed-forward control term according to the following learning
update law:

ūl+1
(
t, T̄l

)
= (1 − γ)ūl

(
t, T̄l−1

)
+ γu0(t) + ū∗l

(
t, T̄l

)
,

ū0
(
t, T̄−1

)
≡ u0(t),

ū∗l
(
t, T̄l

)
=


L

(
yl (t), t

) (
ẏd (t) − ẏl (t)

)
, t ∈

[
0, T̄l

]
, T̄l ∈ (0, T];

0, ∀t ∈
(
T̄l,T

]
.

(8)

iv. If the output error 

δyl (t)

∞ is less than or equal to an acceptable tracking
accuracy, then exit from the learning procedure, else set l = l + 1 and go to
step (ii).

The main idea of BEA is that the output trajectory at each iteration must be
inside a hyper tube of width 2ε around the desired trajectory i.e.

yl (t) ∈
{
y(t) : 

y(t) − yd (t)

 ¬ ε, ∀t ∈ [

0, T̄l
]
, ∀T̄l ∈ (0, T]

}
, l = 0, 1, . . . ,

where y(t) t ∈
[
0, T̄l

]
, T̄l ∈ (0, T] is the output trajectory and ε > eλT by is a

preliminary given error norm bound. The convergence of BEA is proven in [18]
by using the following:

Corollary 1 [18]. If for the system (1) the update law ul (2) is replaced with ūl
(8), then Theorem 1 still holds.

The proof of Corollary 1 is presented in [18], where, in particular, it is proven
that there exists k̄:

ρ̄ sup
t∈[0, T̄l]

e−k̄t 


δul
(
t, T̄l−1

)


 ­ sup
t∈[T̄l,T]

e−k̄t 


δul
(
t, T̄l−1

)


 . (9)

Our previous research [28] investigates how the BEA parameters influence
the convergence rate of the ILC procedure. This research proposes how the
BEA parameters should be selected for achieving optimal convergence rate and
confirmed the following statement: higher value of BEA parameter ε leads to a
faster convergence rate (see Fig. 3).

Thus, the BEA method is convergent and solves the transient growth error
problem of ILC. It can be applied to systems with constrained output. However,
it does not define how to select the value of δ, respectively the value of ε. The
convergence rate depends of the selection of this parameter.
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Figure 3: Influence of the value of parameter ε over the BEA convergence rate

2.3. Applying ILC to non-linear system with constrained output

Now, let’s consider system with the following output state space constraints
for y(t) ∈ Rm:

y(t) =
(
y0(t), y1(t), . . . , ym(t)

)
: yi (t) ∈

[
Y min

i , Y max
i

]
, i = 1, 2, . . . ,m. (10)

As previously stated, the standard ILC method, defined by update law (2),
cannot be directly applied to such system due to the existence of the transient
growth problem or when the desired trajectory is planned closely to the constraints
(10). In [23] the following solution for applying state-space constrained ILC is
proposed. It is based on the BEA method. This solution considers a desired
trajectory yd =

(
yd

1, . . . y
d
n

)
: yd

i ∈
[
Y min

i ,Y max
i

]
, i = 1, . . . ,m that satisfies the

inequality:

min
(

min
t∈[0,T]

(
Y max

i − yd
i (t)

)
, min

t∈[0,T]

(
yd

i (t) − Y min
i

))
> µ, (11)

where µ is the provided accuracy of the ILC method.
From (11) it follows that we can select

δ∗ : δ∗ = min
(

min
t∈[0,T]

(
Y max

i − yd
i

)
, min

t∈[0,T]

(
yd

i − Y min
i

))
− µ > 0
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and ε∗ = µ + δ∗. Then we can enforce a restriction over the output trajectory at
each iteration by applying BEA with learning update law ūl from (8). As a result
of application of the algorithm in Section 2.2 the entire output trajectory at each
iteration yl (t), t ∈ [0, T] lies inside a hyper tube of radius ε∗ around the desired
trajectory yd (t) : yd

i (t) ∈
[
Y min

i + ε∗, Y max
i − ε∗

]
, t ∈ [0, T]. Consequently, this

hyper tube lies within the state space constraints (10). It is illustrated in Fig. 4.
However, this solution, enforces additional constraints (11) over the set of planned
trajectories, as seen in Fig. 4.

Figure 4: Executed trajectories on different iterations

If we consider the state space constraints in (10) and the inequality (11), then
the ILC iteration output trajectories are:

Y =
{
y(t) : y(t) ∈ Rm, 

y(t) − yd (t)

 ¬ ε∗, t ∈ [0, T], i = 1, 2, . . . ,m

}
. (12)

Obviously, this set Y is dependent on ε∗, which depends on δ∗. δ∗ is selected
to satisfy (11) based on the desired output trajectory yd . If yd is planned to pass
closely to the output constraints in (10) the set Y in (12) will be highly limited,
δ∗ defined from (11) will tend to zero and according to [28] this will increase the
required number of iterations and will result in an inefficient ILC process. The
overall efficiency of this method depends on the selected desired trajectory.

In the following section we present a novel and convergent ILC method for
constrained output systems. With this new method the output trajectory at each
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iteration is no longer constrained within a hyper tube of width 2ε∗ around the
desired trajectory. The output trajectories will be bounded only by the state space
constraints.

3. Constrained Output ILC

The idea of this new method is to constrain the output trajectory at each
iteration l, so that the state space constraints cannot be violated during the ILC
procedure.

Let’s consider state space system (1) constrained by (10) and the following
subset of the attainable desired output trajectories defined by the ILC tracking
accuracy µ:

Yd =
{
yd (t) : yd (t) ∈ Rm, yd (t) =

(
yd

1 (t), yd
2 (t), . . . , yd

m(t)
)
,

yd
i (t) ∈

(
Y min

i + µ, Y max
i − µ

)
, t ∈ [0, T], i = 1, 2, . . . ,m

}
.

(13)

Constrained Output ILC (COILC) method

For the system defined in (1) with the state space constraints defined in (10)
we can apply the following ILC procedure for any attainable desired trajectory
yd ∈ Yd in (13):

a. Set the initial iteration number l = 0 and begin the iterative procedure.

b. Starting from the initial position yl (0) the system is tracking the desired
trajectory under the control ul (t) until the first moment Sl for which there
exists j : 1 ¬ j ¬ m and either yl

j (Sl ) = Y min
j or yl

j (Sl ) = Y max
j or the end

position yl (T ) is reached. When t = Sl , Sl ∈ (0, T] the tracking process
stops.

c. After the current tracking performance has finished, the learning controller
updates the feed-forward control term according to the following learning
update law:

ul+1(t, Sl ) = (1 − γ)ul (t, Sl−1) + γu0(t) + u
∗
l (t, Sl ),

u0(t, S−1) ≡ u0(t),

u
∗
l (t, Sl ) =


L

(
yl (t), t

) (
ẏd (t) − ẏl (t)

)
, t ∈ [0, Sl], Sl ∈ (0, T];

0, ∀t ∈ (Sl, T].

(14)

d. If the output error 

δyl (t)

∞ is less than or equal to an acceptable tracking
accuracy, then exit from the learning procedure, else set l = l + 1 and go to
step (b).
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Corollary 2 For the system defined in (1) with the state space constraints defined
in (10) and for any attainable desired trajectory yd ∈ Yd from (13) if the update
law ul (2) is replaced with ul (14), then Theorem 1 still holds.

Proof. The main idea of the proof of Corollary 2 is to show that a sequence{


δ ul (t, Sl−1)


λ∗} , l ∈ {1, . . . ,∞}, t ∈ [0, T] (15)

exists and 


δ ul+1(t, Sl )



λ∗ ¬ ρ̄




δ ul (t, Sl−1)


λ∗ + ε̂, 0 < ρ̄ < 1 (16)

and therefore Lemma 1 can be applied. □
In the case when Sl ∈ (0, T ) from (14) and (5) for 


δ ul+1(t, Sl )




λ and


δ ul (t, Sl−1)


λ it follows that:

sup
t∈[0,T]

e−λt 


δ ul (t, Sl−1)


 = max
*...,

sup
t∈[0,Sl]

e−λt 


δ ul (t, Sl−1)



sup

t∈[Sl,T]
e−λt 


δ ul (t, Sl−1)




+///- (17)

and

sup
t∈[0,T]

e−λt 


δ ul+1(t, Sl )



 = max

*...,
sup

t∈[0,Sl]
e−λt 


δ ul+1(t, Sl )





sup

t∈[Sl,T]
e−λt 


δ ul (t, Sl )





+///- . (18)

From (18), both possible cases are considered for δ ul+1(t, Sl ), when

sup
t∈[0,T]

e−λt 


δ ul+1(t, Sl )



 = sup

t∈[Sl,T]
e−λt 


δ ul (t, Sl−1)


 (19)

and when

sup
t∈[0,T]

e−λt 


δ ul+1(t, Sl )



 = sup

t∈[0,Sl]
e−λt 


δ ul+1(t, Sl )




 . (20)

Let’s apply an ε-hyper tube around yd (t) in (13) for ul in (14) and ob-
tain ¯̄Tl : 


yl

( ¯̄Tl
)
− yd

( ¯̄Tl
)


 = ε although the robot motion doesn’t stop when


yl

( ¯̄Tl
)
− yd

( ¯̄Tl
)


 = ε, because from (13) for any desired output trajectory

yd ∈ Yd there exists δ > 0: yd ∈
[
Y min

i + ε,Y max
i − ε

]
and ε = µ + δ > µ,

and therefore ¯̄Tl ¬ Sl (see Fig. 5b). Thus, we can apply Corollary 1 for ul in (14),
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ε = µ + δ and ¯̄Tl ¬ Sl and there exists k > 0 so that inequality (9) yields
ρ̄ sup

t∈[0, ¯̄Tl]
e−kt 


δul

(
t, ¯̄Tl−1

)


 ­ sup
t∈[ ¯̄Tl,T]

e−kt 


δul
(
t, ¯̄Tl−1

)


 and taking into account

that
[
0, ¯̄Tl

]
⊂ [0, Sl] and [ ¯̄TlT] ⊃ [SlT], it follows:

ρ̄ sup
t∈[0,Sl]

e−kt 


δ ul (t, Sl−1)


 ­ sup
t∈[Sl,T]

e−kt 


δ ul (t, Sl−1)


 . (21)

Noticing that 0 < ρ̄ < 1 from (17) and (21) follows that:

sup
t∈[0,T]

e−kt 


δ ul (t, Sl−1)


 = sup
t∈[0,Sl]

e−kt 


δ ul (t, Sl−1)


 . (22)

Taking into account that ε̂ ­ 0 from inequality (21) combined with (19) and
(22) by using (5) yields (15) and (16) for λ∗ = max

(
k, λ

)
.

For the second case when inequality (20) holds, Theorem 1 can be directly
applied for T ­ Sl : t ∈ [0, Sl] because update laws (2) and (14) are equivalent.
Thus, from (4), using (5) and taking into account that λ(Sl ) ¬ λ(T ) [12], we
have:

sup
t∈[0,Sl]

e−λt 


δ ul+1(t, Sl )



 ¬ ρ̄ sup

t∈[0,Sl]
e−λt 


δ ul (t, Sl−1)


 + ε̂. (23)

Combining equalities (20) and (22) with inequality (23), for t ∈ [0, T] and
λ∗ = max

(
k, λ

)
yields (15) and the inequality (16).

Now assuming that l → ∞we are in a position to apply Lemma 1 for (15) and
(16) and obtain the inequalities (6) for the new update law (14). Consequently
Theorem 1 still holds.

It follows, that the COILC method is convergent and it can be applied for con-
strained output systems. Furthermore, for such systems it also solves the transient
growth error problem without requiring knowledge for additional parameters
other than the constraints of the system. COILC is supposed to also have a better
convergence rate. The actual performance of the proposed COILC method is
evaluated in the next section through a computer simulation.

4. Simulation results

This section presents the numerical experiments with the proposed Con-
strained Output ILC. The objective of the experiments is to evaluate the con-
vergence rate of the method by computer simulation. The simulation setup is
similar to those reported in [23]. Both methods are compared. For the computer



170 K. YOVCHEV, K. DELCHEV, E. KRASTEV

simulation the dynamics model of the six-linked Puma 560 is used. Two different
sets of model parameters are used for realistic simulation. The first set of param-
eters is for the model of the virtual robotic arm. The second set is used as an
imprecise estimation of the parameters of the virtual robot. This allows taking
into consideration the errors caused by unmodelled dynamics.

Similarly, to [23], a numerical experiment with 50 iterations was executed.
The accuracy µ of ILC is preset to 0.065 rad for this simulation. The constant δ
is set to 0.035 rad respectively, so that ε = µ + δ = 0.10 rad.

Constraints of the simulated robot arm and the desired trajectory yd , according
to inequality (11), are presented in Table 1. For the BEA method the yd limits
are chosen respectively to the described hyper tube approach in Section 2. For
the COILC method all of the maximum position limits are the link limits. It
is supposed that those limits will prevent the simulated robot from hitting its
end-point positions and accounts the accuracy of the method.

Table 1: Robotic manipulator constraints

Link
1 2 3 4 5 6

min max min max min max min max min max min max
Torque limits
[Nm] −100 100 −180 180 −90 90 −25 25 −25 25 −25 25

Velocity limits
[rad/s] −1 1 −1 1 −1.5 1.5 −2 2 −2 2 −2 2

Position limits
[rad] −π π 1.75 2.99 0 π 1.5 3.2 0 π −π π

BEA yd limits
[rad] −3.04 3.04 1.85 2.89 0.10 3.04 1.6 3.1 0.1 3.04 −3.04 3.04

COILC yd limits
[rad] −π π 1.75 2.99 0 π 1.5 3.2 0 π −π π

The simulated ILC procedure feedback term incorporates computed torque
control. For both BEA and COILC in Fig. 5 are shown the desired trajectory for
the second robot link with the corresponding joint angle limits (marked as “Link
limits” in Fig. 5), the executed output trajectories for selected iterations and the
forced limits over the output trajectories (marked as “BEA limits” in Fig. 5). As
seen, during the first iterations 1 and 2 both methods abort the iterations before
the end of the execution time. However, the COILC method executes during the
whole time the 4-th iteration. Another difference is that the ε parameter of BEA
accounts the error of the all 6 links, so the tracking process is stopped even before
reaching the enforced BEA limits for the second link. During COILC the second
link first reaches the stop limits and then the tracking process is interrupted. Both
methods prevent successfully the violation of the state space constraints.
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a)

b)

Figure 5: a) BEA tracked trajectories of second link; b) COILC
tracked trajectories of second link

The following Fig. 6. shows the time and error comparison of the execution
of both BEA and COILC. The maximum tracking error of iteration l is measured
as sup

t∈[0,T]


yd (t) − yl (t)

. As seen, the COILC method converges faster than BEA.

It reaches optimal solution on iteration 14-th while BEA needs 4 more iterations.
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This is a result of longer initial iterations (Fig. 7). And for the test case, COILC
gives 25% faster convergence than BEA. The application of this new method
was thoroughly tested through this simulation. Furthermore, the state space con-
strained ILC problem was resolved in a computationally effective way. The overall
performance of the COILC method is better than the reported approach in [23].

a)

b)

Figure 6: a) BEA vs COILC time comparison; b) BEA vs COILC
maximum tracking error comparison
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Figure 7: Comparison of BEA and COILC trajectory tracking process

5. Conclusion

This paper presents a novel and computationally efficient general solution of
the state space constrained ILC problem – the Constrained Output ILC method
(COILC). The convergence of COILC is proven for non-linear state space con-
strained systems. It extends the application of the Bounded Error Algorithm
(BEA) for ILC in real-life work operations. Initially, BEA has been designed to
solve the transient error growth problem. The proposed COILC method modifies
the learning update law of BEA and introduces a different stop condition. This
results in more computationally effective method. COILC is compared through
the computer simulation to the previously studied approach for applying ILC
to state space constrained non-linear systems. The results allow concluding that
COILC can be successfully applied to such systems. The experiments impli-
cate that this method is with a better overall performance and that it is robust
and convergent. Furthermore, the COILC method solves the transient growth
problem and prevents violation of the state space constraints. Also, since this
method only monitors the current output during each iteration and aborts it if
simple inequalities are in force it can be concluded to be the most computa-
tionally effective method for applying ILC to nonlinear state space constrained
systems. COILC is expected to be of a considerable interest for robotic ap-
plications.
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