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DYNAMIC ANALYSIS OF A SATELLITE WITH FLEXIBLE LINKS

The paper presents a spatial model of the satellite antenna with an arbitrary
number of flexible arms. Such a system is an example of an open kinematic chain
with a tree-like structure. The modification of the rigid finite element method is used
to discretise flexible links. The equations of motion are derived from the Lagrange
equations and the motion of the system is described using joint coordinates and
homogenous transformations. Numerical simulations have been carried out to analyse
how the method of extending the arms influences the dynamics of the system.

1. Introduction

The model of the satellite is an interesting example of a dynamically coupled
system, in which occur. mutual interactions between the motion of the central
rigid body and the attached arms. Additionally, the arms may be flexible and
may undergo large base motion, which complicates modelling the dynamics
of the system. A planar model of the satellite antenna with flexible links
is presented in [7]. To model the flexibility, the authors applied a hybrid
method which combines the finite segment method with the finite element
method. The flexible link is replaced by a series of rigid segments which
represent mass features of the continuum. The segments are connected by
means of massless beam elements which reflect spring features of the system.
The model takes into account clearance in joints. The presented experimen-
tal verification of the deployment process shows acceptable compatibility of
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results. The modification of the rigid finite element method used for mod-
elling flexible arms is presented in [2, 4]. Research devoted to modelling
a hub-beam system is widely reported in the literature [5, 6, 8, 10]. Such
systems can also be used as a model of the satellite. This paper presents
a development of the model described in [4]. There one can find a spatial
model of a satellite antenna with a rigid central body and four flexible arms.
In this paper, we discuss the model of the satellite with an arbitrary number
of flexible arms connected by means of rotary joints.

2. Mathematical model of satellite

It is assumed that the satellite consists of a central rigid body and flexible
arms connected with this body (Fig. 1). In order to describe the motion of
the system, joint coordinates and homogenous transformations are used. The
local coordinate system {0} is connected with the central body. The origin of
the system is placed in the center of the mass and its axes coincide with the
principal axes of inertia of the body. The motion of the central body with
respect to the inertial global system {} is defined by the vector of generalised
coordinates:

q̃(0) =
[

x(0) y(0) z(0) ϕ(0)
x ϕ(0)

y ϕ(0)
z

]T
(1)

The transformation matrix from system {0} to {} can be written as:

B(0) =



c(0)
z c(0)

y c(0)
z s(0)

y s(0)
x − s(0)

z c(0)
x c(0)

z s(0)
y c(0)

x + s(0)
z s(0)

x x(0)

c(0)
z c(0)

y s(0)
z s(0)

y s(0)
x + c(0)

z c(0)
x s(0)

z s(0)
y c(0)

x − c(0)
z s(0)

x y(0)

−s(0)
y c(0)

y s(0)
x c(0)

y c(0)
x z(0)

0 0 0 1


(2)

where: s(0)
ξ = sin ϕ(0)

ξ , c(0)
ξ = cosϕ(0)

ξ for ξ ∈ {x, y, z} .
Connected to the central body are n open kinematic chains. Each of the

chains can consists of κ(p) flexible beam-like links connected by means of
rotary joints. The modification of the rigid finite element method [1, 3, 9,
11, 12] is used in order to discretised flexible links. As a result, flexible link
(p, l) is divided into m(p,l) + 1 rigid finite elements (rfe) connected by m(p,l)

non-dimensional and massless spring-damping elements (sde).
The motion of rfe(p, l, i) with respect to the preceding rfe(p, l, i − 1) is

defined by the following vector of generalized coordinates:

q̃(p,l,i) =
[
ϕ

(p,l,i)
x ϕ

(p,l,i)
y ϕ

(p,l,i)
z

]T
(3)

where: p = 1, . . . , n, l = 1, . . . , κ(p), i = 1, . . . ,m(p,l).
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Fig. 1. Kinematic chain p with flexible link (p, l)

The respective transformation matrices from the system rfe(p, l, i) to the
system rfe(p, l, i − 1) for i = 1, . . . ,m(p,l) take the form:

B̃(p,l,i) =



c(p,l,i)
z c(p,l,i)

y c(p,l,i)
z s(p,l,i)

y s(p,l,i)
x − s(p,l,i)

z c(p,l,i)
x c(p,l,i)

z s(p,l,i)
y s(p,l,i)

x + s(p,l,i)
z s(p,l,i)

x l(p,l,i−1)

s(p,l,i)
z c(p,l,i)

y s(p,l,i)
z s(p,l,i)

y s(p,l,i)
x + c(p,l,i)

z c(p,l,i)
x s(p,l,i)

z s(p,l,i)
y c(p,l,i)

x − c(p,l,i)
z s(p,l,i)

x 0
−s(p,l,i)

y c(p,l,i)
y s(p,l,i)

x c(p,l,i)
y c(p,l,i)

x 0
0 0 0 1


(4)

The element (p, l, 0) has only one degree of freedom, which is a rotation
of the kinematic pair:

q̃(p,l,0) =
[
ϕ

(p,l,0)
z

]
(5)

The vector of generalised coordinates describing the motion of element
(p, l, i) with respect to the inertial system can be written as:

q(p,l,i) =



q(0)

_q
(p,l−1)

q̃(p,l,0)

...

q̃(p,l,i)



(6)

where: _q
(p,l−1)

– vector of generalised coordinates of links preceding link l
in kinematic chain p,

_q
(p,l−1)

=
[

q̃(p,1)T . . . q̃(p,l−1)T
]T
,
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q̃(p, k) – vector of generalised coordinates of the flexible link (p, k),
k = 1, . . . , l − 1,

q̃(p,k) =
[

q̃(p,k,0)T q̃(p,k,1)T . . . q̃(p,k,m(p,k))T
]T
.

The transformation matrix from the system {p, l, i} to the inertial coordi-
nate system {} can be calculated as a product of transformation matrices of
the preceding bodies in the kinematic chain:

B(p,l,i) = B(0) _B
(p,l−1) i∏

j=0

B̃(p,l, j) (7)

where:
_

B
(p,l−1)

=

l−1∏

k=0

B̃(p,k),

B̃(p,k) =

m(p,k)∏

j=0

B̃(p,k, j).

The equations of motion of the satellite are derived from the Lagrange
equations:

d
dt
∂E
∂q̇
− ∂E
∂q

+
∂V
∂q

= 0 (8)

where: E,V – kinetic and potential energies respectively,

q =



q(0)

q̃(1)

q̃(2)

...

q̃(n)



– vector of the generalised coordinates of the system,

q̃(p) =



q̃(p,1)

...

q̃(p,κ(p))


– vector of the generalised coordinates of the p-th

kinematic chain.
The kinetic energy of the satellite is a sum of the kinetic energies of the

central body and all flexible links, and it takes the following form:

E = Ẽ(0) +

n∑

p=1

κ(p)∑

l=1

m(p,l)∑

i=0

Ẽ(p,l,i) (9)

where:
Ẽ(0) =

1
2
tr{Ḃ(0)H(0)Ḃ(0)T } – kinetic energy of the central body,
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Ẽ(p,l,i) =
1
2
tr{Ḃ(p,l,i)H(p,l,i)Ḃ(p,l,i)T } – kinetic energy of rfe(p, l, i),

H(0), H(p,l,i) – pseudo-inertial matrices of the central body and rfe(p,l,i)
with elements defined in [11].

For further considerations, the potential energy of the forces of gravity is
omitted. The potential energy of the system is the sum of spring deformation
energy of all sdes of the system, which is described as:

V =

n∑

p=1

κ(p)∑

l=1

m(p,l)∑

i=1

Ṽ (p,l,i) (10)

where:
Ṽ (p,l,i) =

1
2
q̃(p,l,i)T C(p,l,i)q̃(p,l,i) – potential energy of sde(p, l, i),

C(p,l,i) – stiffness matrix of bending and torsional coefficients of sde(p, l, i),

C(p,l,i) =



c(p,l,i)
x 0 0
0 c(p,l,i)

y 0
0 0 c(p,l,i)

z

 .

Having substituted (9) and (10) into the Lagrange equations and per-
formed the necessary transformation as in [11], we can present the equations
of motion in the form:

Aq̈ + Cq = −h (11)

where:

A =



A0,0 A0,1 A0,2 . . . A0,n

A1,0 A1,1 0 . . . 0
A2,0 0 A2,2 . . . 0
...

...
...

. . .
...

An,0 0 0 · · · An,n



– mass matrix of the system,

C =



0 0 0 . . . 0
0 C1 0 . . . 0
0 0 C2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Cn



– stiffness matrix of the system,

C(k) – stiffness matrices of the flexible link in the k-th kinematic chain,
k = 1, . . . , n
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h =



h0

h1

h2
...

hn



– vector of centrifugal, gyroscopic and Coriolis forces.

It is assumed that the motion of the arms of the system is realised by
means of the kinematic input. This means that the rotation of the kinematic
pair is a known function of time, which can be written as follows:

ϕ
(p,l,0)
z = α(p,l)(t) (12)

where: α(p,l)(t) – is a given rotary angle of rfe(p, l, 0) in relative motion
with respect to the preceding element.

Having integrated equations (11) twice with respect to time and included
them in the equations of motion (10), one obtains the set of differential
equations in the form:

Aq̈ + DM = −h
DT q̈ = −Γ

(13)

where: D – matrix of coefficients after double integration of constraint equa-
tions (11),

Γ – vector of second derivatives of drive functions α(p,l)(t),
M – vector of unknown moments which realise the kinematic input.

3. Dynamic analysis of the deployment process

For numerical simulations, it has been assumed that the satellite consists of
the central body and two kinematic chains, each of which consists of two
flexible links. The scheme of the system with denotations is presented in
Fig. 2.

Data for the central body and flexible links are the same as in [4], where
the results of indirect verification of the model, by means of comparison with
MSC.Adams, were also presented. Good correspondence between the results
proved the correctness of the model formulated using the rigid finite element
method. In this paper, the influence of different methods of extending the
arms on the behavior of the system is analysed. Three variants of kinematic
input are considered. For all cases it is assumed that all the arms should be
extended to the final position in 4 s (Fig. 2). Courses of kinematic input for
all the variants are presented in Fig. 3.
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Fig. 2. Initial and final configurations of the satellite with the coordinate systems assumed

Fig. 3. Variants of kinematic inputs analysed
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For case A, it is assumed that all the arms extend simultaneously in 4 s.
Case B describes the situation in which the motion of the arms is performed
in two phases. During the first 2 s, links (1, 1) and (2, 1) extend and then,
in the next 2 s, the remaining links extend. Case C is similar but the arms
extend in the reverse order – first the external (1, 2) and (2, 2) links and then
the internal ones. The displacements of the central body and the end of link
(1, 2) for all cases are presented in Fig. 4 and Fig. 5 respectively.

Fig. 4. Displacements of the centre of mass of the central body with respect to the Y axis

Fig. 5. Displacements of the end of link (1, 2) along X, Y axes in the system {0}

The results of numerical simulations show that the largest vibrations of
the central body and flexible links occur in cases B and C. The amplitude
of vibrations of the end of the external links reaches 1 or 1.6 meters, re-
spectively, for cases B and C. This shows that the drive functions used for
the deployment process have a considerable influence on the behavior of
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the system causing, in some cases, large displacements of the flexible arms.
It can be seen that the smallest influence of the centrifugal forces on the
systems is in case A, when all the links extend simultaneously.

4. Final remarks

The paper presents the application of the modification of the rigid finite
element method together with joint coordinates and homogenous transfor-
mations to modelling a satellite antenna with flexible arms. This approach
enables us to take into account large base motion, large displacements of flex-
ible links and mutual interactions of base motion and vibrations of flexible
links. The analysis of different variants of extending the arms of the satel-
lite is presented. It is shown that inadequate realisation of the deployment
process can cause additional vibrations in the system, and can even lead to
large displacements of the arms. For numerical simulations, kinematic input
has been assumed. In fact, because of the flexibility and clearance which can
occur in joints, the motion of the arms may not be carried out simultaneously.
Thus, the moments realising the drive functions have to be controlled and
this will be a subject of further research.

This research is partially financed by the Polish Ministry of Science and
Higher Education Grant N N502 464934.
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Analiza dynamiczna satelity o podatnych członach

S t r e s z c z e n i e

W artykule przedstawiono model przestrzenny satelity złożonego z dowolnej liczby podatnych
ramion. Układ taki jest przykładem otwartego łańcucha kinematycznego o strukturze drzewa. Do
dyskretyzacji członów podatnych zastosowano modyfikację metody sztywnych elementów skoń-
czonych. Równania ruchu wyprowadzono z równań Lagrange’a II rodzaju, stosując do opisu ruchu
ciał współrzędne złączowe oraz przekształcenia jednorodne. W symulacjach numerycznych anali-
zowano wpływ różnych sposobów rozkładania ramion na dynamikę układu.




