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APPLICATION OF A SCLEROMETER TO THE
PRELIMINARY ASSESSMENT OF CONCRETE QUALITY
IN STRUCTURES AFTER FIRE

R. KOWALSKI', J. WROBLEWSKA

The paper presents a description and results of a study focused on the applicability of the sclerometric method to
the preliminary assessment of concrete quality in structures after fire. Due to the high thermal inertia, concrete has
non-uniform properties in the heated element cross-section. The greatest reduction of concrete compressive
strength occurs on the heated surface. When assessing a structure after a fire, it is particularly important to
determine the thickness of the damaged external concrete layer. Reinforced concrete beams exposed to high
temperature on one side (a one-way heat transfer in the cross-section) for 0 (unheated element), 60, 120, 180 and
240 minutes were examined. A significant decrease of the rebound number on the elements heated surface was
observed, depending on the heating duration. The obtained values of the relative rebound number reduction were
comparable to the values of relative compressive strength decrease (determined on the basis of temperature) of

concrete situated 15 mm from the heated surface.
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1. INTRODUCTION

Reinforced concrete structures have relatively good natural fire resistance [1-4]. Concrete in
a structure, contrary to steel or timber, usually does not get completely destroyed in fire [5-9].
However, as a result of the exposure to high temperature, a number of thermo-mechanical, physical
and chemical processes occur in the structure of concrete, negatively affecting its mechanical
properties [1, 10-14]. The decrease of concrete compressive strength in high temperature is
particularly important as this may have a significant effect on the reduction of the structural load-
bearing capacity. This issue has been studied frequently [10, 15-18] and is widely described in the
literature, e.g. [2, 3, 11, 19, 20]. The outcome of the collected experimental results is a generalised,
standard [21] relationship between the temperature of concrete (6) and the relative decrease of
concrete compressive strength (f.0/fcx; see Fig. 10). From a practical point of view, considering the
load-bearing capacity of a structure, concrete heated to 500-600°C can be regarded as destroyed [3,
22].

Due to the high thermal inertia of concrete, during a fire, the interior of the element cross-section
heats up more slowly than the surface [9]. Therefore, the temperature on the element surface is much
higher than inside. As a result, the concrete has non-uniform properties in the cross-section. The
greatest degradation of concrete, as well as the reduction of its compressive strength, occurs in the
near-surface layer. During the assessment of concrete in structures after a fire, it is particularly
important to determine the thickness of the external layer of the tested element cross-section, in which
the concrete is so damaged that it should be considered as destroyed [4, 5, 7, 23, 24].

The sclerometric method is used for nondestructive testing of concrete in situ and can be applied to
indirect estimation of the compressive strength of concrete in structures. Testing concrete with
a sclerometer in normal conditions is standardized [25]. A lot of additional information concerning
the methodology of the test and experimental relationships for the determination of concrete strength

can also be found in [26].
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The sclerometric test is based on the correlation between the compressive strength of concrete and its
surface hardness. After applying a sclerometer (Schmidt hammer) to the element, a spring system
releases a hammer mass which strikes a plunger in contact with the concrete surface and then
rebounds at a certain distance, known as the rebound number. In [27] two alternative ways of
assessing the concrete strength on the basis of rebound number measurements are given. The first one
is to establish a direct correlation between the sclerometric test results and the compressive strength
of concrete, determined in the destructive test. For this purpose, it is required to examine at least 18
specimens taken from the structure. The second way is based on the predefined relationship between
the rebound number and concrete compressive strength [27]. The initial calibration of this relationship
shall be performed considering the results of destructive tests on at least 9 core samples. With the use
of a sclerometer, it is only possible to determine the compressive strength of concrete in the near-
surface layer with a thickness not exceeding 30 mm [24]. Concrete in the tested area shall be grinded
and cleaned so that the hammer strikes a flat and dry surface [25].

The sclerometric method may also be useful for the assessment of structures after a fire. However,
with this method it is only possible to pre-identify areas where the concrete: (1) has been destroyed,
(2) has been slightly damaged or (3) has not been significantly affected by the high temperature and
is not damaged. It is not possible to fully apply the sclerometric method to the assessment of concrete
strength in the structure after a fire. The results of tests on core samples, required to determine the
relationship between the rebound number and concrete compressive strength, are then usually
unreliable [28] as the concrete has non-uniform properties along the specimen axis.

The paper presents a description and results of a study focused on the applicability of the sclerometric
method to the preliminary assessment of concrete quality in structures after fire. Tests were performed
on reinforced concrete elements heated in a planned way and then freely cooled in the air. This was
to study the rebound number changes with respect to concrete damage caused by a known high

temperature field.
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2. EXPERIMENTAL STUDY

2.1. ELEMENTS
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Fig. 1. Beams dimensions and reinforcement Fig. 2. Beam location in the furnace
chamber

Five RC beams 160 x 200 mm in cross-section and 1300 mm in length (Fig. 1), made of C35/45
concrete with gravel (siliceous) aggregate, were examined. The average compressive strength of the
concrete determined on 150 mm cubes was 46.3 MPa after 28 days from casting and 60.8 MPa after
4 months (at that time the elements were heated). To prevent unexpected cracking, the beams were

reinforced with 8 mm diameter bars made of steel with a characteristic yield strength of 500 MPa.

2.2. TESTING PROCEDURE

The beams were heated for 0 (unheated element), 60, 120, 180 or 240 minutes using a height-
adjustable electric furnace (Fig. 2), and then were cooled freely in the air. Before the test, the
temperature in the furnace chamber reached 450°C. The furnace was then placed under the beam and
heating continued. For about 40 minutes the temperature in the furnace chamber increased to about
900°C and was maintained until the end of the test. Immediately after placing the furnace under the
beam, ceramic wool insulation was fixed to the element lateral surfaces (Fig. 2). In this way, a one-
way heat transfer in the cross-section was provided. The temperature in the furnace chamber, on the
beam surface and at selected points inside the cross-section was measured during the test (Fig. 5a).

The cooled element was turned upside down. In this way, a good access to the heated surface was
provided. Three 100x100 mm locations (Fig. 3a) were then selected; in each of them, ten readings

were taken with a Schmidt hammer type N.
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test locations
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Fig. 3. Tested elements: a) sclerometric test locations, b-f) surface of the beam underside after a specified
heating duration

Dust and loose pieces of aggregate or cement paste were removed from the marked areas of the tested
surface. However, grinding the concrete surface as recommended for testing at ordinary room
temperature [25] was abandoned. The surface roughness (caused by the effect of high temperature)
was retained to imitate a preliminary, quick test, which could easily be performed on the real structure
after a fire. Surface grinding is labour-intensive and would significantly delay the test. And yet, as
already stated, the sclerometric method can only be used for the initial identification of areas where
concrete has been damaged during a fire. In addition, grinding would remove the most damaged
external layer of concrete. This would result in less damaged concrete located deeper in the cross-
section being examined. Fig. 3b-f show photographs of the tested elements surfaces. The surface

roughness is visible - the longer the heating time was, the greater the damage.
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3. EXPERIMENTAL RESULTS

3.1. TEMPERATURE IN THE BEAM CROSS-SECTION
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Fig. 4. Average temperature at particular points of the beam cross- Fig. 5. Temperature measurement

section superimposed on the furnace chamber temperature and points in the beam cross-section

standard curve [21]

Fig. 4 presents the average values of the temperature measured at points situated inside the element
cross-section and on the surface, as well as the average temperature in the furnace and, additionally,
the standard curve [21]. The arrangement of measurement points is shown in Fig. 5. Average
temperature values at particular points of the cross-section were determined on the basis of readings
for four tested beams. In the heating time range of 0-60 min, this is the average temperature for four
beams, 60-120 min - three, 120-180 min - two, 180-240 min - the value measured in one beam.
Moreover, the readings were averaged for measurement points located symmetrically on the lateral
surfaces of the element (Fig. 5).

It can be noted that the temperature values inside the cross-section and on the surface are very similar.

The obtained results indicate that the heat transfer in the elements cross-section was indeed one-way.

3.2. REBOUND NUMBER

Table 1 shows the values of the rebound number on the tested beams surfaces. The average rebound
numbers (L7;) have been calculated for 10 readings at each of the three test locations on the heated
element surface (Fig. 3). A correction factor due to the reading on the reference anvil differing from
the nominal value (Liom/Laav. = 80/73.6=1.09) and correction [26] for the vertical test direction

(hammer striking down) have been taken into account. Based on the average rebound numbers (L7;)
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at the three test locations, the average rebound number (Lr) for each element as well as standard

deviation (s.) and coefficient of variation (vr) [26] were determined.

Table 1. Rebound numbers for tested beams

Test Average rebound | Average rebound Standard Coeff}ci@nt Relative
Element location number at the number for the deviation s, of variation | rebound number
test location Lr; element Lz ve =si/L [%] | reduction Li/Ly
B0 B0, 48.6
unheated B0, 48.2 49.0 1.1 2.2% 1.00
(T =0 min) B0; 50.2
Bl 46.5
- Jzolmin) B, 477 46.4 13 2.9% 0.83
BI; 45.0
BIL 38.9
(T= FZ(I)Imin) BIL, 37.2 38.0 0.9 2.3% 0.50
BII; 37.9
BN BIII, 34.1 .
(T = 180 min) BIII, 33.0 342 1.3 3.7% 0.38
BIII; 35.5
BIV 29.
« I ) BIV, 3?.8 30.0 1.7 5.7% 0.26
™ MR, 290

For all beams, low values of rebound number coefficient of variation (vr < 7%) were obtained. This
allows evaluating the uniformity of concrete in the near-surface layer as very good [26].

It should also be noted that the examination of the rough surface of heated elements did not cause
a large scatter of results. This leads to a conclusion that in order to simplify the measurements in
many locations of a structure after a fire, it is possible to abandon the time-consuming grinding of the
tested surface. This does not have a significant impact on the rebound number readings taken during
the preliminary concrete assessment.

The rebound number decreases as the heating duration increases, i.e. with the progressing degradation
of concrete in the near-surface layer. For the beam heated for 60 minutes, a slight reduction of the
rebound number was observed (L7/Lo = 0.83). In the case of the beam exposed to high temperature

for 240 minutes, the rebound number decreased very significantly (L7/Lo = 0.26).
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4. DISCUSSION OF TEST RESULTS

4.1. COMPARISON OF TEMPERATURE MEASUREMENT RESULTS WITH TEMPERATURE
FIELD CALCULATED USING THE FINITE ELEMENT METHOD

In order to obtain complete information about the temperature field in the element cross-section in
relation to the heating duration, FEM calculations were performed using the SAFIR software [29].
The results were compared with the temperature values obtained at particular measurement points
during heating the beams.

The calculations were based on a two-dimensional model of a beam cross-section of 160 x 200 mm,
with an orthogonal grid of four-node finite elements of 10 mm side. The boundary conditions were
determined according to which heat penetrated into the cross-section only from the bottom.
A temperature corresponding to that measured at point Tb5 (see Fig. 5) at the beams underside was
set for the entire bottom edge of the cross-section. In this way, the effect of radiation in the furnace
chamber on the heated surface of the element, which is difficult to estimate, was eliminated. Thermal
properties of concrete: specific heat and thermal conductivity were adopted in accordance with [21].
In the model, the presence of reinforcing bars was also taken into account, as specified in the
reinforcement scheme of tested elements (Fig. 1).

Fig. 6 shows a comparison of FEM calculation results with experimental results. As mentioned above
(Fig. 4), the temperature values measured inside the cross-section of the tested element and on the
lateral surfaces were practically identical (a one-way heat transfer). For this reason, the readings at
the measurement points located in the central part of the cross-section (Tb5, Tb11, Tb10, Tb9, Tbl;
see Fig. 5) were used for comparison with the results of calculations.

Good compatibility of the experimental and calculated results was obtained. Therefore, it can be
concluded that the assumption according to which the temperature at the bottom edge of the FEM
model was equal to that measured at the beam underside provided reliable calculation results.

Fig. 7 presents the isotherm layout (calculated) in the beam cross-section after the specified heating
time. The black solid line indicates the position of the isotherm 500°C. The distance of this line from
the bottom edge of the cross-section can be identified with the thickness of the damaged concrete
layer.

In the obtained temperature fields there are visible slight irregularities in the horizontal isotherm
layout, appearing in the location of reinforcing bars (due to the different thermal conductivity of
concrete and steel). Generally, however, it can be assumed that a one-way heat transfer occurred in

the cross-section.
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Fig. 8 shows diagrams of temperature in the beam cross-section, depending on the distance from the
bottom edge and on the heating duration. Additionally, the dashed lines indicate the position of the
isotherm 500°C.
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Fig. 8. Temperature in the beam cross-section for a specified heating time

4.2. RELATIONSHIP BETWEEN THE REBOUND NUMBER REDUCTION AND THE
DECREASE OF CONCRETE COMPRESSIVE STRENGTH IN THE NEAR-SURFACE LAYER

In order to examine how the rebound number reflects concrete damage, Fig. 9 and 10 compare the
relative decrease of the rebound number (L7/Lo; Table 1) with the relative reduction of the

compressive strength (f.6/fcx) of concrete at high temperature. The Eurocode model [21], which can
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be considered reliable [2, 3, 22], was used to determine this reduction. The decrease of compressive
strength of concrete with siliceous aggregate (such aggregate was used in the concrete of tested
beams) at high temperature is shown in Fig. 10. On the basis of this relationship and the temperature
distribution in the beam cross-section after a specified heating time (Fig. 8), the relative strength

decrease of concrete at a distance: 10, 15, 20 and 30 mm from the bottom cross-section edge (see

Table 2) was calculated.

Table 2. Temperature and relative reduction of concrete compressive strength in the heated element for
different depths of the cross-section

Distance from the surface [mm]
0[°C] EUL: 61[°C] Seolfek 0[°C] Seolfek 61[°C] JSeolfek
0 1.00 22 1.00 22 1.00 22 1.00 22 1.00
60 0.83 459 0.66 384 0.76 309 0.84 205 0.94
120 0.50 623 0.41 551 0.52 480 0.63 369 0.78
180 0.38 694 0.31 640 0.39 586 0.47 495 0.60
240 0.26 753 0.22 711 0.28 670 0.34 596 0.45
1.0
g 0.8
~
0.6
o5 |--A--10 mm
E’ 04 --A--15mm
> --A--20 mm
0.2 1--4--30 mm
—fo/f 21
0.0 . . : . 0.0 Loful2V]) : .
0 60 120 180 240 0 200 400 600 800
Heating duration, min Temperature, °C
Fig. 9. Relative decrease of concrete compressive Fig. 10. Relative rebound number reduction
strength at subsequent depths of the cross-section  depending on the temperature at subsequent depths
(dashed lines) and relative rebound number of the cross-section (dashed lines) and relative
reduction depending on heating time (continuous decrease of concrete compressive strength [21]
line) (continuous line)

Fig. 9 compares the compressive strength decrease (feo/fcx) of concrete at particular depths of the
cross-section with the rebound number reduction (L7/Lo) obtained in the tests, against the heating
duration. Additionally, Fig. 10 shows the same values of f.o/fcx and L7/Ly in a different coordinate
system, i.e. depending on the concrete temperature. The rebound number diagrams were obtained by

joining points whose x-coordinate was the temperature at considered depth in the cross-section after
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a specified heating time, and y-coordinate - the relative decrease of the rebound number after that
time.

In both Figures (Fig. 9 and Fig. 10) it can be observed that the rebound number decreases with
increasing heating duration, and L7/L values reflect most accurately the relative compressive strength
reduction (fco/for) of concrete situated 15 mm from the bottom edge of the cross-section. This distance
corresponds to the centre of the near-surface layer (30 mm thick) which is measured with
a sclerometer [24].

Therefore, it can be concluded that the sclerometric method can be used for the preliminary
comparative assessment of concrete in the external cross-section layer of a structural element after
a fire. In the case when the effect of high temperature in the cross-section is significant, the concrete
at the surface is destroyed and cavities occur. This enables adjacent, deeper layers of concrete to be
examined with a Schmidt hammer. However, it is not possible to estimate the strength of concrete

more distant from the element surface, i.e. one to which there is no direct access with the sclerometer.

5. SUMMARY AND CONCLUSIONS

The paper presents a description and results of an experimental study focused on the applicability of
the sclerometric method to the preliminary assessment of concrete in the near-surface layer of the
cross-section of RC structural elements after fire. Tests were performed on beams heated from the
bottom in a controlled way, which was to ensure a one-way heat transfer in the cross-section.

A significant decrease of the rebound number depending on the heating duration was observed. For
the beam exposed to high temperature for the shortest time (60 min), the rebound number was reduced
by only 17% (L7/Lo=0.83). In this case the thickness of the damaged concrete layer, defined
approximately as corresponding to the distance of isotherm 500°C from the heated element surface,
was about 24 mm. For the beam heated for the longest time (240 min) the rebound number decreased
significantly - by 74% (L1/Lo = 0.26). In this case the thickness of the degraded concrete layer was
equal to about 46 mm.

Comparison of the rebound number variability depending on the heating duration with the decrease
of concrete compressive strength (feo/fcx), determined on the basis of the Eurocode model [21] and
concrete temperature in the element cross-section, indicates that the relative rebound number
reduction (L7/Lo) well corresponds to the relative strength decrease (fco/fe) of concrete situated at the
depth of 15 mm from the heated cross-section edge. This distance is approximately equal to half of

the thickness of the near-surface layer measured with a sclerometer (30 mm; [24]).
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The obtained results confirm that the sclerometric method can be used for the preliminary assessment

of the concrete quality in the near-surface layer of elements in structures after a fire. This assessment

can be performed in order to identify areas where the concrete: (1) has been completely destroyed,

(2) has been only slightly damaged, or (3) has not been significantly affected by heat and is not

damaged.

In practice, in order to simplify the preliminary assessing of structures after fire using a sclerometer,

it is possible to abandon the time-consuming grinding of the element surface (which is recommended

for testing at ordinary room temperature). In the presented study, the beams surfaces exposed to high

temperature were not grinded. Neertheless, small scatter of obtained results was observed.
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WYKORZYSTANIE SKLEROMETRU DO WSTEPNEJ OCENY JAKOSCI BETONU
W KONSTRUKCJACH PO POZARZE

Stowa kluczowe: beton, wysoka temperatura, pozar, badanie nieniszczace, sklerometr, mtotek Schmidta, liczba odbicia

STRESZCZENIE

W artykule przedstawiono opis i wyniki badan majacych na celu sprawdzenie przydatnosci metody sklerometrycznej do
wstegpnej oceny jakosci betonu w konstrukcjach po pozarze.

Jednym z najistotniejszych zjawisk wptywajacych na nos$no$¢ konstrukcji narazonej na warunki pozarowe jest obnizenie
wytrzymatosci betonu w wysokiej temperaturze w wyniku proceséw fizyko-chemicznych i uszkodzefh mechanicznych
zachodzacych wjego strukturze. Ze wzgledu na duza bezwladno$¢ termiczng, beton przestaje mie¢ jednorodne
whasciwosci  w  przekroju ogrzewanego elementu, a najwigksza degradacja betonu zachodzi w strefie
przypowierzchniowej. Podczas oceny konstrukcji po pozarze szczegdlnie istotne jest okreslenie grubosci zewngetrznej
warstwy przekroju elementu, w ktérej beton jest na tyle uszkodzony, ze nalezy go uzna¢ za zniszczony. Z praktycznego
punktu widzenia rozpatrywania nosnosci konstrukcji mozna przyjacé, ze grubosé tej warstwy odpowiada odlegtosci
izotermy 500°C od ogrzewanej krawedzi przekroju.

Metoda sklerometryczna jest przeznaczona do nieniszczacych badan betonu in situ i w zwyktych warunkach pozwala na
posrednie oszacowanie wytrzymatos$ci betonu na $ciskanie na podstawie mierzonej liczby odbicia (zaleznej od twardosci
powierzchniowej betonu). Grubo$¢ przypowierzchniowej warstwy przekroju badanego elementu, jaka obejmuje zasi¢g
pomiaru sklerometrem (mtotkiem Schmidta), wynosi do 30 mm.

W celu stwierdzenia przydatnosci metody sklerometrycznej do wstgpnej oceny betonu po pozarze, przeprowadzono
badanie elementéw zelbetowych ogrzewanych w sposob zaplanowany, a nastgpnie swobodnie wystudzonych na
powietrzu. Zbadano cztery belki zelbetowe poddane dziataniu wysokiej temperatury z jednej strony (od spodu) przez 60,
120, 180 i 240 minut oraz jedng belke nicogrzewana. Boczne powierzchnie elementdéw zostaly zaizolowane termicznie,
dzigki czemu zagwarantowano jednokierunkowy przeptyw ciepta w przekroju. Wartosci temperatury mierzonej w $rodku
przekroju oraz na jego bocznej krawedzi byty bardzo zblizone.

W celu uzyskania petnej informacji o polu temperatury w przekroju elementu w zaleznosci od czasu ogrzewania,
przeprowadzono obliczenia MES za pomoca programu komputerowego SAFIR. Na catej dolnej krawedzi
zamodelowanego przekroju zadano temperature odpowiadajgca temperaturze mierzonej na spodzie belek. W ten sposob
wyeliminowano trudne do oszacowania okreslenie wptywu promieniowania w komorze pieca na ogrzewang powierzchnig
elementu. Otrzymano dobrg zgodno$¢ pomiaréw temperatury w przekroju z wartosciami obliczonymi.

Po ostudzeniu elementy obrécono spodem do gory, zapewniajac w ten sposob dobry dostep do powierzchni ogrzewanej.
Dla kazdej belki dokonano po dziesig¢ odczytow liczby odbicia w trzech miejscach pomiarowych, a nastgpnie
wyznaczono jej $rednig warto$¢. Zaobserwowano znaczne zmniejszenie liczby odbicia w zaleznosci od czasu ogrzewania
elementéw. W przypadku belki poddanej dziataniu wysokiej temperatury przez 60 minut (najkrdtszy rejestrowany czas),
liczba odbicia ulegta zmniejszyla si¢ zaledwie o 17% (L1/Ly = 0,83). Grubo$¢ zniszczonej warstwy betonu, okreslona w
przyblizeniu jako odpowiadajaca odlegtosci izotermy 500°C od powierzchni ogrzewanej, wyniosta w tym przypadku 24
mm. W belce ogrzewanej przez 240 minut (najdtuzej) liczba odbicia zmniejszyta si¢ az o 74% (Li/Lo = 0,26), przy

grubosci zdegradowanej warstwy betonu rownej 46 mm.
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W praktyce, w celu uproszczenia wstgpnych badan konstrukcji po pozarze za pomoca sklerometru, mozna zrezygnowaé
z klopotliwego szlifowania powierzchni elementow (co jest zalecane do badan w zwyklej temperaturze).
W przedstawionym badaniu nie oszlifowano powierzchni belek narazonej na dziatanie wysokiej temperatury, a mimo
tego otrzymano mate rozrzuty wynikow.

Zmiennos¢ liczby odbicia w zaleznosci od czasu ogrzewania poroéwnano ze wzgledna redukcja wytrzymatosci betonu na
$ciskanie (f.o/fcx) okreslona na podstawie modelu eurokodowego i temperatury w przekroju elementu. Stwierdzono, ze
wzgledne zmniejszenie liczby odbicia (L7/Lo) najbardziej odpowiada wzglgdnemu obnizeniu wytrzymatosci na $ciskanie
(feo/fer) betonu znajdujacego si¢ w odlegtosci 15 mm od dolnej krawedzi przekroju, a wigc w srodku warstwy objetej
zasiggiem pomiaru sklerometrem (30 mm).

Otrzymane wyniki potwierdzaja, ze metoda sklerometryczna moze by¢ stosowana do wstepnej oceny jakosci betonu
w warstwie przypowierzchniowej elementow w konstrukeji po pozarze. Ocena taka moze by¢ przydatna do wytypowania
miejsc, w ktorych beton: (1) zostat zniszczony, (2) jest uszkodzony w niewielkim stopniu lub (3) nie byt poddany
istotnemu wplywowi wysokiej temperatury i w ogéle nie zostat uszkodzony. Za pomoca sklerometru nie jest natomiast
mozliwe oszacowanie wytrzymatosci na $ciskanie betonu znajdujacego si¢ w glebi przekroju elementu, poza warstwa

zewnetrzng.



