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A new multi-stable chaotic hyperjerk system, its special
features, circuit realization, control and synchronization

VIET-THANH PHAM, SUNDARAPANDIAN VAIDYANATHAN, CHRISTOS VOLOS,
SAJAD JAFARI and TOMASZ KAPITANIAK

Researchers have paid significant attention on hyperjerk systems, especial hyperjerk ones
with chaos. A new hyperjerk system with seven terms and two parameters is analyzed. Chaotic
attractors as well as coexisting attractors are displayed by the hyperjerk system. Thus it is a new
multi-stable chaotic hyperjerk system. Further properties of the proposed hyperjerk system such
as circuit design and backstepping-based control and synchronization are reported.
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1. Introduction

Studies on chaos theory introduced numerous systems [1–3], interesting prop-
erties [4–6]. Chaos theory has several applications like robotics [7], communica-
tions [8, 9], oscillators [10–12], memristors [13, 14], biology [15, 16], chemical
reactors [17], finance [18], circuits [19], etc.

In the chaos literature, significant attention has been shown in finding chaos
in jerk systems [20, 21]. A jerk differential equation in mechanics has a single
variable x and a nonlinear function [22]. Therefore, jerk systems are elegant and
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different simple jerk systems were built [23–25]. Recently, Kengne et al. found
an autonomous jerk system with multi-stability, which can generate multiple
attractors [26]. Multi-stability is a typical feature of nonlinear systems [27–29].
Control and synchronization of jerk systems were also studied [30].

Based on jerk systems, a hyperjerk one is similarly defined [31]. Chaos and
hyperchaos were observed in some hyperjerk systems [32, 33, 35]. Bao et al.
verified the dependence of memristive hyperjerk type on the initial state of mem-
ory element [33]. Vaidyanathan proposed a hyperjerk system with a hyperbolic
sinusoidal nonlinear term [34]. Simple hyperjerk one was implemented in Field
Programmable Analog Array [35]. Pham et al. found chaos in a simple snap
dynamics with just one nonlinear term in a recent work [36].

A novel hyperjerk system with seven terms (only one nonlinear term) is
proposed in our work. Its special features such as multi-stability, adjustable size
of attractor are presented in Section 2. We introduce its circuit realization in
Section 3. We analyze the control applications in Sections 4 and 5. Noticeable
conclusions are remarked in Section 6.

2. Features and dynamics of the hyperjerk system

A jerk dynamics [36] is presented by a third order ordinary differential equa-
tion:

d3x
dt3 = f

(
d2x
dt2 ,

d x
dt
, x

)
. (1)

Researchers attempted to evaluate the extension of jerk system, called hyper-
jerk [31]:

d4x
dt4 = f

(
d3x
dt3 ,

d2x
dt2 ,

d x
dt
, x

)
. (2)

Motivated by the aforementioned researches, we consider a hyperjerk system
in the following form:

d4x
dt4 = −

d3x
dt3 −

d x
dt
− ax − b |x | d

2x
dt2 . (3)

with two positive parameters (a, b).
By denoting

y =
d x
dt
, z =

d2x
dt2 , w =

d3x
dt3 , (4)

our hyperjerk system is presented in another form:
ẋ = y, ẏ = z, ż = w, ẇ = −ax − y − w − b |x | z. (5)

System (1) shows symmetry via the transformation (x, y, z,w) → (−x,−y,−z,−w).
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The Jacobian matrix of (5) at the unique critical point at the origin E =
(0, 0, 0, 0) is represented by

JE =


0 1 0 0
0 0 1 0
0 0 0 1
−a −1 0 −1


, (6)

while the characteristic equation is

λ4 + λ3 + λ + a = 0. (7)

Based on Routh-Hurwitz stability criterion, E is unstable.
We allowed varying the parameter a for b = 1 and X (0) = (0, 0, 0.1, 0) and

exhibited the bifurcation behavior of the hyperjerk system (5) via Figs. 1 and 2.

Figure 1: Bifurcation diagram of the hyperjerk system (5)

Figure 2: Lyapunov exponents of hyperjerk system (5) for a ∈ [0.2, 0.5]
and b = 1 (L1 (black color), L2 (blue color) and L3 (red color))
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Interestingly, the system (5) is chaotic in some ranges of a. For example, for
a = 0.35, b = 1, chaotic attractors are shown in Fig. 3, verified by the calculated
Lyapunov exponents L1 = 0.1036 > 0, L2 = 0, L3 = −0.2563 and L4 = −0.8475.

(a)

(b)

(c)

Figure 3: Phase portraits of the hyperjerk system for (a, b) = (0.35, 1)
and X (0) = (0, 0, 0.1, 0)
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It is noted that the hyperjerk system is multi-stable. The coexisting attractors
of the chaos hyperjerk dynamics (5) for two initial states X (0) = (0, 0, 0.1, 0)
and X (0) = (0, 0, −0.1, 0) are shown in Fig. 4.

(a)

(b)

(c)

Figure 4: Coexistence of phase plots in the chaos hyperjerk system
(5) for (a, b) = (0.22, 1) when X (0) = (0, 0, 0.1, 0) (blue color) and
X (0) = (0, 0, −0.1, 0) (green color)
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The parameter b can be seen as a control parameter for changing attractor’s
size [37–40]. We control the attractor’s size by adjusting b as illustrated in Fig. 5.

(a)

(b)

(c)

Figure 5: Phase plots of the chaos hyperjerk system (5) for different values
of parameter b: b = 0.5 (green color), b = 1 (blue color), b = 2 (red color)
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3. Realization of the hyperjerk system

The implementation of mathematical chaos models via hardware tools is of
vital importance for practical applications [41, 42].

The schematic of the circuit that emulates system (5) is exhibited in Fig. 6.
This circuit has 4 integrators (U1–U4), 3 inverting amplifiers (U5–U7), which are

Figure 6: The schematic of the circuit which emulates the proposed chaos
hyperjerk system (5)
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implemented with the operational amplifier TL084, as well as a signal multiplier
(U8) of type AD633. The last ones (U9, U10) with the two diodes (1N4007) are
used for implementing the absolute function nonlinearity (|x |).

The following dynamical system with circuital equations of the designed
circuit of Fig. 6 is derived with the help of Kirchhoff’s circuit laws.



Ẋ =
1

RC
Y,

Ẏ =
1

RC
Z,

Ż =
1

RC
W,

Ẇ =
1

RC

(
− R

Ra
X − Y −W − R

Rb · 1 V
|X | Z

)
,

(8)

where the variables X , Y , Z and W denote the voltages in the outputs of the
integrators U1–U4.

If we normalize the differential equations of the dynamical system (8) by
using τ =

t
RC

, we can observe that this system corresponds to the system (5),

with a =
R
Ra

and b =
R
Rb

.

The circuit components have been selected as:

R = 10 kΩ, R1 = 90 kΩ, Rb = 10 kΩ, and C = 10 nF.

It is noted that the power supplies of all active devices are ±15 VDC . For the
chosen set of circuit components, the system’s parameters are: b = 1, while the
constant a, represented by the variable resistor Ra plays the role of the control
parameter.

The circuit designed in this work has been constructed with the help of
common off-the-shelf discrete electronic components on a breadboard as shown
in Fig. 7.

For the experimental setup, a digital oscilloscope (HMO1002 of ROHDE &
SCHWARZ) has been deployed for observing the measurements and capturing
the experimental results.

In this way, the experimental phase portraits of circuit’s behavior, for the same
values of the parameters a, b as in the corresponding phase portraits of Fig. 3,
are depicted as shown in Fig. 8. As expected the obtained experimental results
confirm the feasibility of the introduced system (5).
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Figure 7: The implementation of the circuit on a breadboard

(a)
Figure 8
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(b)

(c)

Figure 8: Experimental phase portraits of circuit’s behavior

4. Adaptive control of the new hyperjerk system

We shall deploy adaptive backstepping control here for globally stabilizing
the trajectories of the new hyperjerk system for all initial conditions.

The controlled hyperjerk system is described by the 4D dynamics


ẋ = y,

ẏ = z,
ż = w,

ẇ = −ax − y − w − b|x |z + u.

(9)
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For simplicity in the notation, we define X = (x, y, z,w) as the 4D state of the
hyperjerk system (9).

In (9), the values of parameters are unknowns and u is a backstepping control to
be determined with the help of (A(t), B(t)) that estimates the unknown constants
(a, b).

We define [
ea (t)
eb(t)

]
=

[
a − A(t)
b − B(t)

]
(10)

which represents the estimation error for the system parameters (a, b).
A direct differentiation of the above equation yields[

ėa

ėa

]
=

[
−Ȧ
−Ḃ

]
. (11)

For the control design, we start with the Lyapunov function

W1(ηx) =
1
2
η2

x , (12)

where
ηx = x . (13)

Differentiating W1 with respect to t along the hyperjerk system (9), we get

Ẇ1 = ηx η̇x = −η2
x + ηx (x + y). (14)

We define
ηy = x + y . (15)

With the help of (15), we can express (14) as

Ẇ1 = −η2
x + ηxηy . (16)

We proceed next with defining the Lyapunov function

W2(ηx, ηy) = W1(ηx) +
1
2
η2
y =

1
2

(
η2

x + η
2
y

)
. (17)

Differentiating W2 with respect to t along the hyperjerk system (9), we get

Ẇ2 = −η2
x − η2

y + ηy (2x + 2y + z). (18)

We define
ηz = 2x + 2y + z. (19)
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With the help of (19), we can express (18) as

Ẇ2 = −η2
x − η2

y + ηyηz . (20)

We proceed next with defining the Lyapunov function

W3(ηx, ηy, ηz) = W2(ηx, ηy) +
1
2
η2

z =
1
2

(
η2

x + η
2
y + η

2
z

)
. (21)

Differentiating W3 with respect to t along the hyperjerk system (9), we get

Ẇ3 = −η2
x − η2

y − η2
z + ηz (3x + 5y + 3z + w). (22)

We define
ηw = 3x + 5y + 3z + w. (23)

With the help of (23), we can express (22) as

Ẇ3 = −η2
x − η2

y − η2
z + ηzηw . (24)

As a final step of the adaptive backstepping control design, we set the quadratic
Lyapunov function

W (ηx, ηy, ηz, ηw) =
1
2

(
η2

x + η
2
y + η

2
z + η

2
w

)
+

1
2

(
e2

a + e2
b

)
. (25)

Differentiating W with respect to t along the systems (9) and (11), we get

Ẇ = −η2
x − η2

y − η2
z − η2

w − ea Ȧ − ebḂ + ηwT, (26)

where

T = ηz + ηw + η̇w = (5 − a)x + 9y + 9z + 3w − b|x |z + u . (27)

Theorem 1 The adaptive backstepping control law stated by

u = −(5 − A(t))x − 9y − 9z − 3w + B(t) |x |z − Kηw , (28)

where K > 0 and the parameter estimation law


Ȧ = −ηwx ,

Ḃ = −ηw |x |z
(29)

with ηw = 3x+5y+3z+w, globally and asymptotically stabilizes the 4D hyperjerk
system (9) for all values of X (0) ∈ R4.
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Proof. This result is an application of Lyapunov stability theory. First, we remark
that the quadratic Lyapunov function W designed via Eq. (25) is positive definite.

Substituting u from Eq. (28) into (27), we get

T = −(a − A(t))x − (b − B(t)) |x |z − Kηw = −ea x − eb |x |z − Kηw . (30)

Using (30) and (26), we get

Ẇ = −η2
x − η2

y − η2
z − (1 + K )η2

w + ea
(
−ηwx − Ȧ

)
+ eb

(
−ηw |x |z − Ḃ

)
. (31)

Using the parameter update law (29), the dynamics (31) can be simplified as

Ẇ = −η2
x − η2

y − η2
z − (1 + K )η2

w . (32)

From (32), Ẇ is negative semi-definite on R6.
Hence, it is deduced via Barbalat’s lemma that (ηx (t), ηy (t), ηz (t), ηw (t)) → 0

as t → ∞.
Consequently, (x(t), y(t), z(t),w(t)) → 0 as t → ∞ for all X (0) ∈ R4. □

For computer simulations, we take (a, b) = (0.35, 1) (chaos case).
We pick K = 10, A(0) = 5, B(0) = 4.2, and X (0) = (6.5, 1.9, 2.8, 7.5).
Figure 9 shows that the backstep-controlled state X (t) → 0 as t → ∞.

Figure 9: MATLAB plot showing that the states of the chaos hyperjerk system (9)
are stabilized asymptotically
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5. Adaptive synchronization of the new hyperjerk systems

Here, we shall deploy adaptive backstepping control here for globally syn-
chronizing the trajectories of a set of new chaos hyperjerk systems considered as
leader-follower systems.

The leader hyperjerk system is taken as the system


ẋ1 = y1 ,

ẏ1 = z1 ,

ż1 = w1 ,

ẇ1 = −ax1 − y1 − w1 − b|x1 |z1 .

(33)

For simplicity in the notation, we define X = (x1, y1, z1,w1) as the 4D state
of the hyperjerk system (33).

The follower hyperjerk system is taken as the system


ẋ2 = y2 ,

ẏ2 = z2 ,

ż2 = w2 ,

ẇ2 = −ax2 − y2 − w2 − b|x2 |z2 + u .

(34)

For simplicity in the notation, we define Y = (x2, y2, z2,w2) as the 4D state of
the hyperjerk system (34).

In the leader-follower hyperjerk systems, the values of parameters are un-
knowns and u is a backstepping control to be determined with the help of
(A(t), B(t)) that estimates the unknown constants (a, b).

The synchronization chaos error is defined by means of the equations


ex = x2 − x1 ,

ey = y2 − y1 ,

ez = z2 − z1 ,

ew = w2 − w1 .

(35)

The synchronization error dynamics is calculated as follows:


ėx = ey ,
ėy = ez ,

ėz = ew ,
ėw = −aex − ey − ew − b(|x2 |z2 − |x1 |z1) + u .

(36)
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We define [
ea (t)
eb(t)

]
=

[
a − A(t)
b − B(t)

]
(37)

which represents the estimation error for the system parameters (a, b).
A direct differentiation of the above equation yields[

ėa

ėa

]
=

[
−Ȧ
−Ḃ

]
. (38)

For the control design, we start with the Lyapunov function

W1(ηx) =
1
2
η2

x , (39)

where
ηx = ex . (40)

Differentiating W1 with respect to t along the error system (36), we get

Ẇ1 = ηx η̇x = −η2
x + ηx

(
ex + ey

)
. (41)

We define
ηy = ex + ey . (42)

With the help of (42), we can express (41) as

Ẇ1 = −η2
x + ηxηy . (43)

We proceed next with defining the Lyapunov function

W2(ηx, ηy) = W1(ηx) +
1
2
η2
y =

1
2

(
η2

x + η
2
y

)
. (44)

Differentiating W2 with respect to t along the error system (36), we get

Ẇ2 = −η2
x − η2

y + ηy
(
2ex + 2ey + ez

)
. (45)

We define
ηz = 2ex + 2ey + ez . (46)

With the help of (46), we can express (45) as

Ẇ2 = −η2
x − η2

y + ηyηz . (47)

We proceed next with defining the Lyapunov function

W3(ηx, ηy, ηz) = W2(ηx, ηy) +
1
2
η2

z =
1
2

(
η2

x + η
2
y + η

2
z

)
. (48)



38 V.-T. PHAM, S. VAIDYANATHAN, C. VOLOS, S. JAFAR, T. KAPITANIAK

Differentiating W3 with respect to t along the error system (36), we get

Ẇ3 = −η2
x − η2

y − η2
z + ηz

(
3ex + 5ey + 3ez + ew

)
. (49)

We define
ηw = 3ex + 5ey + 3ez + ew . (50)

With the help of (50), we can express (49) as

Ẇ3 = −η2
x − η2

y − η2
z + ηzηw . (51)

As a final step of the adaptive backstepping control design, we set the quadratic
Lyapunov function

W (ηx, ηy, ηz, ηw) =
1
2

(
η2

x + η
2
y + η

2
z + η

2
w

)
+

1
2

(
e2

a + e2
b

)
. (52)

Differentiating W with respect to t along the systems (36) and (38), we get

Ẇ = −η2
x − η2

y − η2
z − η2

w − ea Ȧ − ebḂ + ηwT , (53)

where

T = ηz + ηw + η̇w = (5 − a)ex + 9ey + 9ez + 3ew − b( |x2 |z2 − |x1 |z1) + u . (54)

Theorem 2 The adaptive backstepping control law stated by

u = −(5 − A(t))ex − 9ey − 9ez − 3ew + B(t) ( |x2 |z2 − |x1 |z1) − Kηw , (55)

where K > 0 and the parameter estimation law{
Ȧ = −ηwex ,

Ḃ = −ηw (|x2 |z2 − |x1 |z1)
(56)

with ηw = 3ex + 5ey + 3ez + ew, globally and asymptotically synchronizes the
trajectories of the 4D chaos hyperjerk systems (33) and (34) for all values
of X (0), Y (0) ∈ R4.

Proof. This result is an application of Lyapunov stability theory. First, we remark
that the quadratic Lyapunov function W designed via Eq. (52) is positive definite.

Substituting u from Eq. (55) into (54), we get

T = −eaex − eb ( |x2 |z2 − |x1 |z1) − Kηw . (57)
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Using (57) and (53), we get

Ẇ = −η2
x − η2

y − η2
z − (1 + K )η2

w + ea
(
−ηwex − Ȧ

)
+ eb

[
−ηw ( |x2 |z2 − |x1 |z1) − Ḃ

]
.

(58)

Using the parameter update law (56), the dynamics (58) can be simplified as

Ẇ = −η2
x − η2

y − η2
z − (1 + K )η2

w . (59)

From (59), Ẇ is negative semi-definite on R6.
Hence, it is deduced via Barbalat’s lemma that (ηx (t), ηy (t), ηz (t), ηw (t)) → 0

as t → ∞.
Consequently, (x(t), y(t), z(t),w(t)) → 0 as t → ∞ for all X (0),Y (0) ∈ R4.

For computer simulations, we take (a, b) = (0.35, 1) (chaos case).
We pick K = 10, A(0) = 4.3, B(0) = 5.7, X (0) = (3.4, 2.5, 6.8, 1.5) and

Y (0) = (1.6, 4.9, 2.1, 8.5).
Figures 10–13 shows the synchronization of the chaos hyperjerk systems (33)

and (34). Figure 14 shows that the synchronization error (ex (t), ey (t), ez (t), ew (t))
converges to zero as t → ∞.

Figure 10: MATLAB plot showing that the signals x1 and x2 of the chaos hyperjerk
systems (33) and (34) are synchronized asymptotically
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Figure 11: MATLAB plot showing that the signals y1 and y2 of the chaos
hyperjerk systems (33) and (34) are synchronized asymptotically

Figure 12: MATLAB plot showing that the signals z1 and z2 of the chaos
hyperjerk systems (33) and (34) are synchronized asymptotically
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Figure 13: MATLAB plot showing that the signals w1 and w2 of the chaos
hyperjerk systems (33) and (34) are synchronized asymptotically

Figure 14: MATLAB plot showing that the synchronization errors between
the chaos hyperjerk systems (33) and (34) are stabilized asymptotically
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6. Conclusion

By using numerical simulation and circuit design, a hyperjerk system has been
studied. Phase portraits and Lyapunov exponents indicate chaos in the system.
We have proposed approaches to control and synchronize system’s chaos. In
our continuing work, extreme behavior in the system will be investigated and
application of the system will be developed.
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