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Balancing reactive compensation at three-phase four-wire systems
with a sinusoidal and asymmetrical voltage source
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Abstract. The article presents the essentials of reactance compensation of unbalanced loads in three-phase four-wire systems powered by a
sinusoidal and asymmetrical voltage source. The whole of compensation and symmetrization is based on the Currents’ Physical Components
(CPC) theory.
Reactance compensation, i.e. compensation based solely on inductors and capacitors, in four-wire systems requires the device to be included
in a star (Y) structure in order to compensate for the reactive current (reactive power) and the current at the neutral conductor caused by zero
sequence asymmetry, and for the device in a delta (∆) structure to allow compensation of the reactive current (reactive power) and current,
causing asymmetry of the negative sequence.
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1. Introduction

In industrial plants as well as commercial and residential
buildings, four-wire circuits are the dominant power systems.
A characteristic property of such systems is the existence of
reactive power and currents asymmetry, which also affects im-
balance (asymmetry) of the supply voltage.

The imbalance of a load and power source along with reac-
tive power contribute to an increase in energy losses, which in
turn leads to a decrease in its quality [15].

Two approaches can be used to improve power quality. The
first approach entails using switching compensators, known
also as active power filters. Such an approach cannot be used
in systems with a high value of the load currents since the tran-
sistors used for shaping the compensation currents have limited
switching power. The second approach involves using reactive
elements to build the so-called passive filters. Passive filters are
usually designed to compensate for reactive power, and thus do
not significantly affect the balancing of the load.

The best solution is to use balancing compensators, which
were first developed by Steinmetz in 1917 [2] for three-wire
systems with sinusoidal voltage. In later years, based on the
work of Steinmetz, many authors presented their research on
the construction of such compensators [3–5].

The increase in the number of four-wire systems initiated de-
velopment of mathematical description of power and currents
[6, 8, 9], and allowed to come up with methods of designing
compensators in such circuits [9–14].
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Works [1, 19, 20] present a description of the balancing com-
pensators based on the Currents’ Physical Components (CPC)
theory for both three-wire and four-wire circuits with symmet-
rical sinusoidal or nonsinusoidal voltage supply.

Moreover, in publications [16–18] the method of determining
the parameters of the balancing compensator in a delta struc-
ture, supplied with asymmetric sinusoidal voltage, is also pre-
sented. This method is based on the CPC theory.

The article presents a method for calculating the reactance
parameters of the balancing compensator in the star structure
along with a short description of the balancing compensator
in the delta structure. Those are widely described in [16–18].
Parameters of both balancing compensators are determined for
four-wire systems, where the voltage source is asymmetric.
Moreover, because the reader should be familiarized with the
description of the CPC theory in four-wire systems supplied
with asymmetrical sinusoidal voltage, the authors recommend
article [8]. Because it is written in Polish, this paper includes a
summary of this work in Section 2.

2. Currents’ Physical Components (CPC) theory
in three-phase four-wire systems at sinusoidal
and asymmetric voltage source

An unbalanced linear time-invariant (LTI) load supplied by a
sinusoidal but asymmetric voltage source is shown in Fig. 1.

The sinusoidal voltage source that supplies the LTI unbal-
anced load can be presented in the form of:

u(t)=




uR(t)
uS(t)
uT(t)


=

√
2Re




UR

US

UT


e jωt =

√
2Re

{
Ue jωt}  (1)
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Fig. 1. LTI unbalanced load supplied by a four-wire line

The supply voltage u can be asymmetrical – Fig. 1 – there-
fore it is possible to present it as the sum of voltages of positive,
negative and zero sequences:

u = up +un +uz =
√

2Re
{
(Up +Un +Uz)e jωt}

=
√

2Re
{
(1pUp +1nUn +1zU z)e jωt} (2)

where Up, Un and U z are the complex rms (crms) values of
the symmetrical components of positive, negative and zero se-
quences, described by the Fortescue transformation [1, 7, 21]
and 1p, 1n, 1z are the unit symmetrical vectors.

The line current can be presented identically:

i(t) =




iR(t)
iS(t)
iT(t)


=

√
2Re




IR

IS

IT


e jωt =

√
2Re

{
Ie jωt} (3)

which, as a result of the imbalance and asymmetry of the volt-
age supply, also has components of positive, negative and zero
sequences:

i = ip + in + iz =
√

2Re
{
(Ip + In + Iz)e jωt}

=
√

2Re
{
(1pIp +1nIn +1zI z)e jωt} .

(4)

The load current (3) can be decomposed into five components
described in the CPC theory for three-phase four-wire systems
supplied from an asymmetrical voltage source [24].

This paper presents solely the values of the component wave-
forms.

The active current ia is defined as follows:

ia = Gbu =
√

2Re
{

Gb (Up +Un +Uz)e jωt}

=
√

2Re
{

Gb (1pUp +1nUn +1zU z)e jωt} (5)

where Gb is the equivalent conductance of the balanced load.
The reactive current ir is described as follows:

ir = Bbu(t ±T/4) =
√

2Re
{

jBb (Up +Un +Uz)e jωt}

=
√

2Re
{

jBb (1pUp +1nUn +1zU z)e jωt} (6)

where Bb is the equivalent susceptance of the balanced load.

In the CPC theory, there is the unbalanced current iu, which
is expressed as follows:

Iu = (Yd)U+1p (AnU z +AzUn)

+1n (AnUp +AzU z)+1z (AnUn +AzUp)
(7)

and can include three components, namely:

• the unbalanced current of the positive sequence ip
u :

ip
u =

√
2Re

{
Ip
u e jωt}

=
√

2Re
{

1p (YdUp +AnU z +AzUn)e jωt} (8)

• the unbalanced current of the negative sequence in
u :

in
u =

√
2Re

{
In
u e jωt}

=
√

2Re
{

1n (YdUn +AnUp +AzU z)e jωt} (9)

• the unbalanced current of the zero sequence iz
u:

iz
u =

√
2Re

{
Iz
ue jωt}

=
√

2Re
{

1z (YdU z +AnUn +AzUp)e jωt} (10)

In formulas (7)–(10), individual admittances denote:

• the voltage asymmetry dependent admittance Yd, expres-
sed as:

Yd = Gd + jBd = Ye −Yb

=
1
3
(YR +YS +YT)−

YRU2
R +YSU2

S +YTU2
T

‖u‖2

(11)

• the unbalanced admittance of the negative sequence An [22,
23], equal to:

An =
1
3
(YR +αYS +α∗YT) (12)

• the unbalanced admittance of the zero sequence Az [22, 23],
which is defined as:

Az =
1
3
(YR +α∗YS +αYT) (13)

It should be mentioned that the equivalent conductance and
its susceptance of the balanced load, used in (5) and (6), respec-
tively, together produce the admittance of the balanced load re-
sponsible for the active power P and reactive power Q of the
load. The formula for this admittance is as follows:

Yb = Gb + jBb =
P− jQ

‖u‖2 (14)

If the load is supplied from a symmetrical voltage source, the
equivalent admittance of the balanced load is:

Yb = Gb + jBb =
P− jQ

‖u‖2 =
1
3
(YR +YS +YT) = Ye (15)

The difference between (15) and (14) results in equation (11).
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3. Parameters of the balancing
reactive compensator

The only current component necessary for the load to draw ac-
tive power P is the active current ia. The other currents, i.e.
reactive current ir and the unbalanced current iu, increase the
three-phase rms value ‖i‖ of the current of the load, and con-
tribute to energy loss, proportional to the square of this value.

The load is described by four admittances i.e. the equivalent
admittance of the balanced load Yb, the voltage asymmetry de-
pendent admittance Yd, the unbalanced admittance of the neg-
ative sequence An, and the unbalanced admittance of the zero
sequence Az.

In an attempt to demonstrate the possibility of reactance
compensation in four-wire systems with an asymmetrical volt-
age source, additional decomposition of the voltage asymme-
try dependent admittance Yd should be accomplished. After
decomposition, relationship (11) is expressed by three compo-
nents:
• the voltage asymmetry dependent admittance of the nega-

tive sequence Y n
d , described as:

Y n
d =

−2n
3 [1+n2 + z2]

·
[

YR cos(ψ1)+YS cos
(

ψ1−
2π
3

)
+YT cos

(
ψ1+

2π
3

)] (16)

where n is a complex asymmetry coefficient of the supply volt-
age of the negative sequence, namely:

n = ne jψ1 =
Un

Up =
U ne jδ

U pe jϕ =
U n

U p e j(δ−ϕ) (17)

and z is a complex asymmetry coefficient of the supply voltage
of the zero sequence:

z = ze jψ2 =
U z

Up =
U ze jε

U pe jϕ =
U z

U p e j(ε−ϕ) (18)

• the voltage asymmetry dependent admittance of the zero se-
quence Y z

d , defined as follows:

Y z
d =

−2z
3 [1+n2 + z2]

·
[
YR cos(ψ2)+YS cos

(
ψ2+

2π
3

)
+YT cos

(
ψ2−

2π
3

)] (19)

and
• the voltage asymmetry dependent admittance of the

“mixed” sequence Y nz
d , equal to:

Y nz
d =

−2m1

3
[
1+m2

1 +m2
2

]

·
[
YR cos(ψ3)+YS cos

(
ψ3−

2π
3

)
+YT cos

(
ψ3+

2π
3

)] (20)

where m1 denotes a complex asymmetry coefficient of the sup-
ply voltage of the “mixed” sequence between the zero sequence

component of the voltage related to the negative sequence com-
ponent of the voltage, expressed as:

m1 = m1e jψ3 =
U z

Un =
U ze jε

U ne jδ =
U z

U n e j(ε−δ ) (21)

and m2 is a complex asymmetry coefficient of the supply volt-
age of the “mixed” sequence between the positive sequence
component of the voltage related to the negative sequence com-
ponent of the voltage, described as:

m2 = m2e jψ4 =
Up

Un =
U pe jϕ

U ne jδ =
U p

U n e j(ϕ−δ ) (22)

In line with this, we get a description of the load, consisting
of six admittances contributing to the unbalanced and reactive
currents of the load.

The balancing compensation in four-wire systems, regardless
of whether the voltage supply is symmetrical or asymmetrical,
requires two structures, i.e. the compensation device connected
in the Y-configuration – it is thus possible to compensate for
the reactive current (reactive power) and the balancing of the
load as a result of compensation of the zero sequence unbal-
anced current. The second structure is a device connected in
the ∆-structure – it allows for compensation of the reactive cur-
rent (reactive power) and for the balancing of the load as a re-
sult of the compensation of the negative sequence unbalanced
current (in systems with symmetrical voltage supply) and the
positive sequence unbalanced current (in systems with asym-
metrical voltage supply).

When determining the parameters of the device compensat-
ing for reactive power and balancing the unbalanced compo-
nents of the currents, we assume that it is a lossless device. In
the Y-structure, wires’ susceptances are marked with symbols
TR, TS, and TT. In the ∆-structure, susceptances line-to-line are
marked with symbols TRS, TST, and TTR. In addition, the sym-
bols of the compensator’s admittances are complemented with
the CY index for the star configuration and the C∆ index for the
delta configuration.

The equivalent admittances of the load in Y-structure can be
expressed by compensator’s susceptances, namely:

• the susceptance responsible for compensation of the reac-
tive current (reactive power):

YCYb = jBCYb = j
TRU2

R +TSU2
S +TTU2

T
‖u‖2 (23)

• the susceptance responsible for compensation of the cur-
rents associated with the admittances of the voltage asym-
metry dependent admittance:

Y n
CYd =− j

2n
3 [1+n2 + z2]

·
[

TR cos(ψ1)+TS cos
(

ψ1−
2π
3

)
+TT cos

(
ψ1+

2π
3

)] (24)
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3. Parameters of the balancing
reactive compensator

The only current component necessary for the load to draw ac-
tive power P is the active current ia. The other currents, i.e.
reactive current ir and the unbalanced current iu, increase the
three-phase rms value ‖i‖ of the current of the load, and con-
tribute to energy loss, proportional to the square of this value.

The load is described by four admittances i.e. the equivalent
admittance of the balanced load Yb, the voltage asymmetry de-
pendent admittance Yd, the unbalanced admittance of the neg-
ative sequence An, and the unbalanced admittance of the zero
sequence Az.

In an attempt to demonstrate the possibility of reactance
compensation in four-wire systems with an asymmetrical volt-
age source, additional decomposition of the voltage asymme-
try dependent admittance Yd should be accomplished. After
decomposition, relationship (11) is expressed by three compo-
nents:
• the voltage asymmetry dependent admittance of the nega-

tive sequence Y n
d , described as:

Y n
d =

−2n
3 [1+n2 + z2]

·
[

YR cos(ψ1)+YS cos
(

ψ1−
2π
3

)
+YT cos

(
ψ1+

2π
3

)] (16)

where n is a complex asymmetry coefficient of the supply volt-
age of the negative sequence, namely:

n = ne jψ1 =
Un

Up =
U ne jδ

U pe jϕ =
U n

U p e j(δ−ϕ) (17)

and z is a complex asymmetry coefficient of the supply voltage
of the zero sequence:

z = ze jψ2 =
U z

Up =
U ze jε

U pe jϕ =
U z

U p e j(ε−ϕ) (18)

• the voltage asymmetry dependent admittance of the zero se-
quence Y z

d , defined as follows:

Y z
d =

−2z
3 [1+n2 + z2]

·
[
YR cos(ψ2)+YS cos

(
ψ2+

2π
3

)
+YT cos

(
ψ2−

2π
3

)] (19)

and
• the voltage asymmetry dependent admittance of the

“mixed” sequence Y nz
d , equal to:

Y nz
d =

−2m1

3
[
1+m2

1 +m2
2

]

·
[
YR cos(ψ3)+YS cos

(
ψ3−

2π
3

)
+YT cos

(
ψ3+

2π
3

)] (20)

where m1 denotes a complex asymmetry coefficient of the sup-
ply voltage of the “mixed” sequence between the zero sequence

component of the voltage related to the negative sequence com-
ponent of the voltage, expressed as:

m1 = m1e jψ3 =
U z

Un =
U ze jε

U ne jδ =
U z

U n e j(ε−δ ) (21)

and m2 is a complex asymmetry coefficient of the supply volt-
age of the “mixed” sequence between the positive sequence
component of the voltage related to the negative sequence com-
ponent of the voltage, described as:

m2 = m2e jψ4 =
Up

Un =
U pe jϕ

U ne jδ =
U p

U n e j(ϕ−δ ) (22)

In line with this, we get a description of the load, consisting
of six admittances contributing to the unbalanced and reactive
currents of the load.

The balancing compensation in four-wire systems, regardless
of whether the voltage supply is symmetrical or asymmetrical,
requires two structures, i.e. the compensation device connected
in the Y-configuration – it is thus possible to compensate for
the reactive current (reactive power) and the balancing of the
load as a result of compensation of the zero sequence unbal-
anced current. The second structure is a device connected in
the ∆-structure – it allows for compensation of the reactive cur-
rent (reactive power) and for the balancing of the load as a re-
sult of the compensation of the negative sequence unbalanced
current (in systems with symmetrical voltage supply) and the
positive sequence unbalanced current (in systems with asym-
metrical voltage supply).

When determining the parameters of the device compensat-
ing for reactive power and balancing the unbalanced compo-
nents of the currents, we assume that it is a lossless device. In
the Y-structure, wires’ susceptances are marked with symbols
TR, TS, and TT. In the ∆-structure, susceptances line-to-line are
marked with symbols TRS, TST, and TTR. In addition, the sym-
bols of the compensator’s admittances are complemented with
the CY index for the star configuration and the C∆ index for the
delta configuration.

The equivalent admittances of the load in Y-structure can be
expressed by compensator’s susceptances, namely:

• the susceptance responsible for compensation of the reac-
tive current (reactive power):

YCYb = jBCYb = j
TRU2

R +TSU2
S +TTU2

T
‖u‖2 (23)

• the susceptance responsible for compensation of the cur-
rents associated with the admittances of the voltage asym-
metry dependent admittance:

Y n
CYd =− j

2n
3 [1+n2 + z2]

·
[

TR cos(ψ1)+TS cos
(

ψ1−
2π
3

)
+TT cos

(
ψ1+

2π
3

)] (24)
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Y z
CYd =− j

2z
3 [1+n2 + z2]

·
[

TR cos(ψ2)+TS cos
(

ψ2+
2π
3

)
+TT cos

(
ψ2−

2π
3

)] (25)

Ynz
CYd =− j

2m1

3
[
1+m2

1 +m2
2

]

·
[

TR cos(ψ3)+TS cos
(

ψ3−
2π
3

)
+TT cos

(
ψ3+

2π
3

)] (26)

• the susceptance responsible for compensation of the cur-
rents related to the unbalanced admittance of the negative
sequence:

An
CY

= j
1
3
(TR +αTS +α∗TT) (27)

• the susceptance responsible for compensation of the cur-
rents related to the unbalanced admittance of the zero se-
quence:

Az
CY

= j
1
3
(TR +α∗TS +αTT) (28)

In order to define the parameters of the compensator that will
compensate for the reactive power and the unbalanced current,
while simultaneously not interfering with the active power of
the system, the following conditions should be met:
• the reactive current of the voltage source is zero if:

BCYb +Bb = 0 (29)

• the unbalanced current (7) equals to zero if:

(YCYd +Yd)U+
(
1nAn +1nAn

CY
+1zAz +1zAz

CY

)
Up

+
(
1zAn +1zAn

CY
+1pAz +1pAz

CY

)
Un

+
(
1pAn +1pAn

CY
+1nAz +1nAz

CY

)
Uz = 0.

(30)

The (YCYd +Yd)U quantity can be expressed as:
(
Y n

CYd +Y z
CYd +Ynz

CYd +Y n
d +Y z

d +Ynz
d
)

U. (31)

The coefficients in (30) are identical for each transmission
line. Therefore it is sufficient to satisfy the dependence for one
selected line, and in particular for the R-line:

(
Y n

CYd +Y z
CYd +Ynz

CYd +Y n
d +Y z

d +Ynz
d
)

UR

+
(
An +An

CY
+Az +Az

CY

)
Up

+
(
An +An

CY
+Az +Az

CY

)
Un

+
(
An +An

CY
+Az +Az

CY

)
U z = 0.

(32)

With regard to the fact that the description in (32) is sub-
mitted in the form of complex numbers, this equation must be
fulfilled separately for the real part and the imaginary part, thus:

Re
{(

Y n
CYd +Y z

CYd +Ynz
CYd +Y n

d +Y z
d +Ynz

d
)

UR

+
(
An +An

CY
+Az +Az

CY

)
Up

+
(
An +An

CY
+Az +Az

CY

)
Un

+
(
An +An

CY
+Az +Az

CY

)
U z}= 0

(33)

and

Im
{(

Y n
CYd +Y z

CYd +Ynz
CYd +Y n

d +Y z
d +Ynz

d
)

UR

+
(
An +An

CY
+Az +Az

CY

)
Up

+
(
An +An

CY
+Az +Az

CY

)
Un

+
(
An +An

CY
+Az +Az

CY

)
U z}= 0.

(34)

As can be seen from (32), it describes the unbalanced current
consisting of three components of the relevant sequences, i.e.
positive, negative and zero, and therefore, it is not possible to
compensate for the unbalanced current with only one configu-
ration of the compensator.

From relationships (33) and (34) only parameters (admit-
tances) describing the unbalanced current of the zero sequence
must remain, and thus:

Re
{(

Y n
CYd +Y z

CYd +Ynz
CYd +Y n

d +Y z
d +Ynz

d
)

U z
R

+
(
Az +Az

CY

)
Up +

(
An +An

CY

)
Un}= 0

(35)

and

Im
{(

Y n
CYd +Y z

CYd +Ynz
CYd +Y n

d +Y z
d +Ynz

d
)

U z
R

+
(
Az +Az

CY

)
Up +

(
An +An

CY

)
Un}= 0

(36)

Equations (29), (35) and (36) form a system of three equa-
tions with three unknowns TR, TS, and TT. After the transforma-
tion, they can be presented in the form of the matrix equation
of the compensator in the Y-configuration:




U2
R U2

S U2
T

ReK1 ReK2 ReK3

ImK1 ImK2 ImK2







TR

TS

TT


=



−Bb‖u‖2

−ReK4

−ImK4


 (37)

where parameters from K1 to K4 are equal to:

K1 = (c1 + c4 + c7) · ze jψ2 + j
1
3
(
1+ne jψ1

)
,

K2 = (c2 + c5 + c8) · ze jψ2 + j
1
3
(
α∗+αne jψ1

)
,

K3 = (c3 + c6 + c9) · ze jψ2 + j
1
3
(
α +α∗ne jψ1

)
,

K4 = (Y n
d +Y z

d +Ynz
d ) · ze jψ2 +Az +Anne jψ1

(38)

and the coefficients from c1 to c9 are:

c1 =− j
2ncos(ψ1)

3(1+n2 + z2)
, c2 =− j

2ncos(ψ1−120◦)
3(1+n2 + z2)

,

c3 =− j
2ncos(ψ1+120◦)
3(1+n2 + |z|2)

, c4 =− j
2zcos(ψ2)

3(1+n2 + z2)
,

c5 =− j
2zcos(ψ2+120◦)

3(1+n2 + z2)
, c6 =− j

2zcos(ψ2−120◦)
3(1+n2 + z2)

,

c7 =− j
2m1 cos(ψ3)

3
(
1+m2

1 +m2
2

) , c8 =− j
2m1 cos(ψ3−120◦)

3
(
1+m2

1 +m2
2

) ,

c9 =− j
2m1 cos(ψ3+120◦)

3
(
1+m2

1 +m2
2

) .

(39)
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After substituting the data and solving the matrix equation of
the compensator (37), we obtain parameters TR, TS, and TT. If
any of the parameters takes the value with a “minus“ sign, then
its quantity is calculated from the following relationship:

L =
−1

ωTX
(40)

where TX denotes the value of the calculated susceptance for
a particular transmission line. Alternatively, the following rela-
tionship can be used:

C =
TX

ω
. (41)

In (40) L denotes that the calculated susceptance should be
inductive, while in (41) C means that the obtained susceptance
should be capacitive.

Correct calculation of the compensator parameters causes the
value of the reactive power seen from the side of the voltage
source to be equal to 0, while the value of the unbalanced cur-
rent of the zero sequence is also equal to 0, although the current
will still flow in the neutral conductor on account of asymmetry
of the active currents resulting from asymmetry of the supply
voltages. Therefore:

IaR + IaS + IaT �= 0. (42)

In addition, the inclusion of the Y-structure compensator re-
sults in a change of the value of the positive sequence unbal-
anced current and the value of the negative sequence unbal-
anced current because it changes the value of the unbalanced
admittance of the negative sequence (12) and the value of the
unbalanced admittance of the zero sequence (13).

On the basis of [16–18], the equivalent admittances of the
load in the ∆-structure can be described by the compensator
susceptance as follows:
• the susceptance responsible for compensation of the reac-

tive current (reactive power):

YC∆b = jBC∆b = j
TRSU2

RS +TSTU2
ST +TTRU2

TR

‖u∆‖2 (43)

where ‖u∆‖ denotes the three-phase rms value of the voltage
source described in [19–21].

• the susceptance responsible for compensation of the cur-
rents (positive and negative sequences) associated with the
voltage asymmetry dependent admittance:

YC∆d = j
2n

1+n2

·
[

TST cos(ψ1)+TTR cos
(

ψ1−
2π
3

)
+TRS cos

(
ψ1+

2π
3

)] (44)

• the susceptance responsible for compensation of the cur-
rents related to the unbalanced admittance of the positive
sequence:

Ap
C∆

=− j (TST +αTTR +α∗TRS) (45)

• the susceptance responsible for compensation of the cur-
rents linked with the unbalanced admittance of the negative
sequence:

An
C∆

=− j (TST +α∗TTR +αTRS) (46)

For determining the parameters of the compensator in the ∆
configuration, which will compensate for the unbalanced cur-
rent of the positive sequence and the unbalanced current of the
negative sequence, and for unchanged the active power of the
load, we have to meet the following conditions:
• the currents associated with the voltage asymmetry depen-

dent admittance and the unbalanced currents of the positive
and negative sequences are equal to 0 if:(

YC∆d +Yd
)

U+1n
(

Ap +Ap
C∆

)
Up

+1p (An +An
C∆

)
Un = 0.

(47)

Identically as in (32), parameters can be determined for the
R-line, namely:

(
YC∆d +Yd

)(
Up

R +Un
R
)
+
(

Ap +Ap
C∆

)
Up

+
(
An +An

C∆

)
Un = 0.

(48)

Analogously to (33) and (34), equation (48) must be fulfilled
separately for the real part and the imaginary part:

Re
{(

YC∆d +Yd
)(

Up
R +Un

R
)
+
(

Ap +Ap
C∆

)
Up

+
(
An +An

C∆

)
Un}= 0

(49)

and

Im
{(

YC∆d +Yd
)(

Up
R +Un

R
)
+
(

Ap +Ap
C∆

)
Up

+
(
An +An

C∆

)
Un}= 0.

(50)

In order to determine the parameters of a balancing com-
pensator with a ∆-structure, use expression (48), whose solu-
tion for three-phase three-wire circuits supplied with sinusoidal
asymmetrical voltage with a load connected in a delta configu-
ration is presented in [19–21]. Despite the rightness of the so-
lution given by the author in some works, for three-phase four-
wire systems supplied from an asymmetrical sinusoidal voltage
source, relationship (48) must be subjected to additional modi-
fication as follows:
[(

YC∆d +Yn#
d +Yz#

d +Ynz#
d

)(
Up

R +Un
R
)]

+
[
Ap

C∆
Up +An# (Up +U z)+An

C∆
Un +Az# (Un +U z)

]

= 0

(51)

where admittances with the “#” symbol denote that they were
calculated as a result of a parallel connection of the phase ad-
mittance of the load and the phase susceptances of the balancing
reactive compensator with the star structure.

Additionally, in order to determine the parameters of the
compensator in the ∆-structure, the condition for the reactive
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After substituting the data and solving the matrix equation of
the compensator (37), we obtain parameters TR, TS, and TT. If
any of the parameters takes the value with a “minus“ sign, then
its quantity is calculated from the following relationship:

L =
−1

ωTX
(40)

where TX denotes the value of the calculated susceptance for
a particular transmission line. Alternatively, the following rela-
tionship can be used:

C =
TX

ω
. (41)

In (40) L denotes that the calculated susceptance should be
inductive, while in (41) C means that the obtained susceptance
should be capacitive.

Correct calculation of the compensator parameters causes the
value of the reactive power seen from the side of the voltage
source to be equal to 0, while the value of the unbalanced cur-
rent of the zero sequence is also equal to 0, although the current
will still flow in the neutral conductor on account of asymmetry
of the active currents resulting from asymmetry of the supply
voltages. Therefore:

IaR + IaS + IaT �= 0. (42)

In addition, the inclusion of the Y-structure compensator re-
sults in a change of the value of the positive sequence unbal-
anced current and the value of the negative sequence unbal-
anced current because it changes the value of the unbalanced
admittance of the negative sequence (12) and the value of the
unbalanced admittance of the zero sequence (13).

On the basis of [16–18], the equivalent admittances of the
load in the ∆-structure can be described by the compensator
susceptance as follows:
• the susceptance responsible for compensation of the reac-

tive current (reactive power):

YC∆b = jBC∆b = j
TRSU2

RS +TSTU2
ST +TTRU2

TR

‖u∆‖2 (43)

where ‖u∆‖ denotes the three-phase rms value of the voltage
source described in [19–21].

• the susceptance responsible for compensation of the cur-
rents (positive and negative sequences) associated with the
voltage asymmetry dependent admittance:

YC∆d = j
2n

1+n2

·
[

TST cos(ψ1)+TTR cos
(

ψ1−
2π
3

)
+TRS cos

(
ψ1+

2π
3

)] (44)

• the susceptance responsible for compensation of the cur-
rents related to the unbalanced admittance of the positive
sequence:

Ap
C∆

=− j (TST +αTTR +α∗TRS) (45)

• the susceptance responsible for compensation of the cur-
rents linked with the unbalanced admittance of the negative
sequence:

An
C∆

=− j (TST +α∗TTR +αTRS) (46)

For determining the parameters of the compensator in the ∆
configuration, which will compensate for the unbalanced cur-
rent of the positive sequence and the unbalanced current of the
negative sequence, and for unchanged the active power of the
load, we have to meet the following conditions:
• the currents associated with the voltage asymmetry depen-

dent admittance and the unbalanced currents of the positive
and negative sequences are equal to 0 if:(

YC∆d +Yd
)

U+1n
(

Ap +Ap
C∆

)
Up

+1p (An +An
C∆

)
Un = 0.

(47)

Identically as in (32), parameters can be determined for the
R-line, namely:

(
YC∆d +Yd

)(
Up

R +Un
R
)
+
(

Ap +Ap
C∆

)
Up

+
(
An +An

C∆

)
Un = 0.

(48)

Analogously to (33) and (34), equation (48) must be fulfilled
separately for the real part and the imaginary part:

Re
{(

YC∆d +Yd
)(

Up
R +Un

R
)
+
(

Ap +Ap
C∆

)
Up

+
(
An +An

C∆

)
Un}= 0

(49)

and

Im
{(

YC∆d +Yd
)(

Up
R +Un

R
)
+
(

Ap +Ap
C∆

)
Up

+
(
An +An

C∆

)
Un}= 0.

(50)

In order to determine the parameters of a balancing com-
pensator with a ∆-structure, use expression (48), whose solu-
tion for three-phase three-wire circuits supplied with sinusoidal
asymmetrical voltage with a load connected in a delta configu-
ration is presented in [19–21]. Despite the rightness of the so-
lution given by the author in some works, for three-phase four-
wire systems supplied from an asymmetrical sinusoidal voltage
source, relationship (48) must be subjected to additional modi-
fication as follows:
[(

YC∆d +Yn#
d +Yz#

d +Ynz#
d

)(
Up

R +Un
R
)]

+
[
Ap

C∆
Up +An# (Up +U z)+An

C∆
Un +Az# (Un +U z)

]

= 0

(51)

where admittances with the “#” symbol denote that they were
calculated as a result of a parallel connection of the phase ad-
mittance of the load and the phase susceptances of the balancing
reactive compensator with the star structure.

Additionally, in order to determine the parameters of the
compensator in the ∆-structure, the condition for the reactive
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power compensation should be included:

BC∆b +Bb = 0 (52)

even though it has already been used in calculations for the Y-
structure.

According to (49)–(52), they form a system of three equa-
tions with three unknowns TRS, TST and TTR. Following the
transformations, the system in the form of the matrix equation
of the compensator in the ∆-structure looks as follow:



U2
RS U2

ST U2
TR

ReK5 ReK6 ReK7

ImK5 ImK6 ImK7







TRS

TST

TTR


=



−Bb ‖u∆‖2

−ReK8

−ImK8


 (53)

also, it should be remembered that the reactive power has been
already compensated for in (37):




U2
RS U2

ST U2
TR

ReK5 ReK6 ReK7

ImK5 ImK6 ImK7







TRS

TST

TTR


=




0
−ReK8

−ImK8


 (54)

where parameters from K5 to K8 are equal to:

K5 = c12
(
1+ne jψ1

)
− j

(
α∗+αne jψ1

)
,

K6 = c10
(
1+ne jψ1

)
− j

(
1+ne jψ1

)
,

K7 = c11
(
1+ne jψ1

)
− j

(
α +α∗ne jψ1

)
,

K8 =
(
Yn#

d +Yz#
d +Ynz#

d
)(

1+ne jψ1
)

+An# (1+ ze jψ2
)
+Az# (ne jψ1 + ze jψ2

)
.

(55)

and the coefficients from c10 to c12 are:

c10 = j
2ncos(ψ1)

1+n2 , c11 = j
2ncos(ψ1 −120◦)

1+n2 ,

c12 = j
2ncos(ψ1 +120◦)

1+n2 .

(56)

After activating the compensator in the Y-structure and the
compensator in the ∆-structure, assuming the losslessness of
such systems, fixed load parameters over time and no change
in the internal impedance of the voltage source, we obtain only
the active current described in (5).

It should be mentioned that it is not possible to completely,
ideally compensate for the reactive power with the balancing
compensator with the delta structure because in the system it
is not possible to limit the reactive current associated with the
symmetrical component of the zero sequence.

4. Theoretical calculations

For theoretical calculations, the three-phase four-wire system
powered with the asymmetrical sinusoidal voltage source is
shown in Fig. 2. All calculations are based on the assumption
of LTI unbalanced load. In addition, the supply voltage includes
internal impedance (unchanged over time) and is, therefore, an

asymmetrical source that only generates the fundamental har-
monic whose frequency is 50 Hz.

Fig. 2. Three-phase four-wire circuit diagram chosen for theoretical
verification

The active power P of the system from Fig. 2 is 53053 W,
while the consumed reactive power Q assumes the value
20898 var and it is a capacitive reactive power.

Configurations and values of the phase impedances of the
load, shown in Fig. 2, are compiled in Table 1.

Table 1
List of phase impedances in ohms with division into resistance,

inductive and capacitive reactance values

Line R XL XC

R 4 – 2

S 1 1 –

T 0.5 – 1

Table 2 presents the phase values of the voltage supply as
well as the values of the line current of the load, and the val-
ues of the line current of the components obtained in the CPC
theory.

Table 2
List of the values of the phase voltages and the values of the line

currents

Quan. Phase R Phase S Phase T

U 230e j 5◦ 215e− j 110◦ 220e j 99◦

I 51.43e j 31.6◦ 152.03e− j155◦ 196.77e j 162.4◦

Ia 82.71e j 5◦ 77.32e− j 110◦ 79.12e j 99◦

Ir 32.58e j 95◦ 30.46e− j 20◦ 31.16e− j 171◦

Ip
u 26.32e− j 8.3◦ 26.32e− j 128.3◦ 26.32e j 111.7◦

In
u 45.38e− j 8.1◦ 45.38e j 111.9◦ 45.38e− j 128.1◦

Iz
u 106.75e− j 178.6◦ 106.75e− j 178.6◦ 106.75e− j 178.6◦
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The waveform of the instantaneous value of the phase volt-
ages at the load’s terminals is shown in Fig. 3.

Fig. 3. The waveform of the instantaneous value of the phase voltages
at the terminals of the load

The three-phase rms value ‖u‖ of supplying voltage (1) is
equal to:

‖u‖= 384.09 V.

Using the Fortescue system [1, 7], the symmetrical compo-
nents of the supplying voltage are:




Up

Un

U z


=




215.53e− j 1.9◦

30.82e j 149.9◦

42.07e j 16.2◦


 V.

The waveform of the instantaneous value of the load’s line
currents is presented in Fig. 4.

Fig. 4. The waveform of the instantaneous value of the line currents
of the load

The three-phase rms value of the load current is:

‖i‖= 253.92 A.

Table 3 compiles values of the individual admittances and
complex asymmetry coefficients.

Table 4 presents values of the coefficients from c1 to c9 (39).
The values of the coefficients from c1 to c9 and the parame-

ters of the balancing compensator from K1 to K4 are compiled
in Table 5.

The solution of matrix system (37) is the vector of the phase
admittances values necessary for the compensation of the re-
active power and symmetrization of the unbalanced current of
the zero sequence. The values of the calculated admittances
for individual line are equal to: TR = −0.01, TS = 0.57 and
TR =−0.97.

Table 3
List of the individual admittances and asymmetry coefficients

Quan. Value

An 0.29e j 2.4◦ S

Az 0.46e− j 174.3◦ S

Y n
d 0.05e j 118.2◦ S

Y z
d 0.05e− j 48.9◦ S

Ynz
d 0.02e− j 97.4◦ S

n 0.14e j 151.9◦

z 0.19e j 18.2◦

m1 1.37e− j 133.7◦

m2 6.99e− j 151.9◦

Table 4
List of the coefficients’ value from c1 to c9

Coefficient Value

c1 j 0.01

c2 − j 0.01

c3 − j0.01

c4 − j 0.12

c5 j 0.09

c6 j 0.03

c7 j 0.01

c8 j0.01

c9 − j 0.02

Table 5
List of the parameters of the balancing compensator with the star

structure

Parameter Value

K1 0.3e j 94.2◦

K2 0.4e− j 25.7◦

K3 0.3e− j 158.3◦

K4 0.5e− j 176.7◦

To calculate inductance or capacitance, we use expressions
(40) or (41), depending on the sign that is at the given admit-
tances in the vector of calculated values. The inductance value
in the R-line is equal to 733.1 mH and in the T-line it is equal
to 3.3 mH. In S-line we obtained the capacity value, which is
equal to 1.8 mF.

Figure 5 presents the analyzed system with an added balanc-
ing reactive compensator with a star structure.

In order to perform full balancing compensation in four-wire
systems supplied with asymmetrical sinusoidal voltage, besides
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The waveform of the instantaneous value of the phase volt-
ages at the load’s terminals is shown in Fig. 3.

Fig. 3. The waveform of the instantaneous value of the phase voltages
at the terminals of the load

The three-phase rms value ‖u‖ of supplying voltage (1) is
equal to:

‖u‖= 384.09 V.

Using the Fortescue system [1, 7], the symmetrical compo-
nents of the supplying voltage are:




Up

Un

U z


=




215.53e− j 1.9◦

30.82e j 149.9◦

42.07e j 16.2◦


 V.

The waveform of the instantaneous value of the load’s line
currents is presented in Fig. 4.

Fig. 4. The waveform of the instantaneous value of the line currents
of the load

The three-phase rms value of the load current is:

‖i‖= 253.92 A.

Table 3 compiles values of the individual admittances and
complex asymmetry coefficients.

Table 4 presents values of the coefficients from c1 to c9 (39).
The values of the coefficients from c1 to c9 and the parame-

ters of the balancing compensator from K1 to K4 are compiled
in Table 5.

The solution of matrix system (37) is the vector of the phase
admittances values necessary for the compensation of the re-
active power and symmetrization of the unbalanced current of
the zero sequence. The values of the calculated admittances
for individual line are equal to: TR = −0.01, TS = 0.57 and
TR =−0.97.

Table 3
List of the individual admittances and asymmetry coefficients

Quan. Value

An 0.29e j 2.4◦ S

Az 0.46e− j 174.3◦ S

Y n
d 0.05e j 118.2◦ S

Y z
d 0.05e− j 48.9◦ S

Ynz
d 0.02e− j 97.4◦ S

n 0.14e j 151.9◦

z 0.19e j 18.2◦

m1 1.37e− j 133.7◦

m2 6.99e− j 151.9◦

Table 4
List of the coefficients’ value from c1 to c9

Coefficient Value

c1 j 0.01

c2 − j 0.01

c3 − j0.01

c4 − j 0.12

c5 j 0.09

c6 j 0.03

c7 j 0.01

c8 j0.01

c9 − j 0.02

Table 5
List of the parameters of the balancing compensator with the star

structure

Parameter Value

K1 0.3e j 94.2◦

K2 0.4e− j 25.7◦

K3 0.3e− j 158.3◦

K4 0.5e− j 176.7◦

To calculate inductance or capacitance, we use expressions
(40) or (41), depending on the sign that is at the given admit-
tances in the vector of calculated values. The inductance value
in the R-line is equal to 733.1 mH and in the T-line it is equal
to 3.3 mH. In S-line we obtained the capacity value, which is
equal to 1.8 mF.

Figure 5 presents the analyzed system with an added balanc-
ing reactive compensator with a star structure.

In order to perform full balancing compensation in four-wire
systems supplied with asymmetrical sinusoidal voltage, besides
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Fig. 5. Equivalent scheme of the analyzed circuit with an added
balancing compensator with a star configuration

a balancing compensator with a star structure, a balancing com-
pensator with a delta structure should be aggregated, which bal-
ances the unbalanced currents of the positive and negative se-
quences.

Table 6 presents the recalculated values of the unbalanced
admittance and voltage asymmetry dependent admittances.

Table 6
List of the individual admittances

Quan. Value

An# 0.17e j152.8◦ S

Az# 0.03e j127.5◦ S

Yn#
d 0.02e j172.8◦ S

Yz#
d 0.03e− j15.9◦ S

Ynz#
d 0.005e j113.9◦ S

Additionally [19–21], phase-to-phase voltages should be cal-
culated of the components of the positive and negative se-
quences of the Fortescue transformation:
• the phase-to-phase voltage (R to S) is:

URS = (Up +Un)− (α∗Up +αUn) = 375.40e j 36.3◦ V

• the phase-to-phase voltage (S to T) is:

UST = (α∗Up+αUn)−(αUp+α∗Un) = 421.15e− j95.3◦ V

• the phase-to-phase voltage (T to R) is:

UTR = (αUp +α∗Un)− (Up +Un) = 329.18e j 143.2◦ V.

Table 7 compiles values of the coefficients from c10 to c12,
and values of the parameters from K5 to K8 of the balancing
compensator with the delta structure.

The solution of matrix system (54) is the vector of the line-to-
line admittance values necessary for the symmetrization of the
unbalanced currents of the positive and negative sequences. The

Table 7
List of balancing compensator parameters and coefficients

in the delta structure

Param./Coeff. Value

c10 − j 0.25

c11 j 0.24

c12 j 0.01

K5 1.1e j 153.5◦

K6 1.1e− j 85.6◦

K7 1.1e j 32.4◦

K8 0.2e j 155.9◦

values of the calculated admittances for an individual branch
are equal to: TRS =−0.12, TST = 0.05 and TTR = 0.06.

To calculate the inductance or capacitance, we use expres-
sions (40) or (41), depending on the sign that is at the given
admittances in the vector of calculated values. The inductance
value in the RS-line is equal to 27.2 mH. The capacity value in
the ST-line is equal to 172.7 µF and in TR-line it is equal to
201.7 µF.

Figure 6 presents the analyzed system with added balancing
compensators with the Y-structure and with the ∆-structure.

Fig. 6. Equivalent scheme of the analyzed circuit with added balancing
compensators with the structures of the star and the delta

Fig. 7. The waveform of the instantaneous value of the line current
after connecting the balancing compensators

The waveform of the instantaneous value of the line currents,
after compensation of the balancing compensators with the Y-
structure and ∆-structure, is equal to the waveform of the active
currents expressed by formula (5).
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5. Conclusion

The paper shows that it is possible to calculate the balanc-
ing compensator parameters that completely compensate for
the reactive current (reactive power) and unbalanced current,
even when the supply voltage is asymmetric. This increases the
power factor to unity.

Moreover, the article shows that as a result of the asymme-
try of supply voltages, the current will still flow in the neutral
conductor, resulting from the asymmetry of line active currents.

The method of defining the balancing compensator parame-
ters presented in the paper can be extended to the ideal balanc-
ing compensation or minimization of respective currents’ com-
ponents in nonsinusoidal systems.
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5. Conclusion

The paper shows that it is possible to calculate the balanc-
ing compensator parameters that completely compensate for
the reactive current (reactive power) and unbalanced current,
even when the supply voltage is asymmetric. This increases the
power factor to unity.

Moreover, the article shows that as a result of the asymme-
try of supply voltages, the current will still flow in the neutral
conductor, resulting from the asymmetry of line active currents.

The method of defining the balancing compensator parame-
ters presented in the paper can be extended to the ideal balanc-
ing compensation or minimization of respective currents’ com-
ponents in nonsinusoidal systems.
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