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KRZYSZTOF MICHALCZYK ∗

ANALYSIS OF HELICAL COMPRESSION SPRING SUPPORT
INFLUENCE ON ITS DEFORMATION

This paper presents a new method of calculation of the change of axial twisting
angle of compressed helical spring’s end-coils in the case of rotary - free supports.
The propriety of derived formulas was experimentally verified. The method is easy
in application and gives results much closer to experiment than the presently used
method that can be found in literature.

1. Introduction

Helical springs exhibit high sensitivity to supporting conditions [1]. The
shape of end coils influences the stiffness of spring. The way of mounting
of the spring’s end coils influences the susceptibility to buckling [2]. In
available literature, one can find formulas allowing calculation of the change
of axial twisting angle of statically-compressed helical spring’s end-coils [1,
3], but simplifications in these formulas cause that they can not be used for
large-deflection cases.

2. Analysis of deformation

Figure 1 shows two types of helical spring supports. Fig.1 a) shows
rotary-free support of compress helical spring, Fig.1 b) shows fixed supports
preventing ends of the spring from axial twisting. These are two characteristic
cases of general support case which acts on spring with axial twisting moment
Mo as it is shown in Fig. 2. Compressing force F generates two components
of the moment acting on a spring wire:
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Mτ = F
D
2

cos γ − twisting moment

MN = F
D
2

sin γ − bending moment

where: γ – the lead angle of spring, D – the nominal diameter of spring.

Fig. 1. Two types of helical spring supports: a) rotary-free support, b) fixed support

Fig. 2. Loads on segment of compressed spring

Substituting

M = F · D
2

We obtain
Mτ = M cos γ
MN = M sin γ
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By adding moments of force F with the axial twisting moment Mo, we
obtain the equations of moments:
– wire bending moment

Mg = M sin γ − Mo cos γ (1)

– wire twisting moment

Ms = M cos γ + Mo sin γ (2)

Elastic energy of bending equals [4]

UG =

L∫

0

M2
g

2EJ
dL (3)

Elastic energy of twisting equals

US =

L∫

0

M2
s

2GJo
dL (4)

Integration is executed over the length of wire. The length of wire equals:

L =
πD0

cos γ0
zc (5)

where: γo – the initial lead angle of spring;
Do – the nominal diameter of not loaded spring;
zc – the number of working coils of spring.

The total elastic energy resulting from wire bending and twisting equals

UC = UG + US (6)

After transformations and integration, the formula of total elastic energy
takes the form

UC =
L

2EJ

((
M2 + M2

o

)
+ ν

(
M2 cos2 γ + 2MMo sin γ cos γ + Mo sin2 γ

))

(7)
Accordingly to the Castigliano rule, the derivative of potential energy

with respect to generalised force equals generalised displacement caused by
this force [5]:
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∂U
∂Fn

= wn (8)

Thus, in general case of spring support, the change of twisting angle of
compressed helical spring’s end-coils equals:

ϑ =
∂Uc

∂Mo
=

L
EJ

(Mo + νM sin γ cos γ + νMo sin2 γ) (9)

In the case of rotary-free support, the twisting moment Mo equals zero.
then

ϑ(Mo = 0) =
L
EJ

νM sin γ cos γ (10)

Formulas (9) and (10) can be found in literature in a similar form [1, 3].
They can not be very accurate for high deflections of spring because of the
assumption that the lead angle is constant during compression of the spring.
Let us transform the formula (10) to form (11), which relates elementary
rotation dϑ to elementary load dF.

For a quite frequent case of mounting element that allows for mutual
rotation of spring’s end-coils

dϑ = (
L
EJ

νR sin γ cos γ)dF (11)

The height of spring H equals L sin γ. For a spring without load, the
height Ho equals L sin
gammao. When loaded, the spring will deflect, with deflection value f , and

its height will equal H = Ho− f . The stiffness of spring equals c =
F
f
� idem.

Thus, transforming foregoing equations, one can write:

sin γ =
H0 − F

c

L
(12)

Hence

cos γ =

√
1 − (H0 − F

c )2

L2 (13)

From geometric relationships between the spring diameter, the lead angle

of spring γ and the length of spring wire it results that: cos γ =
2πR · zc

L
,

Thus

R =
L

2πzc

√
1 − (H0 − F

c )2

L2 (14)
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Substituting (12), (13), (14) into (11) we get:

dϑ =
Lν
EJ
· L
2πzc

√
1 − (H0 − F

c )2

L2 · H0 − F
c

L
·
√

1 − (H0 − F
c )2

L2 dF

Because the inequality H0 < L always holds, thus, by simplification we
get:

dϑ =
ν

2πLEJ · zc
(L2 − (H0 − F

c
)2) · (H0 − F

c
)dF

Hence

ϑ =

PM∫

0

ν

2πLEJ · zc
(L2 − (H0 − F

c
)2) · (H0 − F

c
)dF

After integrating the compressing force FM from zero to maximum we
obtain:

ϑ(Mo = 0) =
FMν

2πLEJ · zc

H0L2 − H3
0 +

3H2
0FM

2c
− H0

(
FM

c

)2
− L2FM

2c
+

1
4

(
FM

c

)3
(15)

Substituting maximum deflection f for FM /c in (15) yields

ϑ(Mo = 0) =
FMν

2πLEJ · zc

(
H0L2 − H3

0 +
3
2
H2

0 f − H0 f 2 − 1
2
L2 f +

1
4

f 3
)

Formula (15) can be applied to large spring deflections when assumption
of constant lead angle of spring γ can not be accepted.

After introducing the following denotation: zc – initial number of spring
coils, zcP – number of spring coils under compressing load F, one can write:

zcP = zc − ϑ

2π
. The circumference of one spring coil under load equals:

L1P =
L

zcP
, hence spring diameter under load equals: DP =

L1P

π
cos γ.

The subscript “P” denotes the parameter under compressing load F of
the spring. By substituting the above relationships into the foregoing formula,
we finally obtain:

DP =

√
L2 − (H0 − F

c )2

zc · π − ϑ
2

(16)
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Formula (15) can be used to calculate the angle of mutual rotation of
end-coils of loaded spring, whereas formula (16) can be used to calculate
the increase of nominal spring diameter under this load.

The propriety of formulas (10) and (15) has been verified experimentally
on a spring from car suspension system (Fig. 3). The parameters of the
examined spring:

total height l0 – 395 mm; nominal spring diameter Dnom – 119 mm; wire
diameter g – 11 mm; number of acting coils nc – 6,27; spiral lead h – 63
mm

Fig. 3. Examined spring on experiment station

The angle of mutual rotation of end-coils was measured for spring de-
flection equal to f = 200 mm. The results are shown in Table.1. Material
properties of the examined spring were assumed as typical for steel: E =
206000 MPa, ν = 0.3.

Table 1.

Value from: formula (10) formula (15) experiment

ϑ[◦] 7.44 5.8 12.7

As one can see in Tab.1, formula (10) gives the result almost two times
lower than that obtained in experiment. Moreover, formula (15), which takes
into account the change of lead angle gives a result even worse than formula
(10),where the change of lead angle is not considered.

A complex investigation was carried out in order to find more precise
relations between the results from formula (10) and experiment. In these
experiments, we used eighteen springs with different geometrical parameters.

The angle of mutual rotation of end-coils was measured with 0.5[◦]
accuracy. Bottom support of spring was made of thrust bearing with low
moment of friction. Top support of spring was fully constrained.
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Fig. 4. Experiment station for complex investigations

The results are shown in Tab. 2.
As one can see in the last column of Tab. 2, the ratio of the experimental

value of axial rotation angle to the value of rotation from formula (10) is
significantly high.

Formula (10) gives results which are not compatible with experiment
because it has been derived using the Castigliano rule, which can be applied
only for Clapeyron systems. A spring loaded with axial force and twisting
moment does not fulfil the Clapeyron system’s conditions when large de-
flections are considered. Thus, a new formula for mutual rotation of spring
end-coils must be derived.

The research was conducted in two stages. In the first stage, the assump-
tion of constant curvature was made. In the second stage, the change of
curvature of helix during compression of spring has been considered.

The calculations presented below were done with an assumption that
twisting of the spring’s wire played the major role in its deflection, whereas
bending of wire was only a correcting factor.

The parametric equations of a helix have the form [6]:

x = R cosϕ; y = R sin ϕ; z = kϕ (17)

where: R – a half of nominal spring diameter, k – increment of coordinate
z referring to increment of angle ϕ from 0 to 2π (Fig. 5). The quantity 2πk
means the spiral lead.
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Table 2.

Nr
lo

[mm]
Dnom

[mm]
g

[mm]
h

[mm]
n
[-]

nc

[-]
f

[mm]
ϑd

[◦]
F

[N]
ϑl

[◦]
ϑd /ϑl

[-]

1 190 64 10 26.25 8.5 6.5 90 7.5 5280 4.8 1.56

2 87 46.1 6.9 21 6 3.5 48 7.0 3195 4.0 1.75

3 90 39.4 6 14.25 8 5.5 39 4.5 1505 3.0 1.5

4 87 36.7 7.8 16.2 7 4.8 37 4.5 5070 3.7 1.21

5 83 34.5 4 9.8 10 7.8 40 5.0 320 2.8 1.78

6 67 30.8 3.2 10 8.5 6.5 38 4.5 209 3.4 1.32

7 68 24.7 2.3 10.88 8.3 6.3 48 11.0 143 7.2 1.53

8 69 25.5 4 9 9 7 29 4.5 640 3.4 1.32

9 114 32.5 2.5 16 9.5 7.5 84 16.0 127 10.7 1.5

10 315 100 13 36.6 10 8 130 5.0 4640 4.0 1.25

11 320 144 12 103 4.5 3.5 171 11.0 3395 7.0 1.57

12 390 119 11 58 7.5 6 238 14.0 3445 8.9 1.57

13 155 77 15 32 6.1 3.6 65 4.5 20020 2.9 1.55

14 275 90 4 30 10.5 9.5 180 10.0 66 5.37 1.86

15 260 80 4 30 10.5 9.5 180 12.0 95 6.38 1.88

16 275 70 4 30 10.5 9.5 180 13.5 141 8.84 1.53

17 275 60 4 30 10.5 9.5 180 20.0 225 11.96 1.67

18 275 50 4 30 10,5 9.5 180 27.5 388 17.2 1.6

Average ratio ϑd /ϑl 1.55

A helix can also be defined by:
– Helix curvature

1
ρ

=
R

k2 + R2 (18)

– Helix torsion

1
T

=
|k|

k2 + R2 (19)

For a certain helix, the curvature and the torsion are constant.
Let’s consider a spring with the following parameters:
Hocz – spring height, measured only through acting coils of spring;
n0cz – number of acting coils for spring without load;
h0, γ0 – spiral lead and lead angle, respectively, for spring without load;



ANALYSIS OF HELICAL COMPRESSION SPRING SUPPORT INFLUENCE ON ITS DEFORMATION 357

Fig. 5. Analysed spring model

H1cz = H0cz − f – acting height of spring under load.
The spring is placed in the coordinate system, as it is shown in Fig. 5.

Thus, the coordinates of bottom spring end are: x = R, y = 0, z = 0.
The developments of helix of a spring under load and of a one without

load are presented in Fig. 6.

Fig. 6. Developments of helix for two different deflections

The coordinates of top end of the spring without load and that under
load equal, respectively,

x0 = R0 cos(2π · n0cz),
x1 = R1 cos(2π · n1cz),

y0 = R0 sin(2π · n0cz),
y1 = R1 sin(2π · n1cz),

z0 = k0 · (2π · n0cz) = H0cz

z1 = k1 · (2π · n1cz) = H1cz
(20)

Because z0 is the spring height and z0 = H0cz, thus the coefficient k0
equals:
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k0 =
H0cz

2π · n0cz
(21)

On the ground of (18) and (21) one can find the curvature value, which
is initially assumed to be constant independently of spring deflection.

1
ρ

=
R0(

H0cz
2π·n0cz

)2
+ R2

0

= idem (22)

Knowing the spring’s wire curvature value 1/ρ, one can calculate the
value of coefficient k for loaded spring:

k1 =

√
ρR1 − R2

1 (23)

On the ground of (21) one can write:

k1 =
H1cz

2π · n1cz
(24)

On the ground of Fig. 6. one can write:

L2 = H2
1cz + (2π · n1cz · R1)2

Hence, the number of acting coils of loaded spring equals:

n1cz =

√
L2 − H2

1cz

2π · R1
(25)

By comparing (23) and (24) we obtain
√
ρR1 − R2

1 =
H1cz

2π · n1cz
(26)

After substituting (25) into (26) and transforming the formula, we get

R1 = ρ
L2 − H2

1cz

L2 (27)

By substituting equation (27) into (25) we obtain, after transformations,
the formula for the number of acting coils for loaded spring:

n1cz =

(
H2

0cz + (2π · n0cz · R0)2
)
R0

2π
((

H0cz
2π·n0cz

)2
+ R2

0

) √
H2

0cz + (2π · n0cz · R0)2 − H2
1cz

(28)
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The angle of mutual rotation of spring’s end-coils during its compression
is equal to the difference between initial and final torsional angle of the
spring:

ϑ = ϕ0 − ϕ1 (29)

Therefore

ϑ = 2π ·


n0cz −

(
H2

0cz + (2π · n0cz · R0)2
)
R0

2π
((

H0cz
2π·n0cz

)2
+ R2

0

) √
H2

0cz + (2π · n0cz · R0)2 − H2
1cz


(30)

The foregoing calculations were conducted with an assumption of con-
stant wire curvature. Now, the change of wire curvature during spring com-
pression will be considered. The change of torsion is the result of twisting
moment, whilst the change of curvature is the result of bending moment:

1
T

= f (Mτ)
1
ρ

= f (MN )

The relation between curvature, elastic modulus, moment of inertia and
bending moment is as follows [7]:

1
ρz

=
MN

EJ
(31)

The subscript ”z” in formula (31) means that it is a change of curvature,
not its entire value. The entire value of curvature is the sum (in the case of
tension spring – difference) of initial wire curvature and its change following
on spring compression.

1
ρ

=
1
ρ0

+
1
ρz

(32)

Transformation of (31) yields

1
ρz

=
FD
2EJ

sin γ1 (33)

Transforming standard formula for helical spring deflection [8] we get:

F =
(H0cz − H1cz)Gd4

8 · D3 · ncz
(34)

On the ground of Fig. 6 one can write:
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sin γ1 =
H1cz

L
(35)

Substituting transformations of formulas (33, 34, 35) into (32) we obtain

1
ρ1

=
1
ρ0

+
(H0cz − H1cz)G
πR2

0 · n0cz · E
· H1cz

L
(36)

Using the dependence E/G = 2(1 + ν) [7] and equation (22), on the
ground of (27) one can write

R1cz =


L2

L2 − H2
1cz

·


R0(
H0cz

2π·n0cz

)2
+ R2

0

+
(H0cz − H1cz)

2πR2
0 · n0cz · (1 + ν)

· H1cz

L





−1

(37)

Thus, the number of working coils of loaded spring, considering the
change of wire curvature, equals

n1cz =
L2

2π
√

L2 − H2
1cz


R0(

H0cz
2π·n0cz

)2
+ R2

0

+
(H0cz − H1cz)

2πR2
0 · n0cz · (1 + ν)

· H1cz

L

 (38)

Finally, the dependence for the angle of mutual rotation of the end-coils
is given in the form:

ϑ = 2πn0cz− L2

√
L2 − H2

1cz


R0(

H0cz
2π·n0cz

)2
+ R2

0

+
(H0cz − H1cz)

2πR2
0 · n0cz · (1 + ν)

· H1cz

L

 (39)

The results of formula (39) were compared with experimental results
shown in Tab. 2. The results of the comparison are shown in Tab. 3.

As one can notice, the results are quite coincident, so that formula (39)
gives results much more accurate than formula (10) that has been applied to
date.



ANALYSIS OF HELICAL COMPRESSION SPRING SUPPORT INFLUENCE ON ITS DEFORMATION 361

Table 3.

No. Of spring
from Tab. 2

The value of twisting angle θ
from the experiment in [◦]

The value of twisting
angle θ from (39) in [◦]

The ratio between
ϑ from the experiment

and from (39)

1 7.5 7.8 0.961

2 7.0 7.1 0.986

3 4.5 4.9 0.918

4 4.5 4.6 0.978

5 5.0 4.4 1.136

6 4.5 5.2 0.865

7 11.0 11.9 0.924

8 4.5 4.9 0.918

9 16.0 17.8 0.9

10 5.0 5.9 0.847

11 11.0 9.6 1.146

12 14.0 15.1 0.927

13 4.5 4.6 0.978

14 10.0 9.3 1.075

15 12.0 11.5 1.043

16 13.5 15.3 0.882

17 20.0 20.7 0.966

18 27.5 29.5 0.932

Average ratio ϑd /ϑ(39) 0.965

3. Conclusions

In this paper, we have shown that formula (10), still applied in literature,
can not be used to calculate the angle of mutual rotation of spring’s end-coils
in the case of strongly deflected, rotationally-free supported spring. Formula
(10) was derived on the basis of assumption that the spring is the Clapeyron
system. This assumption, however, is not true for the analysed phenomena,
because the dependence between the angle of mutual rotation of end-coils
and the change of spring’s height during compression is not linear. The
attempt of reducing simplifying assumptions gave results even more distant
from experiment results than those calculated with formula (10).
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Formula (39), derived in this paper on the ground of a new approach
to the problem, gave much more accurate results, which was verified ex-
perimentally. The change of lead angle was taken into consideration. The
analysis of formula (10) shows that, when we use it, a negative value of
twisting angle can never be obtained. For very high values of lead angle,
mutual rotation of spring’s end-coils will have a negative value, and such a
result can be obtained on the ground of formula (39).

Manuscript received by Editorial Board, May 19, 2009;
final version, August 26, 2009.
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Analiza wpływu podparcia sprężyny śrubowej naciskowej na jej odkształcenia

S t r e s z c z e n i e

W pracy zaprezentowano nową metodę obliczania kąta skręcenia czół sprężyny śrubowej
naciskowej pod obciążeniem dla przypadku obrotowo podatnego podparcia jej końców. Poprawność
wyprowadzonych zależności zweryfikowano doświadczalnie. Metoda ta jest prosta w zastosowaniu
i daje wyniki znacznie bliższe wynikom eksperymentu niż metoda znana z literatury i dotychczas
stosowana.


