
3Bull. Pol. Ac.: Tech. 68(1) 2020

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 68, No. 1, 2020
DOI: 10.24425/bpasts.2020.131827

Abstract. The paper presents a universal architectural pattern and an associated specification method that can be applied in the design of robot
control systems. The approach describes the system in terms of embodied agents and proposes a multi-step decomposition enabling precise
definition of their inner structure and operation. An embodied agent is decomposed into effectors, receptors, both real and virtual, and a control
subsystem. Those entities communicate through communication buffers. The activities of those entities are governed by FSMs that invoke
behaviours formulated in terms of transition functions taking as arguments the contents of input buffers and producing the values inserted into
output buffers. The method is exemplified by applying it to the design of a control system of a robot executing one of the most important tasks for
a service robot, i.e. picking up, by a position–force controlled robot, an object located using an RGB-D image acquired from a Kinect. Moreover
in order to substantiate the universality of the presented approach we present how classical, known from the literature, robotic architectures can
be expressed as systems composed of one or more embodied agents.

Key words: Autonomous Agents, Control Architectures and Programming, Service Robots, Range Sensing, Recognition, Grasping.

A universal architectural pattern and specification method for robot
control system design

T. KORNUTA1, 2*, C. ZIELIŃSKI2, and T. WINIARSKI2

1 IBM Research, Almaden Research Center, 650 Harry Road, San Jose, CA 95120, United States
2 Warsaw University of Technology, Institute of Control and Computation Engineering, Nowowiejska 15/19, 00-665 Warsaw, Poland

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 68, No. 1, 2020
DOI:

A universal architectural pattern and specification method
for robot control system design

T. KORNUTA1,2∗, C. ZIELIŃSKI2, and T. WINIARSKI2

1 IBM Research, Almaden Research Center, 650 Harry Road, San Jose, CA 95120, United States.
2 Warsaw University of Technology, Institute of Control and Computation Engineering, Nowowiejska 15/19, 00–665 Warsaw, Poland.

Abstract. The paper presents a universal architectural pattern and an associated specification method that can be applied in the design of robot
control systems. The approach describes the system in terms of embodied agents and proposes a multi-step decomposition enabling precise
definition of their inner structure and operation. An embodied agent is decomposed into effectors, receptors, both real and virtual, and a control
subsystem. Those entities communicate through communication buffers. The activities of those entities are governed by FSMs that invoke
behaviours formulated in terms of transition functions taking as arguments the contents of input buffers and producing the values inserted into
output buffers. The method is exemplified by applying it to the design of a control system of a robot executing one of the most important tasks for
a service robot, i.e. picking up, by a position–force controlled robot, an object located using an RGB-D image acquired from a Kinect. Moreover
in order to substantiate the universality of the presented approach we present how classical, known from the literature, robotic architectures can
be expressed as systems composed of one or more embodied agents.

Key words: autonomous agents, control architectures and programming, service robots, range sensing, recognition, grasping.

1. Introduction

Although robots are meant to be universal programmed ma-
chines in reality they are designed for a specific class of tasks.
Their universality is limited to that category. The class of tasks
dictates both the mechanical structure of the system and the
functions that its control system should realise, thus defining the
behaviour of the designed system as a whole. In robot systems
the diversity of effectors (e.g. manipulators, grippers and other
tools, wheels, legs, tracks, propellers, as well as their diverse ac-
tuators) and receptors (e.g. cameras, laser scanners, sonars, in-
ertial and force sensors, proximity sensors, compasses) is vast.
On top of this diversity the mentioned hardware can be put to
work on very different tasks.

The main problem that this paper addresses is whether such
a diversity of robot effectors, receptors and tasks can be ab-
stracted away to provide a universal description of the system
structure and its behaviour facilitating the design of the control
system of a specific robotic system.

1.1. Subject of the quest. As robot control systems are com-
puter based, the software is of paramount importance. Software
engineering provides clues on to how to specify such systems in
general, but robotics is a well established discipline, thus a lot
of precious domain specific knowledge would be neglected if
we were to rely only on the available general approaches. How-
ever, the hints provided by software engineering also should

∗e-mail: tkornuta@gmail.com

Manuscript submitted 20XX-XX-XX, initially accepted for publication
20XX-XX-XX, published in ZZZZZZZZ 2020.

not be neglected. The first hint is associated with the search for
a universal system architecture [36]. Such a general architec-
ture should not over-constrain the designer, enabling him/her
to structure the system as required, however providing help-
ing guidelines how to do this appropriately. The elements that
should be left to the designer of the system are the overall sys-
tem structure, the implementation paradigm (e.g. procedural,
object-oriented, component based) and implementation means
(e.g. operating system, programming language). Thus the de-
sign method should be immune to those elements. It should
provide general architectural patterns, which if followed by the
designer should lead to a well formed control system. More-
over, design patterns enabling the creation of system compo-
nents should be made available [27, 30]. Emergence of gen-
eral architectural patterns does not only imply code reusabil-
ity [18] and decrease in the design and implementation costs,
but also facilitates replication of solutions and experiments,
thus helps overcoming the reproducibility crisis identified as
one of the main problems that both robotics [11] and artifi-
cial intelligence [33] communities are struggling with. Last but
not least, the approach should provide a universal symbolic no-
tation by which the designed systems will be specified. This
notation should enable an in-depth discussion of the proposed
solutions. This often leads to the disclosure of otherwise un-
foreseen properties or misfeatures of the system. Such an ab-
straction should also enable formulation of a design method,
general enough to produce specification of all kinds of robotic
systems.

1.2. Evolution of the embodied agent-based architecture.
Proper design of any software, and control software specifi-
cally, requires two major steps: specification and implementa-

Bull. Pol. Ac.: Tech. 68(1) 2020 1

*e-mail: tkornuta@gmail.com

Manuscript submitted 2019-01-23, revised 2019-09-15, initially accepted
for publication 2019-10-09, published in February 2020

CONTROL, INFORMATICS AND ROBOTICS

4

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

tion, where the first defines what has to be done and the second
focuses on how it has to be done. This paper concentrates on
the specification phase, as the best implementation will not im-
prove upon poor specification. Software engineering provides
general hints how to design any software systems, but particu-
lar systems are always domain specific. The developed specifi-
cation methodology relies on the concept of an embodied agent
[13, 14], being the solution to the problem formulated in Sec-
tion 1.1. The architectural pattern of the embodied agent has
matured over years, as it has been used for the development
of diverse robot control systems [93]. The origins of this ap-
proach can be traced back to our work on multi-robot con-
trol systems [82, 83] and programming frameworks for devel-
opment of distributed controllers (i.e. controllers consisting of
many collaborating processes). In [84] we introduced the con-
cept of embodied agent as an entity consisting of a single Con-
trol Subsystem and controlling from zero or more Effectors
and Receptors and focused on the structure of the controllers
of several classical force-control benchmarks such as following
of an unknown contour or rotating a crank and copying draw-
ings by a single-robot arm. Subsequently dual arm system solv-
ing the Rubik’s cube puzzle [90] was created. In [91] we fo-
cused on further formalisation of the operation of the Control
Subsystem and proposed the abstraction of the position–force
control law realised by the Virtual Effectors, seen as three ele-
mentary behaviours from the point of view of the Control Sub-
system, while [92] focused on the crucial aspects of motion-
generation realised by processes constituting a single embod-
ied agent. Visual servoing was also included [69, 70]. In [42]
we have generalized the concept of behaviour parameterised by
transition functions to describe the operation of Control Sub-
system as well as Virtual Receptors and Effectors. In [88] we
presented a specification of a part of the system of our dual-
arm Velma robot, which used 3D object recognition with vi-
sual servoing and impedance control in the task of putting
a lid on the box, while in [41] we have made an effort to
formalize robotics skills as an assembly of several behaviours
on the example of grasping object. In our most recent works
we deliberate on using the embodied agent-based approach
for designing of robotic systems possessing both fixed [93]
and variable [89] structure of the controller with cloud sup-
port [24].

1.3. Contributions of the paper. The main contributions of
this paper are as follows:
• We present in a comprehensive way a robotic system speci-

fication method that defines both the system structure and
its activities, avoiding the notoriously imprecise style of
box and arrow presentations of architectures dominating the
domain of robotics. Our specification method enables the
replication of robotic systems in other laboratories, thus fa-
cilitates benchmarking.

• We refine the architectural pattern of an embodied agent by
describing the activities of each of the subsystems by an
FSM and introducing transitions between states defined by
combinations of terminal and initial conditions, which re-
sults in an effective mechanism of switching behaviours.

• We present the enhanced version of the step-by-step design
procedure leading to a detailed specification of the consid-
ered robotic system.

• Finally, we showcase our approach on a control system of
a service robot executing a complex task. The selected ex-
ample utilizes both the state-of-the-art visual perception (re-
lying on RGB-D sensors) and force sensing, a combination
that is crucial for every modern service robot.

Both the comprehensive presentation of the methodology and
the exemplary specification resulting from it are novel.

1.4. Structure of the paper. Section 2 introduces an embod-
ied agent, being the central tenet of the presented approach, and
briefly explains all related concepts. Section 3 describes the as-
sociated methodology of robot control system design. Section 4
presents the application of the proposed approach to the de-
sign of an exemplary robotic system. The system consists of
a single-arm robot (manipulator) equipped with a force-torque
sensor and a two-finger gripper, supplemented with an RGB-D
sensor. This system is put to the task of acquiring specific ran-
domly located objects. The task requires several crucial capabil-
ities of modern service robots, i.e. combines 3D visual percep-
tion with force sensing and motion control. The specification
is followed by a brief description of the experiments validat-
ing the developed controller. As the claim of this paper is that
the proposed robotic control system design and specification
method is universal, Section 5 discusses how it can be used to
produce diverse architectures that have been presented by oth-
ers, thus relating our work to that of other researchers. Section 6
concludes the paper, pointing out the major advantages of the
presented approach.

2. Universal model of a robotic system

The proposed design method requires the specification of a spe-
cific model of a robotic system (a single- or a multi-robot sys-
tem including cooperating devices) executing the predefined
task. This model is produced on the basis of a universal model
of a robotic system described below. In this approach robots
are represented as conglomerates of embodied agents (possi-
bly composed of just one such agent). As embodied agents are
the most general forms of agents, out of them any robot sys-
tem can be designed. The thus produced specification is used as
a blueprint for the implementation of the system.

2.1. General inner structure of an Embodied Agent.
A robotic system is represented as a set of agents a j, j =
1, . . . ,na, where na is the number of agents (j designates a par-
ticular agent). Embodied agents have physical bodies inter-
acting with the environment. This paper focuses on embod-
ied agents [42], but all other agents can be treated as special
cases with no body, thus the presentation is general. An embod-
ied agent a j, or simply an agent, possesses real effectors E j,
which exert influence over the environment, real receptors R j
(exteroceptors), which gather information from the surround-
ings, and a control system C j that governs the actions of the

2 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

agent in such a way that its task will be executed. The extero-
ceptors of the agent a j are numbered (or named), hence R j,l ,
l = 1, . . . ,nR, and so are its effectors E j,h, h = 1, . . . ,nE . Both
the receptor readings and the effector commands undergo trans-
formations into a form that is convenient from the point of view
of the task, hence the virtual receptors r j and virtual effectors
e j transform raw sensor readings and motor commands into ab-
stract concepts required by the control subsystem to match the
task formulation. Thus the control system C j is decomposed
into: virtual effectors e j,n, n = 1, . . . ,ne, virtual receptors r j,k,
k = 1, . . . ,nr, and a single control subsystem c j (Fig. 1). Vir-
tual receptors perform sensor reading aggregation, consisting
in either the composition of information obtained from several
exteroceptors or in the extraction of the required data from one
complex sensor (e.g. camera). Moreover the readings obtained
from the same exteroceptors R j,l may be processed in different
ways, so many virtual receptors r j,k can be formed. The con-
trol loop is closed through the environment, i.e. exteroceptor
readings R j,l are aggregated by virtual receptors to be trans-
mitted to the control subsystem c j which generates appropriate
commands for the virtual effectors e j to translate into signals
driving the effectors E j. This primary loop is supplemented by
links going in the opposite direction. The control subsystem c j
can both reconfigure exteroceptors R j and influence the method
how the virtual receptors r j aggregate readings, thus a link from
the control subsystem to the receptor emerges. The control sub-
system also acquires proprioceptive data from the effectors. An
agent through its control subsystem is able to establish a two-
way communication with other agents a j′ , j �= j′.

aj

R
y rj,k,l

c
yrj,k

c
xrj,k

r
xcj,k

r
ycj,k

yRj,lxRj,l

E
x ej,n,h

E
y ej,n,h

c
yej,n

c
xej,n

e
xcj,n

e
ycj,n

yEj,hxEj,h

T
y cj,j′

T
x cj,j′

ccj

rrj,k
eej,n

R
x rj,k,l

cj

Ej,h Rj,l

ej,n rj,k

Fig. 1. Internal structure of an embodied agent a j

The control subsystem as well as the virtual effectors and
receptors use communication buffers to transmit or receive in-

formation to/from the other components (Fig. 1). A systematic
denotation method is used to designate both the components
and their buffers. To make the description of such a system
concise no distinction is being made between the denotation
of a buffer and its state (its content) – the context is sufficient.
In the assumed notation a one-letter symbol located in the cen-
tre (i.e. E , R, e, r, c) designates the subsystem. To reference
its buffers or to single out the state of this component at a cer-
tain instant of time extra indices are placed around this cen-
tral symbol. The left superscript designates the subsystem to
which the buffer is connected. The right superscript designates
the time instant at which the state is being considered. The left
subscript tells us whether this is an input (x) or an output (y)
buffer. When the left subscript is missing the internal memory
of the subsystem is referred to. The right subscript may be com-
plex, with its elements separated by comas. They designate the
particular: agent, its subsystem and buffer element. Buffer ele-
ments can also be designated by placing their names in square
brackets. For instance e

xci
j[pose] denotes the contents of the vari-

able “pose” located in the control subsystem input buffer of the
agent a j acquired from the virtual effector at instant i. Similarly
functions are labelled. The central symbol for any function is
f , the left superscript designates the type of the owner of the
function and the type of the subsystem that this function pro-
duces the result of its computations for, the right superscript: τ ,
σ , ε refer to the terminal, initial and error conditions respec-
tively (each one of them being a predicate). A missing right
superscript denotes a transition function. The list of right sub-
scripts designates a particular function, and the order of des-
ignators is: agent, subsystem, particular function. Finally, all
the buffers may contain many variables – referred to within the
square brackets. The ˜ symbol indicates the place holder in the
buffer in which the variable is stored, whereas its lack refers to
the value of that variable.

2.2. Types of agents. An embodied agent exhibits four types
of activities: influencing the environment through effectors
(both real and virtual treated in conjunction) – denoted by E,
gathering the information from the environment through recep-
tors (again both real and virtual) – denoted by R, transmission
to/from the other agents – denoted by T and last but not least
control of the agent (conducted by the control subsystem) – de-
noted by C. Out of the enumerated four activity types only C is
indispensable. The agent can be deficient with respect to some
of the others, thus seven useful types of agents emerge [93], i.e.
an embodied agent with full capabilities is of the type CERT,
a purely computational agent is of CT type, a monitoring agent
is of a CR type, while a blind agent is of a CE type, a teleoper-
ated agent is of a CET type, a remote sensor is of a CRT type,
and an autonomous agent is of a CER type. An agent of C type
is useless. Out of agents having T in the denotation of their type,
networks of agents can be produced, thus diverse architectures
can be represented. A single robot can be produced of one or
many agents. Multi-robot systems require multiple agents. The
architectures of robotic systems differ not only in structure, i.e.
admissible connections between agents, but also in composition
of agent types [93].

Bull. Pol. Ac.: Tech. 68(1) 2020 3

5

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

agent in such a way that its task will be executed. The extero-
ceptors of the agent a j are numbered (or named), hence R j,l ,
l = 1, . . . ,nR, and so are its effectors E j,h, h = 1, . . . ,nE . Both
the receptor readings and the effector commands undergo trans-
formations into a form that is convenient from the point of view
of the task, hence the virtual receptors r j and virtual effectors
e j transform raw sensor readings and motor commands into ab-
stract concepts required by the control subsystem to match the
task formulation. Thus the control system C j is decomposed
into: virtual effectors e j,n, n = 1, . . . ,ne, virtual receptors r j,k,
k = 1, . . . ,nr, and a single control subsystem c j (Fig. 1). Vir-
tual receptors perform sensor reading aggregation, consisting
in either the composition of information obtained from several
exteroceptors or in the extraction of the required data from one
complex sensor (e.g. camera). Moreover the readings obtained
from the same exteroceptors R j,l may be processed in different
ways, so many virtual receptors r j,k can be formed. The con-
trol loop is closed through the environment, i.e. exteroceptor
readings R j,l are aggregated by virtual receptors to be trans-
mitted to the control subsystem c j which generates appropriate
commands for the virtual effectors e j to translate into signals
driving the effectors E j. This primary loop is supplemented by
links going in the opposite direction. The control subsystem c j
can both reconfigure exteroceptors R j and influence the method
how the virtual receptors r j aggregate readings, thus a link from
the control subsystem to the receptor emerges. The control sub-
system also acquires proprioceptive data from the effectors. An
agent through its control subsystem is able to establish a two-
way communication with other agents a j′ , j �= j′.

aj

R
y rj,k,l

c
yrj,k

c
xrj,k

r
xcj,k

r
ycj,k

yRj,lxRj,l

E
x ej,n,h

E
y ej,n,h

c
yej,n

c
xej,n

e
xcj,n

e
ycj,n

yEj,hxEj,h

T
y cj,j′

T
x cj,j′

ccj

rrj,k
eej,n

R
x rj,k,l

cj

Ej,h Rj,l

ej,n rj,k

Fig. 1. Internal structure of an embodied agent a j

The control subsystem as well as the virtual effectors and
receptors use communication buffers to transmit or receive in-

formation to/from the other components (Fig. 1). A systematic
denotation method is used to designate both the components
and their buffers. To make the description of such a system
concise no distinction is being made between the denotation
of a buffer and its state (its content) – the context is sufficient.
In the assumed notation a one-letter symbol located in the cen-
tre (i.e. E , R, e, r, c) designates the subsystem. To reference
its buffers or to single out the state of this component at a cer-
tain instant of time extra indices are placed around this cen-
tral symbol. The left superscript designates the subsystem to
which the buffer is connected. The right superscript designates
the time instant at which the state is being considered. The left
subscript tells us whether this is an input (x) or an output (y)
buffer. When the left subscript is missing the internal memory
of the subsystem is referred to. The right subscript may be com-
plex, with its elements separated by comas. They designate the
particular: agent, its subsystem and buffer element. Buffer ele-
ments can also be designated by placing their names in square
brackets. For instance e

xci
j[pose] denotes the contents of the vari-

able “pose” located in the control subsystem input buffer of the
agent a j acquired from the virtual effector at instant i. Similarly
functions are labelled. The central symbol for any function is
f , the left superscript designates the type of the owner of the
function and the type of the subsystem that this function pro-
duces the result of its computations for, the right superscript: τ ,
σ , ε refer to the terminal, initial and error conditions respec-
tively (each one of them being a predicate). A missing right
superscript denotes a transition function. The list of right sub-
scripts designates a particular function, and the order of des-
ignators is: agent, subsystem, particular function. Finally, all
the buffers may contain many variables – referred to within the
square brackets. The ˜ symbol indicates the place holder in the
buffer in which the variable is stored, whereas its lack refers to
the value of that variable.

2.2. Types of agents. An embodied agent exhibits four types
of activities: influencing the environment through effectors
(both real and virtual treated in conjunction) – denoted by E,
gathering the information from the environment through recep-
tors (again both real and virtual) – denoted by R, transmission
to/from the other agents – denoted by T and last but not least
control of the agent (conducted by the control subsystem) – de-
noted by C. Out of the enumerated four activity types only C is
indispensable. The agent can be deficient with respect to some
of the others, thus seven useful types of agents emerge [93], i.e.
an embodied agent with full capabilities is of the type CERT,
a purely computational agent is of CT type, a monitoring agent
is of a CR type, while a blind agent is of a CE type, a teleoper-
ated agent is of a CET type, a remote sensor is of a CRT type,
and an autonomous agent is of a CER type. An agent of C type
is useless. Out of agents having T in the denotation of their type,
networks of agents can be produced, thus diverse architectures
can be represented. A single robot can be produced of one or
many agents. Multi-robot systems require multiple agents. The
architectures of robotic systems differ not only in structure, i.e.
admissible connections between agents, but also in composition
of agent types [93].

Bull. Pol. Ac.: Tech. 68(1) 2020 3

6

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

2.3. General subsystem behaviour. Fig. 2 presents the gen-
eral work-cycle of any subsystem s j, where s ∈ {c, e, r}, of an
agent a j. The designator of a concrete subsystem is the sub-
script u (there may be many virtual effectors and virtual re-
ceptors, thus this differentiation is necessary). The s j• , where
j• ∈ { j, j′}, denotes all subsystems associated with s j (the con-
trol subsystem of one agent may communicate with the con-
trol subsystem of another agent, hence j′). The functioning of
a subsystem s j,u requires the processing of a transition function
which uses as arguments the data contained in the input buffers
xs j,u and the memory ss j,u, to produce the output buffer values
ys j,u and new memory contents ss j,u. Hence the subsystem be-
haviour is described by a transition function s f j,u defined as:

[
ssi+1

j,u , ysi+1
j,u

]
:= s f j,u(

ssi
j,u, xsi

j,u), (1)

where i and i+ 1 are the consecutive discrete time stamps and
:= is the assignment operator. Function (1) describes the evo-
lution of the state of a subsystem s j,u. As a single function (1)
would be too complex to define it in a monolithic form, thus it
is usually decomposed into a set of partial functions:

[
ssi+1

j,u , ysi+1
j,u

]
:= s f j,u,ξ (

ssi
j,u, xsi

j,u), (2)

where ξ = 1, . . . ,n fs,u , designates particular transition func-
tions. Capabilities of the agent arise from the multiplicity, n fs,u ,
and diversity of the partial functions of its subsystems. Transi-
tion functions can be defined mathematically (e.g. [92]), or data

FALSE

Dispatch the results to the
associated subsystems

Get the current data from
the associated subsystems

Wait

Update the internal state and
compute values of the output buffers

TRUE

SUCCESS

FAILURE

FALSE

TRUE

Fig. 2. General flow chart of a subsystem behaviour
sB j,u,η (

s f j,u,ξ ,
s f τ

j,u,β ,
s f ε

j,u,γ), where • represents any
subsystem including another agent

flow diagrams can be used (e.g. [42]), if utmost precision is not
required, however also pseudo-code can be used (e.g. [34]), if
implementation is at the focus.

Such a prescription requires rules of switching between dif-
ferent partial transition functions of a subsystem, thus three ad-
ditional Boolean valued functions (predicates) are required:
• s f σ

j,u,α defining the initial condition,
• s f τ

j,u,β representing the terminal condition and

• s f ε
j,u,γ representing the error condition.

The first one selects the behaviour, while the second deter-
mines when the cyclic execution of the behaviour should ter-
minate. The last one detects possible errors in the execution of
the behaviour. Hence a multi-step evolution of the subsystem in
a form of a behaviour B j,u,ξ is defined as:

sB j,u,η � sB j,u,η

(
s f j,u,ξ ,

s f τ
j,u,β ,

s f ε
j,u,γ

)
. (3)

It should be noted that a certain behaviour designated by η is
defined in terms of functions designated by ξ , β and γ . This is
because each of those functions belongs to a different set, and
the behaviour can be defined as any three-element combination
of functions picked from those sets (this facilitates the modu-
larity of the resulting implementation of the control system).

The flowchart presented in Fig. 2 contains two blocks requir-
ing the transfer of data between subsystems. The communica-
tion problem is not discussed in this paper, however it has been
dealt with in [25, 85].

2.4. FSM governing behaviour switching. The activities of
each subsystem are described by a finite state machine (FSM).
Those activities are represented by a graph. Each node of this
graph represents a state sS j,u,ε of the FSM, ε = 1, . . . ,ns, where
ns is the number of states of this FSM. With each of the nodes of
the graph a behaviour is associated. Thus in each state the FSM
executes a single behaviour (this is a Moore type automaton).
The nodes of the graph are connected by directed arcs labelled
with initial conditions s f σ

j,u,α . When the FSM is in its sS j,u,ε
state and the terminal condition s f τ

j,u,β or error condition s f ε
j,u,γ

of the associated behaviour sB j,u,η is fulfilled, the FSM is ready
to switch to its another state (thus to change the subsystem be-
haviour). If the arc of the graph of the FSM connecting states
sS j,u,ε and sS j,u,ε ′ is labelled by the initial condition s f σ

j,u,α ,
and this condition is fulfilled, the FSM will switch to the state
sS j,u,ε ′ . The state transition table of the FSM consists of two
major parts. First part determines the current state and terminal
(or error) condition terminating the current behaviour, whereas
the second indicates the initial condition along with the next
state. Each row of the table defines a single transition. It should
be underscored that the transition takes place only when termi-
nal/error condition of the associated behaviour and the initial
condition of the destination state are fulfilled. If the terminal
and error conditions of the behaviour associated with current
state are not fulfilled the FSM stays in this state further execut-
ing the associated behaviour. Additionally, as a given behaviour
can be associated with many different states, a second table is

4 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

introduced, mapping the states of the considered subsystem to
its behaviours.

As an example a simple automaton of a subsystem s j,u ex-
hibiting three behaviours is considered. Two of them, sB j,u,0
and sB j,u,1, are executed to execute the task under normal con-
ditions. The third, sB j,u,ε , is associated with error recovery. The
error can occur only when the system is executing behaviour
sB j,u,1. Thus behaviour sB j,u,0 terminates only when its termi-
nal condition s f τ

j,u,0 is fulfilled. Behaviour sB j,u,1 terminates ei-
ther if an error is detected by the error condition s f ε

j,u,1 or the
terminal condition s f τ

j,u,1 is fulfilled. It should be noted that ac-
cording to the flowchart presented in Fig. 2 the priority of error
detection is higher than that of terminal condition satisfaction,
thus the value of the terminal condition is irrelevant when the
error condition is fulfilled. Behaviour sB j,u,ε terminates when
its terminal condition s f τ

j,u,ε is satisfied. Each of the mentioned
behaviours is associated with one state of the FSM, as presented
by Table 1.

Table 1
Mapping of the states of the exemplary subsystem to its behaviours

State Behaviour Description
sS j,u,0

sBj,u,0 First behaviour

sS j,u,1
sBj,u,1 Second behaviour

sS j,u,ε
sBj,u,ε Error recovery

The graph of the FSM is presented in Fig. 3, while its state
transition table in Table 2. The initial state is sS j,u,0. When its
associated behaviour terminates the FSM transits to the state

Fig. 3. Graph of an exemplary finite state automaton

Table 2
State transition table of the exemplary subsystem FSM

Current state Next state

State
Terminal/Error Initial

StateCondition Condition
sS j,u,0

s f τ
j,u,0 = TRUE s f σ

j,u,1 = TRUE sS j,u,1

sS j,u,1
s f τ

j,u,1 = TRUE s f σ
j,u,0 = TRUE sS j,u,0

sS j,u,1
s f ε

j,u,1 = TRUE s f σ
j,u,ε = TRUE sS j,u,ε

sS j,u,ε
s f τ

j,u,ε = TRUE
s f σ

j,u,2 = TRUE sS j,u,0

s f σ
j,u,3 = TRUE sS j,u,1

sS j,u,1 if the initial condition s f σ
j,u,1 is fulfilled. As it labels the

only arc emerging from sS j,u,0 it must be always TRUE – for
the sake of completeness of the graph. The behaviour associated
with s f σ

j,u,1 can either terminate with an error, and then the FSM
transits to sS j,u,ε (in this case the initial condition s f σ

j,u,ε must
be TRUE), or if no error has been detected it can terminate due
to the satisfaction of the terminal condition s f τ

j,u,1, and then the
FSM transits to the state sS j,u,0, when the initial condition s f σ

j,u,0
is TRUE. When the error recovery behaviour terminates the
FSM either transits to sS j,u,0 or sS j,u,1. In the former case when
s f σ

j,u,2 is TRUE and in the latter case when s f σ
j,u,3 is fulfilled.

Again, for the sake of completeness s f σ
j,u,2 ∨ s f σ

j,u,3 = T RUE,
and obviously s f σ

j,u,2 ∧ s f σ
j,u,3 = FALSE.

3. Design procedure

System design is always an iterative process. The design pro-
cess progresses both by stepwise refinement and backtrack-
ing, where an increased detail of specification possibly requires
modifications of the previous stages in the project. The pre-
sented procedure consists of a set of items rather than a list of
consecutive steps. The designer selects both the level of details
that he/she wants to express (i.e. ontological level) and the or-
der of the design steps. The general structure of the system is as
presented in Section 2. However this structure has to be tailored
to the given task and the equipment that will be utilized.

The design procedure (Fig. 4) contains the following:
• Brief description of the scenario, which will further serve

as a guide during assignment of roles of the agents and their
subsystems;

Task and scenario description

Selection of the necessary effectors and receptors

S
t
r
u
c
t
u
r
a
l
S
p
e
c
i
f
i
c
a
t
i
o
n

A rough description of a role of each subsystem

B
e
h
a
v
i
o
u
r
a
l
S
p
e
c
i
f
i
c
a
t
i
o
n

Definition of the structure of agents and their interconnections

Assignment of real effectors and receptors to each agent

Specification of the contents of the communication buffers

and the internal memory of each subsystem

Definition of the FSMs switching the behaviours of each subsystem

Specification of every behaviour of each subsystem

Definition of terminal/error conditions associated with each behaviour

Fig. 4. System design procedure

Bull. Pol. Ac.: Tech. 68(1) 2020 5

7

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

introduced, mapping the states of the considered subsystem to
its behaviours.

As an example a simple automaton of a subsystem s j,u ex-
hibiting three behaviours is considered. Two of them, sB j,u,0
and sB j,u,1, are executed to execute the task under normal con-
ditions. The third, sB j,u,ε , is associated with error recovery. The
error can occur only when the system is executing behaviour
sB j,u,1. Thus behaviour sB j,u,0 terminates only when its termi-
nal condition s f τ

j,u,0 is fulfilled. Behaviour sB j,u,1 terminates ei-
ther if an error is detected by the error condition s f ε

j,u,1 or the
terminal condition s f τ

j,u,1 is fulfilled. It should be noted that ac-
cording to the flowchart presented in Fig. 2 the priority of error
detection is higher than that of terminal condition satisfaction,
thus the value of the terminal condition is irrelevant when the
error condition is fulfilled. Behaviour sB j,u,ε terminates when
its terminal condition s f τ

j,u,ε is satisfied. Each of the mentioned
behaviours is associated with one state of the FSM, as presented
by Table 1.

Table 1
Mapping of the states of the exemplary subsystem to its behaviours

State Behaviour Description
sS j,u,0

sBj,u,0 First behaviour

sS j,u,1
sBj,u,1 Second behaviour

sS j,u,ε
sBj,u,ε Error recovery

The graph of the FSM is presented in Fig. 3, while its state
transition table in Table 2. The initial state is sS j,u,0. When its
associated behaviour terminates the FSM transits to the state

Fig. 3. Graph of an exemplary finite state automaton

Table 2
State transition table of the exemplary subsystem FSM

Current state Next state

State
Terminal/Error Initial

StateCondition Condition
sS j,u,0

s f τ
j,u,0 = TRUE s f σ

j,u,1 = TRUE sS j,u,1

sS j,u,1
s f τ

j,u,1 = TRUE s f σ
j,u,0 = TRUE sS j,u,0

sS j,u,1
s f ε

j,u,1 = TRUE s f σ
j,u,ε = TRUE sS j,u,ε

sS j,u,ε
s f τ

j,u,ε = TRUE
s f σ

j,u,2 = TRUE sS j,u,0

s f σ
j,u,3 = TRUE sS j,u,1

sS j,u,1 if the initial condition s f σ
j,u,1 is fulfilled. As it labels the

only arc emerging from sS j,u,0 it must be always TRUE – for
the sake of completeness of the graph. The behaviour associated
with s f σ

j,u,1 can either terminate with an error, and then the FSM
transits to sS j,u,ε (in this case the initial condition s f σ

j,u,ε must
be TRUE), or if no error has been detected it can terminate due
to the satisfaction of the terminal condition s f τ

j,u,1, and then the
FSM transits to the state sS j,u,0, when the initial condition s f σ

j,u,0
is TRUE. When the error recovery behaviour terminates the
FSM either transits to sS j,u,0 or sS j,u,1. In the former case when
s f σ

j,u,2 is TRUE and in the latter case when s f σ
j,u,3 is fulfilled.

Again, for the sake of completeness s f σ
j,u,2 ∨ s f σ

j,u,3 = T RUE,
and obviously s f σ

j,u,2 ∧ s f σ
j,u,3 = FALSE.

3. Design procedure

System design is always an iterative process. The design pro-
cess progresses both by stepwise refinement and backtrack-
ing, where an increased detail of specification possibly requires
modifications of the previous stages in the project. The pre-
sented procedure consists of a set of items rather than a list of
consecutive steps. The designer selects both the level of details
that he/she wants to express (i.e. ontological level) and the or-
der of the design steps. The general structure of the system is as
presented in Section 2. However this structure has to be tailored
to the given task and the equipment that will be utilized.

The design procedure (Fig. 4) contains the following:
• Brief description of the scenario, which will further serve

as a guide during assignment of roles of the agents and their
subsystems;

Task and scenario description

Selection of the necessary effectors and receptors

S
t
r
u
c
t
u
r
a
l
S
p
e
c
i
f
i
c
a
t
i
o
n

A rough description of a role of each subsystem

B
e
h
a
v
i
o
u
r
a
l
S
p
e
c
i
f
i
c
a
t
i
o
n

Definition of the structure of agents and their interconnections

Assignment of real effectors and receptors to each agent

Specification of the contents of the communication buffers

and the internal memory of each subsystem

Definition of the FSMs switching the behaviours of each subsystem

Specification of every behaviour of each subsystem

Definition of terminal/error conditions associated with each behaviour

Fig. 4. System design procedure

Bull. Pol. Ac.: Tech. 68(1) 2020 5

8

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

• Selection of the necessary effectors and receptors, taking
into account the class of tasks that is to be realised – those
constitute the real effectors and receptors;

• Definition of the structure of the system in terms of agents
and their interconnections, taking into account the consid-
ered task and the selected hardware. In the process of divi-
sion into agents one has to take into account the transmis-
sion delays of inter-agent communication and the necessary
computational power of the hardware which will execute
the agent’s code;

• Assignment of real effectors and receptors to each agent,
taking into account the job that the agent has to execute;

• Specification of the contents of the communication buffers
and the internal memory of each subsystem. It should be
noted that the structure of the output buffer of one subsys-
tem has to be exactly the same as that of the input buffer of
the one it is connected to;

• A rough description of a role of each subsystem – it enables
to distinguish the main required behaviours, their number
and function. In here the designer should take into con-
sideration the sampling rates not only of a given subsys-
tem, but also of all the subsystems associated with it (as it
will determine, e.g., how often new data will appear in its
buffers);

• Definition of the FSMs switching the behaviours of sub-
systems – at this stage the designer needs to define the ini-
tial conditions of each of the behaviours associated with the
FSM states – this results in a graph of transitions between
states associated with the given subsystem behaviours;

• Specification of every behaviour of each subsystem, defined
in terms of transition functions operating on the contents of
buffers. As those transitions functions might be quite so-
phisticated, at this point the designer can create additional
data-flow diagrams, facilitating the analytical definitions;

• Definition of terminal and error conditions associated with
each behaviour.

The presented steps clearly indicate that there is an order of
operations that the designer should follow. However, as it was
mentioned, the above presented procedure is iterative, mainly
due to the fact that as the designer dives deeper into the details
of the operation of a given subsystem it might emerge that an
important element has been missed in the previous step. For ex-
ample, when defining a transition function of a given behaviour
it might become obvious that additional information produced
by yet another subsystem might be needed – a step back is re-
quired consisting in addition of information to the input/output
buffers of both subsystems.

4. Example of application of the design method

The proposed design method is exemplified here by produc-
ing a control system of a robot capable of picking up an
object. The object is located in a certain area, but its ex-
act location is not known. A brief and easy to follow ex-
emplary scenario is described in Section 4.1. The hardware

that is necessary to execute it is deduced from the task for-
mulation (Section 4.2). To formulate the task formally, ini-
tially the coordinate frames and transformations character-
ising the system need to be specified (Section 4.3). Then,
the system structure is proposed in terms of an embodied
agent (Section 4.4) taking into account both the hardware
chosen to perform the task and the task scenario. The struc-
ture consists of a virtual effector controlling the gripper (Sec-
tion 4.6), virtual effector controlling the manipulator (Sec-
tion 4.5), control subsystem (Section 4.8) and virtual recep-
tor aggregating data obtained from the RGB-D sensor (Sec-
tion 4.7).

4.1. Description of the scenario. The following scenario is
assumed. In the first step the system visually analyses the scene
in order to recognize objects of interest and estimate their poses.
Next it selects a single object of interest and generates adequate
grasp poses (pre-grasp and grasp poses, grasping points etc.).
Having those computed, it executes the grasp, by generation
and realization of the approach trajectory, followed by grasp-
ing of the selected object. After that the object is picked-up
and subsequently dropped at a random. Finally the manipula-
tor returns to the initial pose and the whole procedure is re-
peated. The task is simple, yet it needs the majority of low-level
skills required of a service robot, as it will become evident later.
The resulting outline of the finite state machine is presented in
Fig. 5.

Recognize
objects on the

scene

Generate
grasp

parameters

Grasp
the object

Pick up
the object

Drop
the object

Fig. 5. Graph of the FSM of the object picking task

4.2. Hardware setup. To realise grasping both a manipula-
tor equipped with a gripper and a camera to localise an object
to be grasped are needed. The visual subsystem forms an ex-
teroceptor (e.g. an RGB-D camera) that provides a rough lo-
calisation of the object. It is very difficult to localise the object
so precisely to be able to execute pure position control of the
manipulator and succeed. In consequence the manipulator, that
forms the effector, should be equipped with extra force/torque
or tactile sensors to execute position–force control suitable for
interacting with the environment. As simple grasping suffices
here the gripper does not need extra manipulation capabilities.
A two-finger gripper, that is treated as another effector, is suffi-
cient for the above scenario. The hardware setup is presented in
Fig. 6. It consists of a modified IRb-6 serial manipulator (named
IRp-6) having 6 DOF (Degrees Of Freedom), a two-fingered
1 DOF gripper, a 6 component force/torque sensor mounted in
the wrist and a Kinect sensor placed above the scene (an immo-
bile, stand-alone camera).

6 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

Motion commands

Manipulator pose and
force-torque readings

Motor control

Encoders and force-torque readings

Motor Feedback (500Hz)
Task execution, sensor data

fusion, trajectory generation

Object recognition and

pose estimation RGB-D image from KinectList of recognized objects
w.r.t. Kinect reference frame

Visual Feedback (30Hz)

Gripper posture

control

Manipulator

motion control

Motor Feedback (500Hz)

Encoder and current readings

Motor control

Gripper pose and
current readings

Desired gripper pose

Fig. 6. General structure of the designed controller

4.3. Major coordinate reference frames and transforma-
tions. Fig. 7 indicates the most important (from the point of
view of task execution) coordinate frames and transformations
between them. B represents the robot base reference frame
(treated in here as the global reference frame), E is the end-
effector frame, K is the Kinect sensor reference frame, while
v is the frame assigned to the v-th object (verified hypothesis
of an object present in the scene). The most important transfor-
mations are: B

KT is the pose of the Kinect sensor with respect
to the global reference frame (constant, computed during the
calibration of the system), B

ETc represents the current pose of
the tip of the end-effector (computed on the basis of the current
configuration of the manipulator joints – i.e. direct kinematics),
whereas K

v T, E
v T and B

v T represent the pose of the v-th object
with respect to the: Kinect, end-effector and global reference
frame respectively.

Fig. 7. Coordinate frames and transformations between them

4.4. Determination of the system structure. The structure of
the system conforms to the structure represented by the general
pattern of vision guided machines [29], where the control loop
starts with the acquisition of the environment image, which is
subsequently subjected to multi-phase processing, resulting in
the formulation of a control decision commanding the actuators
influencing the environment. The system structure is presented
in Fig. 6. Here three control loops are distinguished: two inner
motor loops controlling the manipulator and the gripper, and
an outer visual loop responsible for recognition of objects of
interest and estimation of their poses on the basis of RGB-D
images received from the Kinect sensor.

The agent airp is responsible for controlling a modified IRb-6
manipulator (denoted as E irp,m), its gripper (E irp,g) and the
Kinect sensor (Rirp,k), thus is classified as CERT – an embod-
ied agent with full capabilities (please refer to Section 2.2).
This suggests that the agent’s control system should be decom-
posed into: the control subsystem cirp, supplemented by two
Virtual Effectors (eirp,m controlling the manipulator E irp,m and
eirp,g controlling its gripper E irp,g), and a Virtual Receptor rirp,k
responsible for aggregation of sensoric data received from the
Kinect sensor Rirp,k. The control subsystem cirp is responsible
for the realization of the object picking task, namely for storing
the state of the scene (consisting of the recognized objects along
with their poses), selection of the object of interest, generation
of the the grasp and for picking of the object, whereas the vir-
tual entities eirp,m, eirp,g and rirp,k form a hardware abstraction
layer, forming an interface between the control subsystem and
the real hardware, thus simplifying the formulation and hence
the realization of the task. The structure of the resulting embod-
ied agent is presented in Fig. 8.

IRP-6

MANIPULATOR

VIRTUAL

EFFECTOR

airp eirp,m Eirp,m

CONTROL

SUBSYSTEM

cirp
TWO

FINGER GRIPPER

VIRTUAL

EFFECTOR

Eirp,geirp,g

VIRTUAL

RECEPTOR

KINECT

SENSOR

rirp,k Rirp,k

Fig. 8. Internal structure of the agent controlling the IRp-6 manipula-
tor, the two-finger gripper and the Kinect sensor

4.5. Virtual effector controlling the manipulator. Virtual
effector eirp,m controls the modified IRp-6 manipulator and ex-
hibits several behaviours, offering diverse control abstractions.
However in this paper, only two are exploited: the first realising
the Point to Point (P2P) motion and the second implementing
the position-force control. Besides that an idle behaviour is de-
fined. It is executed in the case when the control subsystem does
not send any control commands to the manipulator.

We decided that from the point of view of the task realized
by the control system the most convenient form of abstraction

Bull. Pol. Ac.: Tech. 68(1) 2020 7

9

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

Motion commands

Manipulator pose and
force-torque readings

Motor control

Encoders and force-torque readings

Motor Feedback (500Hz)
Task execution, sensor data

fusion, trajectory generation

Object recognition and

pose estimation RGB-D image from KinectList of recognized objects
w.r.t. Kinect reference frame

Visual Feedback (30Hz)

Gripper posture

control

Manipulator

motion control

Motor Feedback (500Hz)

Encoder and current readings

Motor control

Gripper pose and
current readings

Desired gripper pose

Fig. 6. General structure of the designed controller

4.3. Major coordinate reference frames and transforma-
tions. Fig. 7 indicates the most important (from the point of
view of task execution) coordinate frames and transformations
between them. B represents the robot base reference frame
(treated in here as the global reference frame), E is the end-
effector frame, K is the Kinect sensor reference frame, while
v is the frame assigned to the v-th object (verified hypothesis
of an object present in the scene). The most important transfor-
mations are: B

KT is the pose of the Kinect sensor with respect
to the global reference frame (constant, computed during the
calibration of the system), B

ETc represents the current pose of
the tip of the end-effector (computed on the basis of the current
configuration of the manipulator joints – i.e. direct kinematics),
whereas K

v T, E
v T and B

v T represent the pose of the v-th object
with respect to the: Kinect, end-effector and global reference
frame respectively.

Fig. 7. Coordinate frames and transformations between them

4.4. Determination of the system structure. The structure of
the system conforms to the structure represented by the general
pattern of vision guided machines [29], where the control loop
starts with the acquisition of the environment image, which is
subsequently subjected to multi-phase processing, resulting in
the formulation of a control decision commanding the actuators
influencing the environment. The system structure is presented
in Fig. 6. Here three control loops are distinguished: two inner
motor loops controlling the manipulator and the gripper, and
an outer visual loop responsible for recognition of objects of
interest and estimation of their poses on the basis of RGB-D
images received from the Kinect sensor.

The agent airp is responsible for controlling a modified IRb-6
manipulator (denoted as E irp,m), its gripper (E irp,g) and the
Kinect sensor (Rirp,k), thus is classified as CERT – an embod-
ied agent with full capabilities (please refer to Section 2.2).
This suggests that the agent’s control system should be decom-
posed into: the control subsystem cirp, supplemented by two
Virtual Effectors (eirp,m controlling the manipulator E irp,m and
eirp,g controlling its gripper E irp,g), and a Virtual Receptor rirp,k
responsible for aggregation of sensoric data received from the
Kinect sensor Rirp,k. The control subsystem cirp is responsible
for the realization of the object picking task, namely for storing
the state of the scene (consisting of the recognized objects along
with their poses), selection of the object of interest, generation
of the the grasp and for picking of the object, whereas the vir-
tual entities eirp,m, eirp,g and rirp,k form a hardware abstraction
layer, forming an interface between the control subsystem and
the real hardware, thus simplifying the formulation and hence
the realization of the task. The structure of the resulting embod-
ied agent is presented in Fig. 8.

IRP-6

MANIPULATOR

VIRTUAL

EFFECTOR

airp eirp,m Eirp,m

CONTROL

SUBSYSTEM

cirp
TWO

FINGER GRIPPER

VIRTUAL

EFFECTOR

Eirp,geirp,g

VIRTUAL

RECEPTOR

KINECT

SENSOR

rirp,k Rirp,k

Fig. 8. Internal structure of the agent controlling the IRp-6 manipula-
tor, the two-finger gripper and the Kinect sensor

4.5. Virtual effector controlling the manipulator. Virtual
effector eirp,m controls the modified IRp-6 manipulator and ex-
hibits several behaviours, offering diverse control abstractions.
However in this paper, only two are exploited: the first realising
the Point to Point (P2P) motion and the second implementing
the position-force control. Besides that an idle behaviour is de-
fined. It is executed in the case when the control subsystem does
not send any control commands to the manipulator.

We decided that from the point of view of the task realized
by the control system the most convenient form of abstraction

Bull. Pol. Ac.: Tech. 68(1) 2020 7

10

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

of the real effector will be its Cartesian pose. This will enable
the control subsystem to focus on the Cartesian (operational)
space and express commands as Cartesian coordinates. Despite
that, the trajectory still can be interpolated in several ways. In
here, to keep it simple, we decided to use interpolation in the
motor space. This implied that both the P2P motion and idle
behaviours could relay on a single (inner) control loop operat-
ing on the motor values, responsible for reaching the desired
positions. The position-force control, however, needs an extra
outer control loop, utilizing the wrench measurements for the
computation of the desired end-effector Cartesian poses, being
subsequently transformed into the desired values used by the
inner control loop.

Internal structure. Fig. 9 presents the inner structure of the vir-
tual effector eirp,m. The input buffer associated with the control
subsystem can be divided into two subsets, being used depend-
ing on the type of control/behaviour. In P2P control mode only
a single component of the input buffer is used:
c
xeirp,m [BE T̃d] – desired Cartesian pose of the end-effector (E)

w.r.t. the robot base (B),
whereas in position-force control mode the following compo-
nents of the input buffer are used:
c
xeirp,m [b̃] – the operational modes of the positional force-

controllers (for details please refer to Section 4.5),
c
xeirp,m [F̃d] – the desired forces exerted by the manipulator,
c
xeirp,m [Ṽd] – the desired manipulator velocity,
c
xeirp,m [D̃d] – the desired value of damping,
c
xeirp,m [̃Id] – the desired value of inertia,
where here and throughout the paper the˜symbol indicates the
place holder in a given buffer. It is worth noting that all the
variables related to position-force control contain six elements,
with the former three containing the translational components
of the motion (along the X, Y and Z axes) and the latter three
containing rotational components (around the X, Y and Z axes),
respectively, e.g., F̃d =

[
xF̃d , yF̃d , zF̃d , axF̃d , ayF̃d , azF̃d

]
. For

more details please refer to Section 4.5 devoted to that type of
control.

The output buffers to the control subsystem contains:
c
yeirp,m [BE T̃c] – current Cartesian pose of the end–effector w.r.t.

the robot base (B) (a homogeneous matrix),
c
yeirp,m [E F̃c] – current force/torque exerted by the end-effector

w.r.t. the end-effector reference frame E.

Motion
commands

Motor
control

Encoders and
force-torque readings

Manipulator pose and
force-torque readings

eirp,m

Virtual Effector

Control subsystem buffers

Real effector buffers
Proprioceptive

memory

E
y eirp,m

E
x eirp,m

eeirp,m

c
xeirp,m

c
yeirp,m

Fig. 9. Inner structure of the virtual effector eirp,m

The buffers connected to the real effector are defined as:
E
xeirp,m [m̃m] – currently measured motor positions,
E
yeirp,m [̃cd] – desired values of current driving the manipulator

motors.
Finally, the virtual effector has to store in its memory the fol-
lowing variables:
eeirp,m [m̃d] – desired motor absolute positions,
eeirp,m [q̃p] – previous joint configuration, which is used for

the selection of the appropriate solution of the inverse kine-
matic problem.

Finite state automaton of the virtual effector. Having several be-
haviours appropriate initial conditions are needed to switch be-
tween them. The conditions for the eBirp,m,1 behaviour realising
P2P motion are quite obvious. The behaviour is activated when
the control subsystem sends the desired Cartesian pose:

e f σ
irp,m,1

(
c
xeι

irp,m

)
� P

(
c
xeirp,m[

B
E T̃d]

)
, (4)

and is executed until the motion is completed. As a result a sim-
ilar condition can be formulated as in the case of the eBirp,g,1
behaviour of the virtual effector controlling the gripper, termi-
nating the behaviour when the current values will be equal to
the desired ones. However, in this case the values are expressed
in the operational space, i.e.:

e f τ
irp,m,1

(
E
xeι

irp,m,
c
xeι

irp,m

)
�

(B
ETc =

B
ETd

)
. (5)

No special error conditions are assumed here:

e f ε
irp,m,1()� FALSE. (6)

The behaviour eBirp,m,2 (associated with the state eS irp,m,2)
realizes the position-force control. It becomes active when the
control subsystem sends a command starting the position-force
control, determining in fact the modes of operation along all six
motion components:

e f σ
irp,m,2

(
c
xeι

irp,m

)
� P

(
c
xeirp,m[b̃]

)
∧
(
∀ξ ξ b ∈ {u,c,g}

)
, (7)

where ξ denotes one of the six motion components (three linear
and three angular) and u, c, g, s denote different modes of the
operation of the position-force control regulators. In particular,
the s mode indicates that the regulator for a given motion
component should be stopped (turned off). For detailed expla-
nation of the former three modes along with the principles of
operation of position-force control please refer to Section 4.5.
In here, for the brevity of the lecture, we must however explain
the reasons for the introduction of the stop mode s. In fact,
there is a multitude of possible termination conditions of that
behaviour, which might result from different modes of the
utilization of force sensing and decomposition of the motion
into six independent components, each of which requiring
a separate terminal condition etc. Experience implied that it is
most convenient to send the current proprioceptive information
(consisting of the end-effector pose and currently measured

8 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

forces) to the control subsystem and let it decide when to
terminate the position-force control. This resulted in the
introduction the stop mode, being one method of terminating
the position-force control on the virtual effector side.

Additionally, we also allow the control system to send the de-
sired Cartesian pose – in this case the virtual effector switches
from the behaviour eBirp,m,1 realising the position-force control
to eBirp,m,1 realising a simple P2P motion.

We also allow a third type of termination – in the case when
the control subsystem sends new parameters for the position-
force controllers along with one of the previously mentioned
modes (u,c,g). This results in fulfilling of the condition (7) and
activation of the position-force control once again. Thus the ter-
minal condition is formulated as:

e f τ
irp,m,2

(
c
xeι

irp,m

)
� P

(
c
xeirp,m[b̃]

)
∨P

(
c
xeirp,m[

B
E T̃d]

)
. (8)

The first part of the formulated above condition checks whether
there are some new values in the buffer containing the operation
modes, whereas it is the role of initial conditions of all three
behaviours to select the right transition. In this case we also
assume that no special error condition is needed, thus:

e f ε
irp,m,2()� FALSE. (9)

At the end we have to define the conditions for the idle be-
haviour eBirp,m,0. The behaviour becomes active when there is

no new desired Cartesian pose in the buffer c
xeirp,m[

B
E T̃d], there

are no new parameters of the position-force control c
xeirp,m[b̃] or

when a command for stopping the position-force control was re-
ceived, i.e. P

(
c
xeirp,m[b̃]

)
∧
(
∃ξ ξ b ∈ {s}

)
. Thus the initial con-

dition is defined as:

e f σ
irp,m,0

(
c
xeι

irp,m

)
� ¬P

(
c
xeirp,m[

B
E T̃d]

)
∨¬P

(
c
xeirp,m[b̃]

)

∨
(
P
(

c
xeirp,m[b̃]

)
∧
(
∃ξ ξ b = s

))
.

(10)

Typically for idle behaviours, it lasts one step:

e f τ
irp,m,0()� TRUE (11)

and error conditions do not occur, thus:

e f ε
irp,m,0()� FALSE. (12)

The resulting graph of the behaviour selection automaton is
presented in Fig. 10. All the behaviours were mapped one to

Table 3
Mapping of the states of the virtual effector to its behaviours

State Behaviour Description
eS irp,m,0

eBirp,m,0 Idle

eS irp,m,1
eBirp,m,1 Execute P2P motion

eS irp,m,2
eBirp,m,2 Execute position-force cont.

one to the states of the FSM, as presented in Table 3. Table 4
describes transitions between those states, being equivalent to
the FSM from Fig. 10.

eSirp,m,1
Idle

eSirp,m,0

No/other
commands

Cartesian pose

eSirp,m,2

P
os
it
io
n-
fo
rc
e

co
nt
ro
l p
ar
am

s

Next Cartesian
pose

P
osition-force

control param
s

S
top

position

force
control

New position-force
control params

No/other
commands

C
ar
te
si
an
po
se

Fig. 10. Graph of the finite state automaton of the virtual effector con-
trolling the manipulator

Table 4
State transition table of the virtual effector FSM (T. denotes TRUE)

Current state Next state

State
Terminal/ Initial

State
Error Cond. condition

eS irp,m,0
e f τ

irp,m,0 = T.

e f σ
irp,m,0 = T. eS irp,m,0

e f σ
irp,m,1 = T. eS irp,m,1

e f σ
irp,m,2 = T. eS irp,m,2

eS irp,m,1
e f τ

irp,m,1 = T.

e f σ
irp,m,0 = T. eS irp,m,0

e f σ
irp,m,1 = T. eS irp,m,1

e f σ
irp,m,2 = T. eS irp,m,2

eS irp,m,2
e f τ

irp,m,2 = T.

e f σ
irp,m,0 = T. eS irp,m,0

e f σ
irp,m,1 = T. eS irp,m,1

e f σ
irp,m,2 = T. eS irp,m,2

Behaviour eBirp,m,0. When there are no commands from cirp, the
eirp,m activates the default behaviour eBirp,m,0 responsible for
holding the manipulator in the same configuration (by send-
ing the same desired motor positions to the real effector) and
returning the proprioceptive information to the control subsys-
tem. The idle behaviour eBirp,m,0 is defined as:

eBirp,m,0 �
eBirp,m,0

(
e,E f irp,m,0,

e,c f irp,m,0,
e f τ

irp,m,0,
e f ε

irp,m,0

)
. (13)

Data flow of the idle behaviour is presented in Fig. 11. There
are two major data flows: first associated with the effector con-
trol function e,E f irp,m,0 and second with the proprioceptive func-
tion e,c f irp,m,0.

The effector control function acquires through E
xeirp,m the

current (measured) encoder–based positions of motors mc. Tak-
ing into account the desired positions md (that are stored in the

Bull. Pol. Ac.: Tech. 68(1) 2020 9

11

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

forces) to the control subsystem and let it decide when to
terminate the position-force control. This resulted in the
introduction the stop mode, being one method of terminating
the position-force control on the virtual effector side.

Additionally, we also allow the control system to send the de-
sired Cartesian pose – in this case the virtual effector switches
from the behaviour eBirp,m,1 realising the position-force control
to eBirp,m,1 realising a simple P2P motion.

We also allow a third type of termination – in the case when
the control subsystem sends new parameters for the position-
force controllers along with one of the previously mentioned
modes (u,c,g). This results in fulfilling of the condition (7) and
activation of the position-force control once again. Thus the ter-
minal condition is formulated as:

e f τ
irp,m,2

(
c
xeι

irp,m

)
� P

(
c
xeirp,m[b̃]

)
∨P

(
c
xeirp,m[

B
E T̃d]

)
. (8)

The first part of the formulated above condition checks whether
there are some new values in the buffer containing the operation
modes, whereas it is the role of initial conditions of all three
behaviours to select the right transition. In this case we also
assume that no special error condition is needed, thus:

e f ε
irp,m,2()� FALSE. (9)

At the end we have to define the conditions for the idle be-
haviour eBirp,m,0. The behaviour becomes active when there is

no new desired Cartesian pose in the buffer c
xeirp,m[

B
E T̃d], there

are no new parameters of the position-force control c
xeirp,m[b̃] or

when a command for stopping the position-force control was re-
ceived, i.e. P

(
c
xeirp,m[b̃]

)
∧
(
∃ξ ξ b ∈ {s}

)
. Thus the initial con-

dition is defined as:

e f σ
irp,m,0

(
c
xeι

irp,m

)
� ¬P

(
c
xeirp,m[

B
E T̃d]

)
∨¬P

(
c
xeirp,m[b̃]

)

∨
(
P
(

c
xeirp,m[b̃]

)
∧
(
∃ξ ξ b = s

))
.

(10)

Typically for idle behaviours, it lasts one step:

e f τ
irp,m,0()� TRUE (11)

and error conditions do not occur, thus:

e f ε
irp,m,0()� FALSE. (12)

The resulting graph of the behaviour selection automaton is
presented in Fig. 10. All the behaviours were mapped one to

Table 3
Mapping of the states of the virtual effector to its behaviours

State Behaviour Description
eS irp,m,0

eBirp,m,0 Idle

eS irp,m,1
eBirp,m,1 Execute P2P motion

eS irp,m,2
eBirp,m,2 Execute position-force cont.

one to the states of the FSM, as presented in Table 3. Table 4
describes transitions between those states, being equivalent to
the FSM from Fig. 10.

eSirp,m,1
Idle

eSirp,m,0

No/other
commands

Cartesian pose

eSirp,m,2

P
os
it
io
n-
fo
rc
e

co
nt
ro
l p
ar
am

s

Next Cartesian
pose

P
osition-force

control param
s

S
top

position

force
control

New position-force
control params

No/other
commands

C
ar
te
si
an
po
se

Fig. 10. Graph of the finite state automaton of the virtual effector con-
trolling the manipulator

Table 4
State transition table of the virtual effector FSM (T. denotes TRUE)

Current state Next state

State
Terminal/ Initial

State
Error Cond. condition

eS irp,m,0
e f τ

irp,m,0 = T.

e f σ
irp,m,0 = T. eS irp,m,0

e f σ
irp,m,1 = T. eS irp,m,1

e f σ
irp,m,2 = T. eS irp,m,2

eS irp,m,1
e f τ

irp,m,1 = T.

e f σ
irp,m,0 = T. eS irp,m,0

e f σ
irp,m,1 = T. eS irp,m,1

e f σ
irp,m,2 = T. eS irp,m,2

eS irp,m,2
e f τ

irp,m,2 = T.

e f σ
irp,m,0 = T. eS irp,m,0

e f σ
irp,m,1 = T. eS irp,m,1

e f σ
irp,m,2 = T. eS irp,m,2

Behaviour eBirp,m,0. When there are no commands from cirp, the
eirp,m activates the default behaviour eBirp,m,0 responsible for
holding the manipulator in the same configuration (by send-
ing the same desired motor positions to the real effector) and
returning the proprioceptive information to the control subsys-
tem. The idle behaviour eBirp,m,0 is defined as:

eBirp,m,0 �
eBirp,m,0

(
e,E f irp,m,0,

e,c f irp,m,0,
e f τ

irp,m,0,
e f ε

irp,m,0

)
. (13)

Data flow of the idle behaviour is presented in Fig. 11. There
are two major data flows: first associated with the effector con-
trol function e,E f irp,m,0 and second with the proprioceptive func-
tion e,c f irp,m,0.

The effector control function acquires through E
xeirp,m the

current (measured) encoder–based positions of motors mc. Tak-
ing into account the desired positions md (that are stored in the

Bull. Pol. Ac.: Tech. 68(1) 2020 9

12

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

mc
cd

E
y eirp,m

c
yeirp,m

eeirp,m

Motor
regulator

Joint pose
computation

Direct
kinematics

md

E
x eirp,m

qc

B
ETc

Error
computation

md,c

Fig. 11. Data flow diagram of the computations performed
by the idle behaviour eBirp,m,0

memory) it computes the error md,c = md −mc. Holding the
manipulator still simply means that the error md,c must be re-
duced to zero. So it is thus passed to the regulator MR, which
computes the desired value of motor currents, i.e. cd , sent via
E
yeirp,m to the real effector motors. Hence e,E f irp,m,0 is defined as:

E
yeι+1

irp,m [̃cd] := e,E f irp,m,0(
eeι

irp,m,
E
xeι

irp,m) �

�MR(md −mc).

(14)

Proprioceptive function is responsible for returning the cur-
rent end-effector pose to the control subsystem. For this purpose
is takes the vector of current motor positions mc, transforms it
into joint positions qc (MJ stands for Motor to Joint) and uses
manipulator direct kinematics (DK) to compute the pose of the
end-effector with respect to the robot base. The function can be
formulated analytically as:

c
yeι+1

irp,m[
B
E T̃c] := e,c f irp,m,0

(
E
xeι

irp,m

)
�

�DK (MJ (mc)) .
(15)

Behaviour eBirp,m,1. The goal of this behaviour is to control the
manipulator motion in order to reach the desired pose, ex-
pressed as a homogeneous matrix containing a Cartesian pose
with respect to the robot base reference frame. This can be re-
alised in several ways, e.g. by linear interpolation [86] or spher-
ical linear interpolation (SLERP) [67]. To deal with kinematic
singularities, the motor space interpolation was chosen. The al-
gorithm is similar to the one for the behaviour eBirp,g,1 control-
ling the posture of the gripper.

Besides active control of the manipulator the behaviour also
computes the current Cartesian pose of the end-effector and
provides it to cirp. Moreover, at the onset it memorizes the de-
sired joint pose (so it can be used in the next step for the selec-
tion of the solution of inverse kinematics) as well as the desired
motor pose (which in turn is used by the idle behaviour).

The postulated decomposition requires the specification of:
effector proprioceptive function e,c f irp,m,1, real effector con-
trol function e,E f irp,m,1 and virtual effector memory function
e,e f irp,m,1, what implies that eBirp,m,1 is defined as:

eBirp,m,1 �
eBirp,m,1(

e,E f irp,m,1,
e,c f irp,m,1,

e,e f irp,m,1,

e f τ
irp,m,1,

e f ε
irp,m,1),

(16)

md

qd
Inverse

kinematics

qc

Direct
kinematics

B
ETc

B
ETd

qp

cd

Motor
regulator

mc

md,c

Joint pose
computation

E
x eirp,m

E
y eirp,m

c
xeirp,m

eeirp,m

Error
computation

Desired
motor pose
computation

c
yeirp,m

Fig. 12. Data flow diagram of the computations performed
by the behaviour eBirp,m,1

The goal of the function e,E f irp,m,1 is to control the motion
of the manipulator, i.e. produce adequate values of the current
sent to the motors through the whole time of behaviour execu-
tion. The control subsystem delivers, through the virtual effec-
tor buffer c

xeirp, the desired end-effector pose B
ETd . The homoge-

neous matrix B
ETd and the memorized previous joint positions

qp are fed into the inverse kinematics (IK) to obtain the desired
joint positions qd . The desired joint positions are used to com-
pute the desired motor positions md , which are subsequently
compared with the current motor positions mc in order to com-
pute the error in the motor space md,c = md −mc. This error
is reduced by regulator MR, which returns the desired value
of motor currents cd , sent through E

yeirp,m to the motors. The
resulting definition of the function is:

E
yeι+1

irp,m [̃cd] := e,E f irp,m,1(
eeι

irp,m,
c
xeι

irp,m,
E
xeι

irp)�

�MR
(
JM

(
IK

(B
ETd , qp

))
−mc

)
.

(17)

The proprioceptive function e,c f irp,m,1 has to return the homo-
geneous matrix B

ETc (the pose of the end-effector E with respect
to the global reference frame B) to the control subsystem. For
this it acquires through E

xeirp,m the current positions of motors
mc and converts them into joint positions qc (MJ) to subse-
quently compute the homogeneous matrix B

ETc by solving the
direct kinematics problem (DK):

c
yeι+1

irp,m[
B
E T̃c] := e,c f irp,m,1

(
E
xeι

irp,m

)
� DK (MJ (mc)) . (18)

Finally, some of the results computed along the presented
above dataflow additionally have to be stored in the memory.
So we have to define two partial memory update functions:

eeι+1
irp,m := e,e f irp,m,1

(
eeι

irp,m,
c
xeι

irp,m

)
�

�




e,e f irp,m,1,1

(
eeι

irp,m,
c
xeι

irp,m

)
,

e,e f irp,m,1,2

(
eeι

irp,m,
c
xeι

irp,m

)
,

(19)

being responsible for remembering the current manipulator
joint configuration:

eeι+1
irp,m[q̃p] := e,e f irp,m,1,1

(
eeι

irp,m,
c
xeι

irp,m

)
�

� IK
(B

ETd , qp
) (20)

10 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

as well as for memorization of the desired motor pose:

eeι+1
irp,m[m̃d] := e,e f irp,m,1,2

(
eeι

irp,m,
c
xeι

irp,m

)
�

� JM
(
IK

(B
ETd , qp

))
.

(21)

Behaviour eBirp,m,2. The control law of the behaviour eBirp,m,2
was described in details in [80, 92] and extends the control al-
gorithms from previous works e.g. [66]. The main principle of
the operation stems from the Task Frame Formalism [54, 17] or
operational space formulation [38] and decomposes the motion
into three translational (x,y,z) and three rotational (ax,ay,az)
components (angle and axis representation). The resulting six
regulators are parameterized by: desired force/torque Fd exerted
on the object, desired velocity Vd of the end effector, damping
Dd and inertia Id . Each of those vectors has 6 components in-
dicated by subscript ξ , where ξ ∈ {x,y,z,ax,ay,az}. Units of
those parameters differ depending on the component (Table 5).
Each of the decoupled regulators has three modes of operation,
depending on the relation between the robot and the object of
manipulation, i.e.:
• u – unguarded motion (pure position control, without inter-

action with the environment),
• c – pure force control (contact with the environment),
• g – guarded motion (position control anticipating contact).

Each mode uses a slightly different subset of parameters, some
being user defined, and some being constant, as presented in Ta-
ble 6. Both the values of parameters and modes can be different
for regulators controlling different motion components.

Table 5
Units of the parameters of the position-force generator for different
motion components: x, y, z denote translational components, whereas

ax, ay, az denote rotational components

Motion Force Vel. Damp. Iner.

component ξ Fd ξVd ξ Dd ξ Id

ξ ∈ {x,y,z} [N]
[m

s

] [
kg
s

]
[kg]

ξ ∈ {ax,ay,az} [N m]
[

1
s

] [
kgm2

s

]
[kg m2]

Table 6
Values of parameters for different operation modes ξ b of the position-
force regulators. + denotes the value sent by the control subsystem,
0 and ∞ are the constant values produced by the virtual effector in

response to the commanded mode

Mode Force Velocity Damping Inertia

ξ b ξ Fd ξVd ξ Dd ξ Id

c + 0 + +

g 0 + + +

u 0 + ∞ 0

The behaviour eBirp,m,2 is defined as:

eBirp,m,2 �
eBirp,m,2

(
e,E f irp,m,2,

e,c f irp,m,2,
e,e f irp,m,2,

e f τ
irp,m,2,

e f ε
irp,m,2

)
,

(22)

with the transition functions defined below.
Data flow diagram of eBirp,m,2 is presented in Fig. 13. One

can distinguish two main flow directions: top-down, responsible
for control of the real effector, and bottom-up, responsible for
producing the proprioceptive data for cirp.

Fd, Vd, Dd, Id

mc

Gravity
elimination

cd

Position-force
regulator

Desired
pose

adjustment

Fm

Fc

E
y eirp,m

c
yeirp,m

ṙd

Inverse
kinematics

qp

Desired
motor pose
computation

Motor
regulator

Joint pose
computation

Direct
kinematics

md

qd

E
x eirp,m

qc

B
ETc

Desired
pose

computation

B
ETd

ETd,c ṙp

c
xeirp,m

eeirp,m

eeirp,m

Fig. 13. Data flow diagram of the behaviour eBirp,m,2

First the proprioceptive bottom-up flow will be considered,
because the results produced by it are also used by the other
flows. This flow is spoilt into two paths, so the proprioceptive
transition function is defined as two partial functions:

c
yeι+1

irp,m := e,c f irp,m,2

(
E
xeι

irp,m

)
�





e,c f irp,m,2,1

(
E
xeι

irp,m

)
,

e,c f irp,m,2,2

(
E
xeι

irp,m

)
.

(23)

The first proprioceptive partial function e f irp,m,2,1 is respon-
sible for producing the current end-effector pose. The pose is
computed by solving the direct kinematics (DK) for the current
joint configuration rc =DK (qc), which, in turn, is obtained by
transformation of the current motor increments received from
the motor encoders, i.e. qc = MJ (mc), where MJ denotes
the motor to joint transformation:

c
yeι+1

irp,m[
B
E T̃c] := e,c f irp,m,2,1

(
E
xeι

irp,m

)
�

�DK (MJ (mc)) ,

(24)

whereas the second partial function e f irp,m,2,2 computes the
currently exerted force, calculated on the basis of the mea-
sured force Fm exerted by the end-effector, after the elimina-

Bull. Pol. Ac.: Tech. 68(1) 2020 11

13

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

as well as for memorization of the desired motor pose:

eeι+1
irp,m[m̃d] := e,e f irp,m,1,2

(
eeι

irp,m,
c
xeι

irp,m

)
�

� JM
(
IK

(B
ETd , qp

))
.

(21)

Behaviour eBirp,m,2. The control law of the behaviour eBirp,m,2
was described in details in [80, 92] and extends the control al-
gorithms from previous works e.g. [66]. The main principle of
the operation stems from the Task Frame Formalism [54, 17] or
operational space formulation [38] and decomposes the motion
into three translational (x,y,z) and three rotational (ax,ay,az)
components (angle and axis representation). The resulting six
regulators are parameterized by: desired force/torque Fd exerted
on the object, desired velocity Vd of the end effector, damping
Dd and inertia Id . Each of those vectors has 6 components in-
dicated by subscript ξ , where ξ ∈ {x,y,z,ax,ay,az}. Units of
those parameters differ depending on the component (Table 5).
Each of the decoupled regulators has three modes of operation,
depending on the relation between the robot and the object of
manipulation, i.e.:
• u – unguarded motion (pure position control, without inter-

action with the environment),
• c – pure force control (contact with the environment),
• g – guarded motion (position control anticipating contact).

Each mode uses a slightly different subset of parameters, some
being user defined, and some being constant, as presented in Ta-
ble 6. Both the values of parameters and modes can be different
for regulators controlling different motion components.

Table 5
Units of the parameters of the position-force generator for different
motion components: x, y, z denote translational components, whereas

ax, ay, az denote rotational components

Motion Force Vel. Damp. Iner.

component ξ Fd ξVd ξ Dd ξ Id

ξ ∈ {x,y,z} [N]
[m

s

] [
kg
s

]
[kg]

ξ ∈ {ax,ay,az} [N m]
[

1
s

] [
kgm2

s

]
[kg m2]

Table 6
Values of parameters for different operation modes ξ b of the position-
force regulators. + denotes the value sent by the control subsystem,
0 and ∞ are the constant values produced by the virtual effector in

response to the commanded mode

Mode Force Velocity Damping Inertia

ξ b ξ Fd ξVd ξ Dd ξ Id

c + 0 + +

g 0 + + +

u 0 + ∞ 0

The behaviour eBirp,m,2 is defined as:

eBirp,m,2 �
eBirp,m,2

(
e,E f irp,m,2,

e,c f irp,m,2,
e,e f irp,m,2,

e f τ
irp,m,2,

e f ε
irp,m,2

)
,

(22)

with the transition functions defined below.
Data flow diagram of eBirp,m,2 is presented in Fig. 13. One

can distinguish two main flow directions: top-down, responsible
for control of the real effector, and bottom-up, responsible for
producing the proprioceptive data for cirp.

Fd, Vd, Dd, Id

mc

Gravity
elimination

cd

Position-force
regulator

Desired
pose

adjustment

Fm

Fc

E
y eirp,m

c
yeirp,m

ṙd

Inverse
kinematics

qp

Desired
motor pose
computation

Motor
regulator

Joint pose
computation

Direct
kinematics

md

qd

E
x eirp,m

qc

B
ETc

Desired
pose

computation

B
ETd

ETd,c ṙp

c
xeirp,m

eeirp,m

eeirp,m

Fig. 13. Data flow diagram of the behaviour eBirp,m,2

First the proprioceptive bottom-up flow will be considered,
because the results produced by it are also used by the other
flows. This flow is spoilt into two paths, so the proprioceptive
transition function is defined as two partial functions:

c
yeι+1

irp,m := e,c f irp,m,2

(
E
xeι

irp,m

)
�





e,c f irp,m,2,1

(
E
xeι

irp,m

)
,

e,c f irp,m,2,2

(
E
xeι

irp,m

)
.

(23)

The first proprioceptive partial function e f irp,m,2,1 is respon-
sible for producing the current end-effector pose. The pose is
computed by solving the direct kinematics (DK) for the current
joint configuration rc =DK (qc), which, in turn, is obtained by
transformation of the current motor increments received from
the motor encoders, i.e. qc = MJ (mc), where MJ denotes
the motor to joint transformation:

c
yeι+1

irp,m[
B
E T̃c] := e,c f irp,m,2,1

(
E
xeι

irp,m

)
�

�DK (MJ (mc)) ,

(24)

whereas the second partial function e f irp,m,2,2 computes the
currently exerted force, calculated on the basis of the mea-
sured force Fm exerted by the end-effector, after the elimina-

Bull. Pol. Ac.: Tech. 68(1) 2020 11

14

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

tion of the influence of gravity (GE). The function e f irp,m,2,2
takes into account the the current orientation of the end-effector
Fc = GE

(
Fm,

B
ETc

)
:

c
yeι+1

irp,m[F̃c] := e,c f irp,m,2,2

(
E
xeι

irp,m

)
�

� GE (Fm,DK (MJ (mc))) .

(25)

The presented computations are also used by the effector
control function. In particular, the current force Fc is trans-
ferred, along with the parameters of the position-force control
taken from the input buffer c

xeirp,m, to the position-force regu-
lator PF . The regulator, in fact consisting of six independent
regulators for each of the six motion components ξ , is respon-
sible for the computation of the desired velocity ṙd of the end-
effector in the operational space:

ξ ṙd := PF
(

c
xeι

irp,m,
eeι

irp,m

)
�

� PF
(

ξ Fd , ξVd , ξ Dd , ξ Id , ξ ṙp, ξ Fc
)
�

�

(
1

ξ Dd
(ξ Fd − ξ Fc)+ ξ Vd

)
∆ι +

1

ξ Dd
ξ Id ξ ṙp

∆ι +
1

ξ Dd
ξ Id

,

(26)

where the first four parameters (ξ Fd , ξVd , ξ Dd , ξ Id) are the
position-force control parameters sent by the control subsys-
tem, ṙp is the desired velocity vector computed in the previous
step of the controller operation, whereas ∆ι denotes the motion
time (in our case equal to 2 ms, as the frequency of the opera-
tion of the virtual effector is 500 Hz). The idea of using previous
desired pose rp instead of taking the current value rc during the
motion realization is explained in details in [92].

On the basis of the end-effector velocity ṙd the pose
increment is computed and subsequently transformed from
angle-axis into homogeneous matrix representation ETd,c =
AA(ṙd ∗∆ι). The resulting pose increment in a homogeneous
matrix form is next used along with the current end-effector
pose B

ETc for computation of the desired end-effector pose
B
ETd = B

ETc
ETd,c. The desired end-effector pose is subse-

quently, together with the joint configuration from the previ-
ous step qp, used for solving the inverse kinematics: qd =

IK(B
ETd , qp). The desired joint pose is transformed into the

motor pose md = JM(qd). The the so obtained motor pose
and the current motor pose mc retrieved from the E

xeirp,m buffer,
are transferred to the motor regulator MR. The current cd pro-
duced by the regulator is subsequently sent through the E

yeirp,m
buffer to the hardware controlling the manipulator motors. The
function e,E f irp,m,2 controlling the real effector is defined as:

E
yeι+1

irp,m [̃cd] := e,E f irp,m,2

(
c
xeι

irp,m,
E
xeι

irp,m,
eeι

irp,m

)
�

MR(JM(IK(DK(MJ (mc))

AA(PF(Fd ,Vd , Dd , Id , ṙp,

GE(Fm,DK(MJ (mc))))∗∆ι), qp)),mc).

(27)

Additionally in each step, in the virtual effector memory the
desired velocity of the end-effector along with the desired joint
configuration must be stored, so they can be used as the pre-
vious values in the next control step. Besides that, the desired
motor values md must also be memorized, so they can be used
by the idle behaviour, thus:

eeι+1
irp,m := e,e f irp,m,2

(
c
xeι

irp,m,
eeι

irp,m,
E
xeι

irp,m

)
�

�




e,e f irp,m,2,1

(
c
xeι

irp,m,
E
xeι

irp,m

)
,

e,e f irp,m,2,2

(
c
xeι

irp,m,
eeι

irp,m,
E
xeι

irp,m

)
,

e,e f irp,m,2,3

(
c
xeι

irp,m,
eeι

irp,m,
E
xeι

irp,m

)
,

(28)

being defined as:

eeι+1
irp,m [̃ṙp] := e,e f irp,m,2,1

(
c
xeι

irp,m,
E
xeι

irp,m

)
�

PF(Fd ,Vd , Dd , Id , ṙp, GE(Fm,DK(MJ (mc)))),

(29)

eeι+1
irp,m[q̃p] := e,e f irp,m,2,2

(
c
xeι

irp,m,
eeι

irp,m,
E
xeι

irp,m

)
�

� IK(DK(MJ (mc))

AA(PF(Fd ,Vd , Dd , Id , ṙp,

GE(Fm,DK(MJ (mc))))∗∆ι), qp).

(30)

and:

eeι+1
irp,m[m̃p] := e,e f irp,m,2,3

(
c
xeι

irp,m,
eeι

irp,m,
E
xeι

irp,m

)
�

� JM(IK(DK(MJ (mc))

AA(PF(Fd ,Vd , Dd , Id , ṙp,

GE(Fm,DK(MJ (mc))))∗∆ι)qp)).

(31)

4.6. Virtual effector controlling the gripper. Virtual effector
eirp,g is responsible for controlling the gripper. Both its structure
and activities are a gross simplification of the virtual effector
eirp,m, thus will not be described here in detail. However, as
the control subsystem cirp uses the contents of the input and
output buffers of eirp,g connected to it, they have to be described
here. Virtual effector eirp,g input buffer connected to the control
subsystem contains:
c
xeirp,g [d̃d] – desired gripper pose, defined as the distance be-

tween two fingers.
The output to the control subsystem contains:
c
yeirp,g [d̃c] – current distance between the gripper fingers,
c
yeirp,g [̃cc] – measured motor current, proportional to the force

exerted by the fingers on the grasped object.

4.7. Virtual receptor representing the RGB-D sensor. The
virtual receptor rirp,k is responsible for the recognition of house-
hold, rich textured objects. It is also supposed to estimate

12 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

their poses, enabling their subsequent grasping and manipu-
lation. Thus besides object detection the emphasis is placed
on robust estimation of object poses in Cartesian space. Such
a goal can be achieved in many ways [32], e.g. using classical
computer vision approaches like LINE-MOD [31] or MOPED
(Multiple Object Pose Estimation and Detection) [21]. One can
also utilize approaches relying on recent achievements in ma-
chine/deep learning, e.g. SSD-6D [37] that combines an fea-
ture encoding based on the Inception-V4 architecture [75] with
SSD-style prediction [48] or 3D Point-Capsule Networks [81]
merging capsule networks [62] with PointNets [60].

However, as we wanted to keep the example simple and fo-
cus readers attention on the design method, we decided to uti-
lize to solution that, similarly to MOPED, relies on local fea-
tures extracted from RGB images. Additionally, we decided to
use depth information that enables to transform features coordi-
nates into 3D (Cartesian) space. Utilization of 3D information
results in more robust feature matching and produces much bet-
ter estimates of object poses, being the natural side-effects of
clustering of the found correspondences. This enabled the sim-
plification of the MOPED pipeline by, e.g., skipping the cluster
merging or pose refinement steps, what resulted in increase of
the speed of the whole procedure.

Models of objects of interest. The Object recognition relies on
matching of point (local) features of the 3D models of objects
and features extracted from the current view of the scene. Thus
it is required that the system should posses such 3D models of
objects. Those models can be generated using solutions such as
MODREG [40]. Models used in our experiments are publicly
available as part of the WUT Visual Perception Dataset [72],
examples are presented in Fig. 14.

(a) (b) (c)

Fig. 14. Exemplary models of objects from 3D Models Dataset ex-
tracted from WUT Visual Perception Dataset [72]: (a) Herbapol

Mint Tea; (b) Foodcan 2; (c) Lipton Yellow Label Tea

At start-up the system loads a set of M object models:

1..MC = (1C, . . . , MC) , (32)

where each model mC, m = 1, . . . ,M, consists of two types of
point clouds: a dense colour cloud mCRGB and a sparse cloud of
features mCSIFT (Fig. 15). The system relies on SIFT features
(Scale Invariant Feature Transform) [49] as they are still one of
the most robust and discriminative features, thus:

mC =
(

mCRGB, mCSIFT, mi
)
, (33)

where mi represents id (label) of a given model.

(a) (b)

]

(c) (d)

Fig. 15. Exemplary object (Mint Tea) visualizations: (a) RGB point
cloud; (b) RGB and SIFT point clouds with a bounding box (bb);
(c) SIFT point cloud with a bb; (d) SIFT point cloud with a bb and

meshes representing object faces

Recognized objects. It is assumed that in a given (current) image
frame (consisting of an RGB image IRGB

c and a depth map ID
c)

the perception subsystem can recognize several objects at the
same time:

K
1..V Oc =

(K
1 Oc, . . . ,

K
V Oc

)
. (34)

Every object K
v Oc, v = 1, . . . ,V , is a tuple, representing a single

verified hypothesis, with respect to the Kinect frame K:

K
v Oc =

(K
v CRGB

c , K
v CSIFT

c , K
v Tc, vcc, vic

)
. (35)

K
v CRGB

c and K
v CSIFT

c represent object model point clouds pro-
jected onto the scene (Kinect frame), K

v Tc is the object pose,
whereas vcc represents the object recognition confidence, being
a ratio between the number of matches (found between the fea-
tures of the scene and the given model) and the total number
of features of the considered given model. Finally, vic stores the
object id (label), being a concatenation of the model id and the
consecutive number of the recognized object.

Internal structure of the virtual receptor. Fig. 16 presents the in-
ner structure of the Virtual Receptor rirp,k. Its input buffer re-
ceiving data from the Kinect sensor contains:
R
xrirp,k [̃I

RGB
c] – RGB image (image with three channels),

List of recognized objects
w.r.t. Kinect reference frame

RGB-D image
from Kinect

Buffer to control subsystem

Virtual Receptor

Buffer from real receptor

Receptor
sensoric
memory

rirp,k
c
yrirp,k

R
x rirp,k

rrirp,k

Fig. 16. Inner structure of the virtual receptor rirp,k

Bull. Pol. Ac.: Tech. 68(1) 2020 13

15

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

their poses, enabling their subsequent grasping and manipu-
lation. Thus besides object detection the emphasis is placed
on robust estimation of object poses in Cartesian space. Such
a goal can be achieved in many ways [32], e.g. using classical
computer vision approaches like LINE-MOD [31] or MOPED
(Multiple Object Pose Estimation and Detection) [21]. One can
also utilize approaches relying on recent achievements in ma-
chine/deep learning, e.g. SSD-6D [37] that combines an fea-
ture encoding based on the Inception-V4 architecture [75] with
SSD-style prediction [48] or 3D Point-Capsule Networks [81]
merging capsule networks [62] with PointNets [60].

However, as we wanted to keep the example simple and fo-
cus readers attention on the design method, we decided to uti-
lize to solution that, similarly to MOPED, relies on local fea-
tures extracted from RGB images. Additionally, we decided to
use depth information that enables to transform features coordi-
nates into 3D (Cartesian) space. Utilization of 3D information
results in more robust feature matching and produces much bet-
ter estimates of object poses, being the natural side-effects of
clustering of the found correspondences. This enabled the sim-
plification of the MOPED pipeline by, e.g., skipping the cluster
merging or pose refinement steps, what resulted in increase of
the speed of the whole procedure.

Models of objects of interest. The Object recognition relies on
matching of point (local) features of the 3D models of objects
and features extracted from the current view of the scene. Thus
it is required that the system should posses such 3D models of
objects. Those models can be generated using solutions such as
MODREG [40]. Models used in our experiments are publicly
available as part of the WUT Visual Perception Dataset [72],
examples are presented in Fig. 14.

(a) (b) (c)

Fig. 14. Exemplary models of objects from 3D Models Dataset ex-
tracted from WUT Visual Perception Dataset [72]: (a) Herbapol

Mint Tea; (b) Foodcan 2; (c) Lipton Yellow Label Tea

At start-up the system loads a set of M object models:

1..MC = (1C, . . . , MC) , (32)

where each model mC, m = 1, . . . ,M, consists of two types of
point clouds: a dense colour cloud mCRGB and a sparse cloud of
features mCSIFT (Fig. 15). The system relies on SIFT features
(Scale Invariant Feature Transform) [49] as they are still one of
the most robust and discriminative features, thus:

mC =
(

mCRGB, mCSIFT, mi
)
, (33)

where mi represents id (label) of a given model.

(a) (b)

]

(c) (d)

Fig. 15. Exemplary object (Mint Tea) visualizations: (a) RGB point
cloud; (b) RGB and SIFT point clouds with a bounding box (bb);
(c) SIFT point cloud with a bb; (d) SIFT point cloud with a bb and

meshes representing object faces

Recognized objects. It is assumed that in a given (current) image
frame (consisting of an RGB image IRGB

c and a depth map ID
c)

the perception subsystem can recognize several objects at the
same time:

K
1..V Oc =

(K
1 Oc, . . . ,

K
V Oc

)
. (34)

Every object K
v Oc, v = 1, . . . ,V , is a tuple, representing a single

verified hypothesis, with respect to the Kinect frame K:

K
v Oc =

(K
v CRGB

c , K
v CSIFT

c , K
v Tc, vcc, vic

)
. (35)

K
v CRGB

c and K
v CSIFT

c represent object model point clouds pro-
jected onto the scene (Kinect frame), K

v Tc is the object pose,
whereas vcc represents the object recognition confidence, being
a ratio between the number of matches (found between the fea-
tures of the scene and the given model) and the total number
of features of the considered given model. Finally, vic stores the
object id (label), being a concatenation of the model id and the
consecutive number of the recognized object.

Internal structure of the virtual receptor. Fig. 16 presents the in-
ner structure of the Virtual Receptor rirp,k. Its input buffer re-
ceiving data from the Kinect sensor contains:
R
xrirp,k [̃I

RGB
c] – RGB image (image with three channels),

List of recognized objects
w.r.t. Kinect reference frame

RGB-D image
from Kinect

Buffer to control subsystem

Virtual Receptor

Buffer from real receptor

Receptor
sensoric
memory

rirp,k
c
yrirp,k

R
x rirp,k

rrirp,k

Fig. 16. Inner structure of the virtual receptor rirp,k

Bull. Pol. Ac.: Tech. 68(1) 2020 13

16

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

R
xrirp,k [̃I

D
c] – depth map (a single-channel image),

whereas the output to the control subsystem contains:
c
yrirp,k [

K
1..V Õc] – list of verified object hypothesis w.r.t the

Kinect reference frame.
Besides that, the receptor holds in its memory the following:
rrirp,k [1..MC̃] – list of object models,
rrirp,k [P̃] – intrinsic parameters of the Kinect sensor (camera

matrix and distortion coefficients).

Finite state automaton of the virtual receptor. It was assumed
that the virtual receptor has to recognize objects and estimate
their poses in each RGB-D image acquired from the Kinect
sensor independently. Hence an adequate behaviour had to be
defined, namely rBirp,k,1, triggered by the presence of data ac-
quired from the Kinect sensor. The rBirp,k,1 behaviour is trig-
gered by the presence of RGB-D image in the input buffer
R
xrirp,k from the real receptor, thus the initial condition activating
the behaviour is defined as follows:

r f σ
irp,k,1 � P

(
R
xrirp,k [̃I

RGB
c]

)
∧P

(
R
xrirp,k [̃I

D
c]
)
, (36)

where P denotes the presence of fresh data in a given buffer. It
is assumed that the behaviour takes one step:

r f τ
irp,k,1 � TRUE, (37)

and that there is no special error condition required:

r f ε
irp,k,1 � FALSE. (38)

Additionally, an idle behaviour rBirp,k,0 must be defined. It
is executed when the input buffer from the real receptor has no
new data:

r f σ
irp,k,0 � ¬P

(
R
xrirp,k [̃I

RGB
c]

)
∨¬P

(
R
xrirp,k [̃I

D
c]
)
=

= ¬ r f σ
irp,k,1.

(39)

Here it is assumed that this behaviour ends after a single step:

r f τ
irp,k,0 � TRUE, (40)

and that there are no special error conditions:

r f ε
irp,k,0 � FALSE. (41)

The resulting FSM (Fig. 17) consists of two states: rS irp,k,0
associated with the idle behaviour rBirp,k,0 and state rS irp,k,1
associated with rBirp,k,1. Table 7 and Table 8 present state–
behaviour association and state transitions respectively.

Image
received

Idle

rSirp,k,0

Image
not received

Image
not received

Image
received

rSirp,k,1

Fig. 17. Graph of the finite state automaton realising the behaviour
selection of the rirp,k virtual receptor

Table 7
Mapping of the states of the virtual receptor to its behaviours

State Behaviour Description
rS irp,k,0

rBirp,k,0 Idle

rS irp,k,1
rBirp,k,1 Object recognition

Table 8
State transition table of the virtual receptor FSM after reduction

(T. denotes TRUE)

Current state Next state

State
Terminal/Error Initial

StateCondition Condition

rS irp,k,0
r f τ

irp,k,0 = T.
r f σ

irp,k,0 = T. rS irp,k,0

r f σ
irp,k,1 = T. rS irp,k,1

rS irp,k,1
r f τ

irp,k,1 = T.
r f σ

irp,k,0 = T. rS irp,k,0

r f σ
irp,k,1 = T. rS irp,k,1

Behaviour rBirp,k,0.When there is no image to process, the
virtual receptor enters the idle state and executes behaviour
rBirp,k,0. The behaviour is not responsible for any computations
and depends only on the terminal and error conditions, defined
as (40) and (41) respectively. In short, the idle behaviour ter-
minates after a single step, disregarding the state of its buffers,
memory etc. So rBirp,k,1 is simply defined as:

rBirp,k,0 �
rBirp,k,0

(
r f ε

irp,k,0,
r f τ

irp,k,0

)
. (42)

Behaviour rBirp,k,1. The main goal of this behaviour is to ag-
gregate the sensory data, thus aside of the previously defined
terminal (37) and error (38) conditions the reading aggregation
function r,c f irp,k,1 must be defined. As a result the rBirp,k,1 be-
haviour is defined as:

rBirp,k,1 �
rBirp,k,1

(
r,c f irp,k,1,

r f ε
irp,k,1,

r f τ
irp,k,1

)
. (43)

Dataflow diagram of the r,c f irp,k,1 function responsible for ob-
ject recognition is presented in Fig. 18. The input to the vir-

Feature
extraction

K
1..V Oc

IRGB
c

P

I SIFTc

Correspondence
grouping

1..NM SIFT
c

Conversion to
a cloud of features

IDc

Feature
matching

KCSIFT
c

1..MCSIFT

Hypothesis
verification

K
1..HTc

Hypothesis
projection

1..MC

K
1..HOc

1..MCSIFT

c
yrirp,k

R
x rirp,k

rrirp,k

rrirp,k

Fig. 18. Data flow diagram of the virtual receptor reading aggregation
function r,c f irp,k,1 responsible for model-based object recognition in

RGB-D images

14 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

(a) (b)

(c) (d)

Fig. 19. Visualization of the consecutive steps of the recognition of a single object (Lipton Yellow Label Tea) utilising a scene chosen from Test
Scenes Dataset from WUT Visual Perception Dataset [72]: (a) feature matching, (b) correspondence grouping, (c) hypothesis projection (two

hypotheses are visible) and (d) verification (weaker hypothesis, that was in conflict, was rejected)

tual receptor consists of an RGB image IRGB
c along with the

associated depth map ID
c , obtained from the Kinect sensor via

the R
xrirp,k buffer. The first step of the recognition procedure in-

volves extraction of SIFT features (FE) from the IRGB
c image:

ISIFT
c = FE

(
IRGB
c

)
. (44)

Subsequently their coordinates are transformed from the image
to the Cartesian space (IC). This is done with the use of their
known distances from the sensor (the depth map ID

c) and intrin-
sic parameters of the Kinect sensor P. This operation results in
a sparse cloud of SIFT features with Cartesian coordinates with
respect to the Kinect sensor reference frame (K superscript),
representing the scene:

KCSIFT
c = IC

(
ISIFT
c , ID

c , P
)
. (45)

The goal of the following step, consisting in feature match-
ing (FM), is the determination of the correspondence between
the scene and the object models. This is done by matching the
descriptors of features extracted from the scene KCSIFT

c with the
descriptors of features of all object models stored in the virtual
receptor memory 1..MCSIFT:

1..NMSIFT
c = FM

(KCSIFT
c , 1..MCSIFT) , (46)

where N is the number of found model–scene feature matches
(in particular, there can be several correspondences found be-
tween a given scene feature and features of different mod-
els). As the comparison is made in a high-dimensional space
(SIFT descriptor is a set of 128 elements), for feature match-
ing FLANN (Fast Library for Approximate Nearest Neigh-
bours) [56] was used. FLANN is an efficient implementa-
tion of the k-Nearest Neighbours algorithm. Exemplary re-
sults of correspondence estimation are presented in Fig. 19a
(red dots indicate scene features, green dots indicate model
features and green lines represent found mutual correspon-
dences).

Taking into account that in the scene there might be several
instances of an object belonging to the same class (thus match-
ing the same model), as well as that objects belonging to many
different classes have to be recognized simultaneously, it was
necessary to formulate object hypotheses, based on clusters of
correspondences constituting different objects. For that purpose
the Geometric Consistency Grouping algorithm was applied. It
is based on the proposal presented in [19], which groups cor-
respondences (CG) on the basis of relations between point fea-
tures belonging to the model and the scene:

K
1..HTc = CG

(
1..NMSIFT

c , KCSIFT
c , 1..MCSIFT) , (47)

Bull. Pol. Ac.: Tech. 68(1) 2020 15

17

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

(a) (b)

(c) (d)

Fig. 19. Visualization of the consecutive steps of the recognition of a single object (Lipton Yellow Label Tea) utilising a scene chosen from Test
Scenes Dataset from WUT Visual Perception Dataset [72]: (a) feature matching, (b) correspondence grouping, (c) hypothesis projection (two

hypotheses are visible) and (d) verification (weaker hypothesis, that was in conflict, was rejected)

tual receptor consists of an RGB image IRGB
c along with the

associated depth map ID
c , obtained from the Kinect sensor via

the R
xrirp,k buffer. The first step of the recognition procedure in-

volves extraction of SIFT features (FE) from the IRGB
c image:

ISIFT
c = FE

(
IRGB
c

)
. (44)

Subsequently their coordinates are transformed from the image
to the Cartesian space (IC). This is done with the use of their
known distances from the sensor (the depth map ID

c) and intrin-
sic parameters of the Kinect sensor P. This operation results in
a sparse cloud of SIFT features with Cartesian coordinates with
respect to the Kinect sensor reference frame (K superscript),
representing the scene:

KCSIFT
c = IC

(
ISIFT
c , ID

c , P
)
. (45)

The goal of the following step, consisting in feature match-
ing (FM), is the determination of the correspondence between
the scene and the object models. This is done by matching the
descriptors of features extracted from the scene KCSIFT

c with the
descriptors of features of all object models stored in the virtual
receptor memory 1..MCSIFT:

1..NMSIFT
c = FM

(KCSIFT
c , 1..MCSIFT) , (46)

where N is the number of found model–scene feature matches
(in particular, there can be several correspondences found be-
tween a given scene feature and features of different mod-
els). As the comparison is made in a high-dimensional space
(SIFT descriptor is a set of 128 elements), for feature match-
ing FLANN (Fast Library for Approximate Nearest Neigh-
bours) [56] was used. FLANN is an efficient implementa-
tion of the k-Nearest Neighbours algorithm. Exemplary re-
sults of correspondence estimation are presented in Fig. 19a
(red dots indicate scene features, green dots indicate model
features and green lines represent found mutual correspon-
dences).

Taking into account that in the scene there might be several
instances of an object belonging to the same class (thus match-
ing the same model), as well as that objects belonging to many
different classes have to be recognized simultaneously, it was
necessary to formulate object hypotheses, based on clusters of
correspondences constituting different objects. For that purpose
the Geometric Consistency Grouping algorithm was applied. It
is based on the proposal presented in [19], which groups cor-
respondences (CG) on the basis of relations between point fea-
tures belonging to the model and the scene:

K
1..HTc = CG

(
1..NMSIFT

c , KCSIFT
c , 1..MCSIFT) , (47)

Bull. Pol. Ac.: Tech. 68(1) 2020 15

18

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

where K
1..HTc represents the set of poses of found hypotheses of

objects with respect to the Kinect frame:

K
1..HTc =

{
K
1 Tc, . . . ,

K
HTc

}
, (48)

where H is the number of hypotheses. In opposition to the cor-
respondence estimation, during correspondence grouping only
the Cartesian coordinates of the features are taken into consider-
ation. Each object hypothesis clusters the correspondences with
similar transformation between the model points and the scene
points. If there is a correspondence that fits the given hypothe-
sis (i.e. when the projection of the model point using hypothesis
transformation matches the scene point of the considered cor-
respondence) then this correspondence is added to the cluster.
An exemplary result of correspondence grouping is presented
in Fig. 19b. It should be noted that there are two colours of
correspondences, which indicate the presence of two different
clusters, hence two different object hypotheses.

The next step is responsible for hypothesis projection (HP),
being the transformation of the point clouds belonging to the
models associated with each of the hypotheses (both dense
colour point cloud and sparse feature cloud) into the Kinect
sensor reference frame. For each projection the transformation
associated with the given hypothesis, found in the correspon-
dence grouping step, was used:

K
1..V Oc =HP

(K
1..HTc, 1..MCRGB, 1..MCSIFT) . (49)

The resulting set contains V object hypotheses, with each v-th
object hypothesis defined according to (35). Exemplary projec-
tions are presented in Fig. 19c.

Having several hypotheses it is necessary to reject the ones
that are weak and/or are in conflict with other hypotheses. In
the presented system it was decided to incorporate the Greedy
Verification algorithm [2]. This method counts the number of
features belonging to the given projection of the model, that fit
the scene points – disregarding whether there was underlying
(i.e. earlier found) correspondence for a given pair or not. The
hypothesis is considered valid if the number of inliers is greater
than the outliers (the required ratio may be parameterised). The
hypothesis verification (HV) step is defined as:

K
1..V Oc =HV

(K
HOc

)
. (50)

The resulting list of objects K
1..V Oc (with each object defined

according to (35)) is subsequently conveyed to the control sub-
system through the c

yrirp,k buffer. Thus the definition of the tran-
sition function is as follows:

c
yrι+1

irp,k[
K

1..V Õc] := r,c f irp,k,1

(
rrι

irp,k,
R
xrι

irp,k

)
�

� HV(HP(CG(FM(IC(FE(IRGB
c), ID

c , P),

1..MCSIFT), 1..MCRGB, 1..MCSIFT),

1..MCRGB, 1..MCSIFT)).

(51)

4.8. Control subsystem. The control subsystem cirp is re-
sponsible for the realization of the object picking task. In order
to fulfil that it must receive the list of the recognized objects
from the virtual receptor and aggregate them into a coherent
model of the scene, as well as govern the motions of both vir-
tual effectors.

Internal structure of the control subsystem. Fig. 20 presents the
inner structure of the control subsystem cirp. The structure of
the input and output buffers of the control subsystem cirp has to
match that of respective output and input buffers of virtual ef-
fectors and receptors, thus: r

xcirp,k = c
yrirp,k, e

xcirp,g = c
yeirp,g, e

xcirp,m
= c

yeirp,m, e
ycirp,g = c

xeirp,g, e
ycirp,m = c

xeirp,m.

Internal
memoryControl Subsystem

Buffers to virtual effectors
Virtual receptor

buffer

cirp ccirp

e
ycirp,m

e
xcirp,m

e
ycirp,g

e
xcirp,g

r
xcirp,k

Motion
commands

Manipulator
state

Gripper
commands

Gripper
state

Recognized
objects

Fig. 20. Inner structure of the control subsystem cirp

The control subsystem stores in its memory several variables,
that can be grouped according to their role. First, it stores sev-
eral variables related to the system calibration:
ccirp [BKT̃] – pose of the Kinect sensor with respect to the robot

base (world) reference frame,
ccirp [PGT̃] – (constant) transformation between the grasp and

pre-grasp poses.
The memory also has to store the perceived model of the scene:
ccirp [

B
1..V Õc] – a list of verified object hypotheses w.r.t. the

robot base.
Next, the memory has to store several desired end-effector and
gripper poses, calculated during the task execution:
ccirp [BEg

T̃d] – grasp pose, i.e. desired pose of the manipulator
w.r.t. robot base reference frame (calculated for the given
object, analogically as the pre-grasp pose), in which the
contact with the object is expected,

ccirp [BEp
T̃d] – pre-grasp pose, i.e. desired pose of the end-

effector, indicating where from the final grasp approach
phase will begin,

ccirp [d̃o] – desired distance between the two fingers of the grip-
per, calculated on the basis of object dimensions.

Finally, the control subsystem memory stores several values,
used in different phases of the realization of the task:
ccirp [BEs

T̃d] – initial (start) pose of the manipulator w.r.t. the
robot base,

ccirp [d̃m] – maximum distance between the two fingers of the
gripper (when the gripper is fully-open),

ccirp [
E
F T̃] – (constant) transformation representing the pose of

the center of the gripper (F) w.r.t. end-effector (E),
ccirp [zṼd , zD̃d , z̃Id] – values of the velocity, damping and in-

ertia (along the Z axis of the end-effector reference frame),
used during the force-monitored approach to the object,

16 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

ccirp [xD̃d , yD̃d , x̃Id , ỹId] – damping and inertia parameters
along the X and Y axes of the end-effector reference
frame, used during closing the gripper, thus inducing force-
controlled relaxation of tensions between the grasped object
and the manipulator,

ccirp [cl] – limit of the measured gripper motor current, indi-
cating that the fingertips have tightened on the object.

Finite state automaton of the control subsystem The task was al-
ready defined in the scenario description in Section 4.1. How-
ever, it was only a rough description, hiding several details im-
portant from the point of view of the control subsystem. For this
reason Fig. 21 presents the finite state automaton, being a more
detailed version of the automaton shown in Fig. 5.

Object dropping

Move to
initial pose

Recognize
objects on the

scene

Generate
grasp

parameters

Move to
pre-grasp
pose

Open the
gripper

Open
the gripper

Move to
pregrasp
pose

Object graspingObject picking

Close the
gripper

Move to grasp
pose

Fig. 21. Detailed graph of the finite state automaton of the control sub-
system realizing the object picking task

The resulting scenario is defined as follows. First, it is as-
sumed that the robot should be placed in an initial position
– the object picking procedure always starts from this pose.
Thus the first state of the FSM, cS irp,1, is associated with the
first behaviour cBirp,1. This behaviour terminates when the end-
effector reaches the initial pose:

c f τ
irp,1 �

(B
ETc =

B
EsTd

)
. (52)

In the next state the system waits until some objects will be
recognized in the scene. So the cS irp,2 state is associated with

the cBirp,2 behaviour, which ends when the list
B

1..V Õc stored in
the memory ccirp,k will contain at least one object, i.e.:

c f τ
irp,2 �

ccirp[
B

1..V Õc] �= NIL. (53)

This condition assures that when no objects will be recognized
in the scene the control subsystem will remain in the state
cS irp,2, executing the behaviour cBirp,2.

After successful recognition of objects in the scene the con-
trol subsystem moves to the state cS irp,3, in which it generates
adequate grasp parameters for the selected object of interest.
Those computations require just one step, thus:

c f τ
irp,3 � TRUE. (54)

Object grasping is realized in four consecutive steps, based
on the grasp parameters computed earlier. First in the state
cS irp,4 the manipulator moves to a pre-grasp pose (which is as-
sumed to be 20 cm above the object along the Z axis of the
object frame). Thus the behaviour finishes when the pre-grasp
pose B

Ed
Tp will be reached:

c f τ
irp,4 �

(
B
ETc =

B
EpTd

)
. (55)

Next, in the state cS irp,5, the system opens the robot gripper.
It is assumed that the gripper will always open to maximum
extent, thus the terminal condition is defined as the result of
comparison between the current distance dc and the maximum
distance dm between the gripper fingers:

c f τ
irp,5 � (dc = dm) . (56)

After opening the gripper to the maximum extent the manip-
ulator approachs the object along a trajectory (being a straight
line along the Z axis of the end-effector frame), reaching the
grasp pose B

ETg. Additionally, the exerted force must be mea-
sured, to stop the motion then a force along the Z axis is de-
tected. Thus the terminal condition of behaviour cBirp,6 exe-
cuted in the state cS irp,6 is defined as:

c f τ
irp,6 �

((B
ETc =

B
ETg

)
∨
(E

z Fc > 0
))

. (57)

In the state cS irp,7 the robot grasps the object by closing the
gripper, using the distance between fingers do being computed
on the basis of the known object dimensions. Moreover, as the
object should not be crushed, the forces applied by the fingers
on the object should be monitored. However, as the gripped
does not possess force/pressure sensors, it was decided to mon-
itor the current in the motor propelling the fingers. Thus the be-
haviour is terminated when either the prescribed finger distance
is reached or the current exceeds a given threshold cl :

c f τ
irp,7 � (dc = do)∨ (cc ≥ cl) . (58)

This ends the object grasping phase utilizing position-force
control.

In the next state, cS irp,8, the associated behaviour is respon-
sible for object lifting. It was decided to use for that purpose
the previous pre-grasp pose as the desired pose of the manip-
ulator end-effector, thus the behaviour cBirp,4 and its terminal
condition c f τ

irp,4, initially associated with the state cS irp,4, can
be reused. This also shows that the relationship between states
and behaviours does not have to be one–to–one.

In the state cS irp,9 the control subsystem opens the gripper,
what will result in dropping the object in a random place and
with a random orientation. Analogically, in this state we can use
the terminal condition and behaviour used in the state cS irp,5.
After that the procedure is repeated from the beginning.

Additionally, as each two nodes of the automaton graph are
connected by single arrows, thus always a single transition be-
tween states of the automaton is the only option, rather a trivial

Bull. Pol. Ac.: Tech. 68(1) 2020 17

19

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

ccirp [xD̃d , yD̃d , x̃Id , ỹId] – damping and inertia parameters
along the X and Y axes of the end-effector reference
frame, used during closing the gripper, thus inducing force-
controlled relaxation of tensions between the grasped object
and the manipulator,

ccirp [cl] – limit of the measured gripper motor current, indi-
cating that the fingertips have tightened on the object.

Finite state automaton of the control subsystem The task was al-
ready defined in the scenario description in Section 4.1. How-
ever, it was only a rough description, hiding several details im-
portant from the point of view of the control subsystem. For this
reason Fig. 21 presents the finite state automaton, being a more
detailed version of the automaton shown in Fig. 5.

Object dropping

Move to
initial pose

Recognize
objects on the

scene

Generate
grasp

parameters

Move to
pre-grasp
pose

Open the
gripper

Open
the gripper

Move to
pregrasp
pose

Object graspingObject picking

Close the
gripper

Move to grasp
pose

Fig. 21. Detailed graph of the finite state automaton of the control sub-
system realizing the object picking task

The resulting scenario is defined as follows. First, it is as-
sumed that the robot should be placed in an initial position
– the object picking procedure always starts from this pose.
Thus the first state of the FSM, cS irp,1, is associated with the
first behaviour cBirp,1. This behaviour terminates when the end-
effector reaches the initial pose:

c f τ
irp,1 �

(B
ETc =

B
EsTd

)
. (52)

In the next state the system waits until some objects will be
recognized in the scene. So the cS irp,2 state is associated with

the cBirp,2 behaviour, which ends when the list
B

1..V Õc stored in
the memory ccirp,k will contain at least one object, i.e.:

c f τ
irp,2 �

ccirp[
B

1..V Õc] �= NIL. (53)

This condition assures that when no objects will be recognized
in the scene the control subsystem will remain in the state
cS irp,2, executing the behaviour cBirp,2.

After successful recognition of objects in the scene the con-
trol subsystem moves to the state cS irp,3, in which it generates
adequate grasp parameters for the selected object of interest.
Those computations require just one step, thus:

c f τ
irp,3 � TRUE. (54)

Object grasping is realized in four consecutive steps, based
on the grasp parameters computed earlier. First in the state
cS irp,4 the manipulator moves to a pre-grasp pose (which is as-
sumed to be 20 cm above the object along the Z axis of the
object frame). Thus the behaviour finishes when the pre-grasp
pose B

Ed
Tp will be reached:

c f τ
irp,4 �

(
B
ETc =

B
EpTd

)
. (55)

Next, in the state cS irp,5, the system opens the robot gripper.
It is assumed that the gripper will always open to maximum
extent, thus the terminal condition is defined as the result of
comparison between the current distance dc and the maximum
distance dm between the gripper fingers:

c f τ
irp,5 � (dc = dm) . (56)

After opening the gripper to the maximum extent the manip-
ulator approachs the object along a trajectory (being a straight
line along the Z axis of the end-effector frame), reaching the
grasp pose B

ETg. Additionally, the exerted force must be mea-
sured, to stop the motion then a force along the Z axis is de-
tected. Thus the terminal condition of behaviour cBirp,6 exe-
cuted in the state cS irp,6 is defined as:

c f τ
irp,6 �

((B
ETc =

B
ETg

)
∨
(E

z Fc > 0
))

. (57)

In the state cS irp,7 the robot grasps the object by closing the
gripper, using the distance between fingers do being computed
on the basis of the known object dimensions. Moreover, as the
object should not be crushed, the forces applied by the fingers
on the object should be monitored. However, as the gripped
does not possess force/pressure sensors, it was decided to mon-
itor the current in the motor propelling the fingers. Thus the be-
haviour is terminated when either the prescribed finger distance
is reached or the current exceeds a given threshold cl :

c f τ
irp,7 � (dc = do)∨ (cc ≥ cl) . (58)

This ends the object grasping phase utilizing position-force
control.

In the next state, cS irp,8, the associated behaviour is respon-
sible for object lifting. It was decided to use for that purpose
the previous pre-grasp pose as the desired pose of the manip-
ulator end-effector, thus the behaviour cBirp,4 and its terminal
condition c f τ

irp,4, initially associated with the state cS irp,4, can
be reused. This also shows that the relationship between states
and behaviours does not have to be one–to–one.

In the state cS irp,9 the control subsystem opens the gripper,
what will result in dropping the object in a random place and
with a random orientation. Analogically, in this state we can use
the terminal condition and behaviour used in the state cS irp,5.
After that the procedure is repeated from the beginning.

Additionally, as each two nodes of the automaton graph are
connected by single arrows, thus always a single transition be-
tween states of the automaton is the only option, rather a trivial

Bull. Pol. Ac.: Tech. 68(1) 2020 17

20

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

case, all initial conditions are defined as:

c f σ
irp,l � TRUE, l = 1, . . . ,9. (59)

In this simple scenario no error situations are assumed, thus:

c f ε
irp,l � FALSE, l = 1, . . . ,9. (60)

The above described states, behaviours and conditions form
the FSM presented in Fig. 22. Table 9 presents the association
between the states of the automaton and behaviours, whereas
the state transition table, being equivalent to the above de-
scribed conditions, is presented in Table 10.

Table 9
Mapping of the control subsystem states to its behaviours

State Beh. Description

cS irp,1
cBirp,1 Move to initial pose

cS irp,2
cBirp,2 Recognize objects in the scene

cS irp,3
cBirp,3 Generate grasp parameters

cS irp,4
cBirp,4 Move to pregrasp pose

cS irp,5
cBirp,5 Open the gripper

cS irp,6
cBirp,6 Move to grasp pose (force cont.)

cS irp,7
cBirp,7 Close the gripper (force cont.)

cS irp,8
cBirp,4 Move to pregrasp pose

cS irp,9
cBirp,5 Open the gripper

Table 10
State transition table of the control subsystem FSM

Current state Next state

State
Terminal/Error Initial

State
Condition Condition

cS irp,1
c f τ

irp,1 = TRUE c f σ
irp,2 = TRUE cS irp,2

cS irp,2
c f τ

irp,2 = TRUE c f σ
irp,3 = TRUE cS irp,3

cS irp,3
c f τ

irp,3 = TRUE c f σ
irp,4 = TRUE cS irp,4

cS irp,4
c f τ

irp,4 = TRUE c f σ
irp,5 = TRUE cS irp,5

cS irp,5
c f τ

irp,5 = TRUE c f σ
irp,6 = TRUE cS irp,6

cS irp,6
c f τ

irp,6 = TRUE c f σ
irp,7 = TRUE cS irp,7

cS irp,7
c f τ

irp,7 = TRUE c f σ
irp,8 = TRUE cS irp,8

cS irp,8
c f τ

irp,4 = TRUE c f σ
irp,9 = TRUE cS irp,9

cS irp,9
c f τ

irp,5 = TRUE c f σ
irp,1 = TRUE cS irp,1

Object dropping

Object graspingObject picking

cSirp,1
cSirp,2

cSirp,3

cSirp,4

cSirp,5
cSirp,6

cSirp,7
cSirp,8

cSirp,9

Fig. 22. Detailed graph of the finite state automaton of the control sub-
system enumerating its states

Behaviour cBirp,1. Behaviour cBirp,1 is responsible for moving
the manipulator to the initial position. As it is the only goal
thus the only required function is the effector control function
c,e f irp,1, thus it is defined as:

cBirp,1 �
cBirp,1

(
c,e f irp,1,

c f τ
irp,1,

c f ε
irp,1

)
. (61)

The effector control function c,e f irp,1 sends the desired end-
effector pose to the virtual effector through the e

ycirp,m buffer:

e
yci+1

irp,m[
B
E T̃d] := c,e f irp,1

(
cci

irp

)
� B

EsTd . (62)

Behaviour cBirp,2. Behaviour cBirp,2 is responsible for recogni-
tion of the state of the scene. As it was decided that visual per-
ception will be a passive process, the behaviour simply ade-
quately transforms the data received from the virtual receptor
and memorises the result. It is defined as follows:

cBirp,2 �
cBirp,2

(
c,c f irp,2,

c f τ
irp,2,

c f ε
irp,2

)
. (63)

Fig. 23 presents the data flow diagram of the memory function
c,c f irp,2. Initially c,c f irp,2 acquires from the input buffer r

xcirp,k
the list of locations of objects (recognized in the given RGB-D
image) w.r.t. Kinect frame and transforms them into the world
(robot base) coordinate frame: B

1..V Oc =
B
KT K

1..V Oc. The opera-
tion includes transformation of coordinates of all points of: the
dense colour point cloud vCRGB

c , sparse feature cloud vCSIFT
c , as

well as those of the object pose K
v Tc.

B
KT

K
1..V Oc

Transformation
of object poses

ccirp

r
xcirp,k

ccirp
B

1..V Ou

Update list
of objects

ccirp

B
1..V Oc

B
1..V Op

Fig. 23. Data flow diagram of the function c,c f irp,2 storing in the
memory the recognized objects having poses transformed into the

robot base frame

18 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

The resulting list is next used to update the stored model
of the scene by merging it with the stored list of objects rec-
ognized in the past B

1..V Op: B
1..V Ou = US

(B
1..V Op,

B
1..V Oc

)
(US

stands for Update Scene). The procedure takes into account the
id of the object model (extracted from object id vic) and its pose
in the scene – if those two match, the currently recognized ob-
ject B

vOc is merged with the respective object from the control
subsystem memory B

vOp, i.e. the control subsystem stores the
new object pose B

vTu = B
vTc and updates the confidence ratio

vcu = vcp/2+ vcc (which promotes the objects that are visible
currently and were present is several previous frames). Finally,
the list is stored once again in the memory buffer, so the mem-
ory function is defined as:

cci+1
irp [

B
1..V Õc] := c,c f irp,2

(
cci

irp,
r
xci

irp,k

)
�

� US
(B

1..V Op,
B
KT K

1..V Oc
)
.

(64)

Behaviour cBirp,3. This behaviour is responsible for estimation
of the grasp parameters. There are many sophisticated ap-
proaches to grasp planning (e.g. [39, 6, 64, 65]), as well as sev-
eral tools facilitating that process (e.g. GraspIt! [55]). However,
as this example has to be kept simple, we decided to use an ele-
mentary approach consisting of four consecutive steps, analog-
ical to the one that had been used by two-handed manipulation
of a Rubik’s cube [90, 92]. It assumes that a proper grasp is re-
alised by approaching the object from above it along a straight
line (simplification of trajectory planning) and that the reached
pose enables straightforward grasping by simple reconfigura-
tion of the posture of the gripper. The four consecutive steps
are: reach the pre-grasp pose, open the gripper, reach the grasp
pose, close the gripper. So the goal of the cBirp,3 behaviour is to
calculate the three following parameters:
• the pre-grasp pose B

Ep
Td – pose of the end-effector from

which the approach phase will begin,
• the grasp pose B

Eg
Td – pose of the manipulator in which the

contact with the object is expected,
• do – desired distance between the two fingers of the gripper

enabling them to grasp the object.
Additionally, we assumed that the system holds in its memory
the maximum distance between the fingers of the gripper dm,
which will be used for setting the “gripper fully-open” posture.

The behaviour cBirp,3 is thus purely computational, depend-
ing only on internal memory of the control subsystem:

cBirp,3 �
cBirp,3

(
c,c f irp,3,

c f τ
irp,3,

c f ε
irp,3

)
, (65)

with c,c f irp,3 presented in Fig. 24. As there are three major data
flows, resulting in computation of different variables stored in
ccirp memory, thus:

cci+1
irp := c,c f irp,3

(
cci

irp

)
�





c,c f irp,3,1

(
cci

irp

)
,

c,c f irp,3,2

(
cci

irp

)
,

c,c f irp,3,3

(
cci

irp

)
.

(66)

Select object
to be grasped

B
1..V Oc

B
vOc B

ETp

Calculate
grasp pose

Calculate
pre-grasp pose

B
lTd,

B
rTd

Generate
grasp points

Calculate
gripper posture

B
ETgdo

ccirp
ccirp

ccirp

ccirp

E
FT

ccirp

Fig. 24. Data flow of the function c,c f irp,3 responsible for generation
of the grasp parameters

However, they share some computations. First, the system must
decide which object B

vOc from the list of objects B
1..V Oc detected

in the scene will be picked. For this purpose the system analy-
ses their confidence ratio c and selects the object (SO) with the
highest one: B

vOc = argmax
cc

(B
1..V Oc

)
. The model of the selected

object is used for generation of position of two grasp points
B
lTd ,

B
rTd , being the desired poses of the left and right gripper

fingertips respectively (thus the function was named LR). On
that basis the first partial function c,c f irp,3,1 calculates the de-
sired distance between gripper fingers do, which is simply equal
to the Euclidean distance between points: do =

∥∥B
lT,

B
rT

∥∥. So
the function is defined as:

cci+1
irp [d̃o] := c,c f irp,3,1

(
cci

irp

)
�

∥∥∥∥LR
(

argmax
cc

(B
1..V Oc

))∥∥∥∥ . (67)

The second partial function is responsible for computation of
the grasp pose B

EgTd , i.e. the desired pose of the end-effector
enabling grasping by a simply closing the gripper. For this rea-
son it calculates the pose in the center of the line connecting the
left and right finger poses B

lTd ,
B
rTd , and uses it for computation

of the end-effector pose by multiplying it by the known (con-
stant) transformation between the end-effector and the center of
the gripper E

FT, thus:

cci+1
irp [BEg

T̃d] := c,c f irp,3,2

(
cci

irp

)
�

� GC
(
LR

(
argmax

cc

(B
1..V Oc

))
, E

FT
)
,

(68)

where GC stands for Grasp-pose Calculation.
Finally, the grasp pose enables the computation of the pre-

grasp pose by using the transformation P
GT, being a simple

translation (by 20 cm) along the Z axis of the end-effector:

cci+1
irp [BEp

T̃d] := c,c f irp,3,3

(
cci

irp

)
�

� GC
(
LR

(
argmax

cc

(B
1..V Oc

))
, E

FT
)

P
GT−1.

(69)

Behaviour cBirp,4.The behaviour controls the motion of the
end-effector, analogically to the behaviour cBirp,1. The only dif-

Bull. Pol. Ac.: Tech. 68(1) 2020 19

21

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

The resulting list is next used to update the stored model
of the scene by merging it with the stored list of objects rec-
ognized in the past B

1..V Op: B
1..V Ou = US

(B
1..V Op,

B
1..V Oc

)
(US

stands for Update Scene). The procedure takes into account the
id of the object model (extracted from object id vic) and its pose
in the scene – if those two match, the currently recognized ob-
ject B

vOc is merged with the respective object from the control
subsystem memory B

vOp, i.e. the control subsystem stores the
new object pose B

vTu = B
vTc and updates the confidence ratio

vcu = vcp/2+ vcc (which promotes the objects that are visible
currently and were present is several previous frames). Finally,
the list is stored once again in the memory buffer, so the mem-
ory function is defined as:

cci+1
irp [

B
1..V Õc] := c,c f irp,2

(
cci

irp,
r
xci

irp,k

)
�

� US
(B

1..V Op,
B
KT K

1..V Oc
)
.

(64)

Behaviour cBirp,3. This behaviour is responsible for estimation
of the grasp parameters. There are many sophisticated ap-
proaches to grasp planning (e.g. [39, 6, 64, 65]), as well as sev-
eral tools facilitating that process (e.g. GraspIt! [55]). However,
as this example has to be kept simple, we decided to use an ele-
mentary approach consisting of four consecutive steps, analog-
ical to the one that had been used by two-handed manipulation
of a Rubik’s cube [90, 92]. It assumes that a proper grasp is re-
alised by approaching the object from above it along a straight
line (simplification of trajectory planning) and that the reached
pose enables straightforward grasping by simple reconfigura-
tion of the posture of the gripper. The four consecutive steps
are: reach the pre-grasp pose, open the gripper, reach the grasp
pose, close the gripper. So the goal of the cBirp,3 behaviour is to
calculate the three following parameters:
• the pre-grasp pose B

Ep
Td – pose of the end-effector from

which the approach phase will begin,
• the grasp pose B

Eg
Td – pose of the manipulator in which the

contact with the object is expected,
• do – desired distance between the two fingers of the gripper

enabling them to grasp the object.
Additionally, we assumed that the system holds in its memory
the maximum distance between the fingers of the gripper dm,
which will be used for setting the “gripper fully-open” posture.

The behaviour cBirp,3 is thus purely computational, depend-
ing only on internal memory of the control subsystem:

cBirp,3 �
cBirp,3

(
c,c f irp,3,

c f τ
irp,3,

c f ε
irp,3

)
, (65)

with c,c f irp,3 presented in Fig. 24. As there are three major data
flows, resulting in computation of different variables stored in
ccirp memory, thus:

cci+1
irp := c,c f irp,3

(
cci

irp

)
�





c,c f irp,3,1

(
cci

irp

)
,

c,c f irp,3,2

(
cci

irp

)
,

c,c f irp,3,3

(
cci

irp

)
.

(66)

Select object
to be grasped

B
1..V Oc

B
vOc B

ETp

Calculate
grasp pose

Calculate
pre-grasp pose

B
lTd,

B
rTd

Generate
grasp points

Calculate
gripper posture

B
ETgdo

ccirp
ccirp

ccirp

ccirp

E
FT

ccirp

Fig. 24. Data flow of the function c,c f irp,3 responsible for generation
of the grasp parameters

However, they share some computations. First, the system must
decide which object B

vOc from the list of objects B
1..V Oc detected

in the scene will be picked. For this purpose the system analy-
ses their confidence ratio c and selects the object (SO) with the
highest one: B

vOc = argmax
cc

(B
1..V Oc

)
. The model of the selected

object is used for generation of position of two grasp points
B
lTd ,

B
rTd , being the desired poses of the left and right gripper

fingertips respectively (thus the function was named LR). On
that basis the first partial function c,c f irp,3,1 calculates the de-
sired distance between gripper fingers do, which is simply equal
to the Euclidean distance between points: do =

∥∥B
lT,

B
rT

∥∥. So
the function is defined as:

cci+1
irp [d̃o] := c,c f irp,3,1

(
cci

irp

)
�

∥∥∥∥LR
(

argmax
cc

(B
1..V Oc

))∥∥∥∥ . (67)

The second partial function is responsible for computation of
the grasp pose B

EgTd , i.e. the desired pose of the end-effector
enabling grasping by a simply closing the gripper. For this rea-
son it calculates the pose in the center of the line connecting the
left and right finger poses B

lTd ,
B
rTd , and uses it for computation

of the end-effector pose by multiplying it by the known (con-
stant) transformation between the end-effector and the center of
the gripper E

FT, thus:

cci+1
irp [BEg

T̃d] := c,c f irp,3,2

(
cci

irp

)
�

� GC
(
LR

(
argmax

cc

(B
1..V Oc

))
, E

FT
)
,

(68)

where GC stands for Grasp-pose Calculation.
Finally, the grasp pose enables the computation of the pre-

grasp pose by using the transformation P
GT, being a simple

translation (by 20 cm) along the Z axis of the end-effector:

cci+1
irp [BEp

T̃d] := c,c f irp,3,3

(
cci

irp

)
�

� GC
(
LR

(
argmax

cc

(B
1..V Oc

))
, E

FT
)

P
GT−1.

(69)

Behaviour cBirp,4.The behaviour controls the motion of the
end-effector, analogically to the behaviour cBirp,1. The only dif-

Bull. Pol. Ac.: Tech. 68(1) 2020 19

22

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

ference is that it uses the pre-grasp pose B
Ep

Td as a goal. The
definition of the behaviour is as follows:

cBirp,4 �
cBirp,4

(
c,e f irp,4,

c f τ
irp,4,

c f ε
irp,4

)
, (70)

whereas the transition function controlling the end-effector is:

e
yci+1

irp,m[
B
E T̃d] := c,e f irp,4

(
cci

irp

)
� B

EpTd . (71)

Behaviour cBirp,5. The goal of the behaviour cBirp,5 is to prepare
the robot for grasping by opening the gripper. As its only role
is to control the gripper, it requires the definition of a single
end-effector control function:

cBirp,5 �
cBirp,5

(
c,e f irp,5,

c f τ
irp,5,

c f ε
irp,5

)
. (72)

The change of the posture is realized by sending a command
with the desired (maximal) distance between the fingers dm to
the output buffer e

ycirp,g to the gripper virtual effector:

e
yci+1

irp,g[d̃d] := c,e f irp,5

(
cci

irp

)
� dm, (73)

and by monitoring the current distance received through the in-
put butter e

xcirp,g as defined in the terminal condition (56).

Behaviour cBirp,6.Behaviour cBirp,6 moves the manipulator
down along the Z axis of the end-effector until contact with
the object is detected. For this purpose it utilizes the position-
force control behaviour of the virtual effector, presented in Sec-
tion 4.5. The position-force control realizes a relative motion,
i.e. all motion parameters are expressed w.r.t. the end-effector
reference frame. The only role of the control subsystem is to set
the appropriate operation modes and parameters of the decou-
pled position-force control regulators for each motion compo-
nent and send them to the virtual effector, thus:

cBirp,6 �
cBirp,6

(
c,e f irp,6,

c f τ
irp,6,

c f ε
irp,6

)
. (74)

Operation of the position-force regulators is defined by 5 pa-
rameters. This results in the decomposition of the effector con-
trol function into five partial functions, responsible for setting
different parameters of the motion:

e
yci+1

irp,m := c,c f irp,6

(
cci

irp

)
�




c,c f irp,6,1

(
cci

irp

)
,

c,c f irp,6,2

(
cci

irp

)
,

c,c f irp,6,3

(
cci

irp

)
,

c,c f irp,6,4

(
cci

irp

)
,

c,c f irp,6,5

(
cci

irp

)
.

(75)

As the motion is realized along the Z axis of the end-effector,
the parameters of the regulators of other 5 motion components
will be zeros or uninterpreted, as presented in Table 11.

Table 11
Modes and parameters of the position-force control set by the cBirp,6
behaviour. „–” indicates that given parameter is not necessary in the

given control mode

Parameter
Motion component

x y z ax ay az

b u u g u u u

Fd – – – – – –

Vd 0 0 ccirp[zṼd] 0 0 0

Dd – – ccirp[zD̃d] – – –

Id – – ccirp[z̃Id] – – –

The first partial function sets the mode of the regulators, i.e.
guarded motion g along the Z axis and unguarded motion u for
the other motion components:

e
yci+1

irp,m[b̃] := c,e f irp,6,1

(
cci

irp

)
� [u,u,g,u,u,u]. (76)

The second parameter is the vector of the desired values of the
exerted forces, necessary only in the case of the contact mode
c, thus:

e
yci+1

irp,m[F̃d] := c,e f irp,6,2

(
cci

irp

)
� [−,−,−,−,−,−] . (77)

As the end-effector has to move only along the Z axis, the linear
and angular velocities for the other five components of motion
must be set to zero:

e
yci+1

irp,m[Ṽd] := c,e f irp,6,3

(
cci

irp

)
� [0,0, zVd ,0,0,0] , (78)

where zVd is the desired, constant velocity along the Z axis
(1 cm/s). Additionally, in the case of guarded motion g it is
required to set the additional motion parameters, i.e. damping:

e
yci+1

irp,m[D̃d] := c,e f irp,6,4

(
cci

irp

)
� [−,−, zDd ,−,−,−] , (79)

and inertia:

e
yci+1

irp,m [̃Id] := c,e f irp,6,5

(
cci

irp

)
� [−,−, zId ,−,−,−] . (80)

Behaviour cBirp,7. The goal of the cBirp,7 behaviour is to finally
realize the object grasp by closing the gripper fingers:

cBirp,7 �
cBirp,7

(
c,e f irp,7,

c f τ
irp,7,

c f ε
irp,7

)
. (81)

Theoretically this behaviour could rely only on the virtual ef-
fector controlling the gripper. However, there are always some
errors in pose estimation, resulting in stress when contact be-
tween the fingers and the object occurs, what may result in
slight changes of the object pose. In order to reduce the stress
we decided to control the manipulator using position-force con-
trol. The idea is to control the manipulator in such a way that

20 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

it will become compliant to the forces exerted in the XY plane,
trying to reduce them to zero. Thus the effector control function
was decomposed into six partial functions:

[
e
yci+1

irp,m,
e
yci+1

irp,g

]
:= c,e f irp,7

(
cci

irp

)
�




c,e f irp,7,1

(
cci

irp

)
,

c,e f irp,7,2

(
cci

irp

)
,

c,e f irp,7,3

(
cci

irp

)
,

c,e f irp,7,4

(
cci

irp

)
,

c,e f irp,7,5

(
cci

irp

)
,

c,e f irp,7,6

(
cci

irp

)
,

(82)

where the first five are responsible for setting the modes and
parameters of the position-force control of the manipulator vir-
tual effector, and the last one sets the desired distance between
the gripper fingers. Table 12 presents the position-force control
parameters set by the first five functions.

Table 12
Modes and parameters of the position-force control set by the cBirp,7
behaviour. „–” indicates that the given parameter is not necessary in

the given control mode

Motion component

x y z ax ay az

b c c u u u u

Fd 0 0 – – – –

Vd – – 0 0 0 0

Dd
ccirp[xD̃d]

ccirp[yD̃d] – – – –

Id ccirp[x̃Id]
ccirp[ỹId] – – – –

The first partial function sets the operation modes:

e
yci+1

irp,m[b̃] := c,e f irp,7,1

(
cci

irp

)
� [c,c,u,u,u,u] . (83)

The second partial function causes the virtual effector to reduce
to zero the forces along the X and Y axes (of the gripper frame
as this is a relative motion):

e
yci+1

irp,m[F̃d] := c,e f irp,7,2

(
cci

irp

)
� [0,0,−,−,−,−] . (84)

The other components of the end-effector pose should not
change, thus:

e
yci+1

irp,m[Ṽd] := c,e f irp,7,3

(
cci

irp

)
� [−,−,0,0,0,0] . (85)

The two motion components that that are set to contact mode c
the values of inertia and damping must be set:

e
yci+1

irp,m[D̃d] := c,e f irp,7,4

(
cci

irp

)
� [xDd , yDd ,−,−,−,−] , (86)

e
yci+1

irp,m [̃Id] := c,e f irp,7,5

(
cci

irp

)
� [xId , yId ,−,−,−,−] . (87)

The partial end-effector control function responsible for con-
trol of the gripper pose writes the desired distance between the
fingers do into the buffer associated with that virtual effector:

e
yci+1

irp,g[d̃d] := c,e f irp,7,6

(
cci

irp

)
� do. (88)

The last three partial functions use several parameters that are
stored in the control subsystem memory. The values of the ma-
jority of those parameters were determined experimentally, e.g.
after several trials of closing the gripper over several objects the
current in the gripper motor, that signals adequate grasp, was
estimated as cl = 100 mA. Parameters such as damping and
inertia required by the position-force control were estimated
by a more systematic procedure, i.e. performed several hun-
dred experiments repeating the grasping procedure for differ-
ent values of those parameters. Generally, the value of damp-

ing between 200
kg
s

and 400
kg
s

resulted in successful grasps,
whereas the value of inertia had no influence on the process,
mainly due to the low velocity and acceleration of the motion.
For more detailed description of the experimental identification
of position-force control parameters refer to [41].

4.9. Experimental verification. Experimental verification of
the system performance was done using the IRp-6 6-DOF ma-
nipulator. The manipulator is controlled by in-house designed
hardware (having a 500Hz position control loop) [77]. The ma-
nipulator end-effector is equipped with a two-finger gripper
supplemented by a Point Grey Blackfly BFLY-PGE-14S2C-CS
camera, attached to the robot wrist (however the camera was not
used in the experiments). Additionally, there is a Kinect sensor
mounted above the manipulator workspace. The system cali-
bration procedure is presented in [78].

The presented control system was implemented using the
Robot Operating System (ROS) [23, 45]. The virtual effectors
constituting the low-level robot controllers were implemented
as OROCOS (Open Robot Control Software [16]) components.
Detailed description of the components can be found in [79].
Here it is only indicated that along with the library of com-
ponents for control of the IRp-6 robot a high-level API was
developed. It facilitates programming of diverse tasks. The li-
brary and the API together form the IRPOS controller. The
virtual receptor was implemented using DisCODe (Distributed
Component Oriented Data Processing [71]) – a component-
based framework that can also work as a ROS node. Dis-
CODe components rely on two libraries: OpenCV [12, 46] for
2D vision (e.g. extraction of SIFT features) and PCL (Point
Cloud Library) [61] for 3D perception (processing of point
clouds, filtering, matching etc.). The mapping of subsystems
to ROS/OROCOS/DisCODe is presented in Fig. 26.

We validated the system making it pick specific objects out
of several different, randomly placed ones. Fig. 25 presents im-
ages acquired during one of such experiments. In the middle
row RViz visualization of the first three steps is presented, with

Bull. Pol. Ac.: Tech. 68(1) 2020 21

23

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

it will become compliant to the forces exerted in the XY plane,
trying to reduce them to zero. Thus the effector control function
was decomposed into six partial functions:

[
e
yci+1

irp,m,
e
yci+1

irp,g

]
:= c,e f irp,7

(
cci

irp

)
�




c,e f irp,7,1

(
cci

irp

)
,

c,e f irp,7,2

(
cci

irp

)
,

c,e f irp,7,3

(
cci

irp

)
,

c,e f irp,7,4

(
cci

irp

)
,

c,e f irp,7,5

(
cci

irp

)
,

c,e f irp,7,6

(
cci

irp

)
,

(82)

where the first five are responsible for setting the modes and
parameters of the position-force control of the manipulator vir-
tual effector, and the last one sets the desired distance between
the gripper fingers. Table 12 presents the position-force control
parameters set by the first five functions.

Table 12
Modes and parameters of the position-force control set by the cBirp,7
behaviour. „–” indicates that the given parameter is not necessary in

the given control mode

Motion component

x y z ax ay az

b c c u u u u

Fd 0 0 – – – –

Vd – – 0 0 0 0

Dd
ccirp[xD̃d]

ccirp[yD̃d] – – – –

Id ccirp[x̃Id]
ccirp[ỹId] – – – –

The first partial function sets the operation modes:

e
yci+1

irp,m[b̃] := c,e f irp,7,1

(
cci

irp

)
� [c,c,u,u,u,u] . (83)

The second partial function causes the virtual effector to reduce
to zero the forces along the X and Y axes (of the gripper frame
as this is a relative motion):

e
yci+1

irp,m[F̃d] := c,e f irp,7,2

(
cci

irp

)
� [0,0,−,−,−,−] . (84)

The other components of the end-effector pose should not
change, thus:

e
yci+1

irp,m[Ṽd] := c,e f irp,7,3

(
cci

irp

)
� [−,−,0,0,0,0] . (85)

The two motion components that that are set to contact mode c
the values of inertia and damping must be set:

e
yci+1

irp,m[D̃d] := c,e f irp,7,4

(
cci

irp

)
� [xDd , yDd ,−,−,−,−] , (86)

e
yci+1

irp,m [̃Id] := c,e f irp,7,5

(
cci

irp

)
� [xId , yId ,−,−,−,−] . (87)

The partial end-effector control function responsible for con-
trol of the gripper pose writes the desired distance between the
fingers do into the buffer associated with that virtual effector:

e
yci+1

irp,g[d̃d] := c,e f irp,7,6

(
cci

irp

)
� do. (88)

The last three partial functions use several parameters that are
stored in the control subsystem memory. The values of the ma-
jority of those parameters were determined experimentally, e.g.
after several trials of closing the gripper over several objects the
current in the gripper motor, that signals adequate grasp, was
estimated as cl = 100 mA. Parameters such as damping and
inertia required by the position-force control were estimated
by a more systematic procedure, i.e. performed several hun-
dred experiments repeating the grasping procedure for differ-
ent values of those parameters. Generally, the value of damp-

ing between 200
kg
s

and 400
kg
s

resulted in successful grasps,
whereas the value of inertia had no influence on the process,
mainly due to the low velocity and acceleration of the motion.
For more detailed description of the experimental identification
of position-force control parameters refer to [41].

4.9. Experimental verification. Experimental verification of
the system performance was done using the IRp-6 6-DOF ma-
nipulator. The manipulator is controlled by in-house designed
hardware (having a 500Hz position control loop) [77]. The ma-
nipulator end-effector is equipped with a two-finger gripper
supplemented by a Point Grey Blackfly BFLY-PGE-14S2C-CS
camera, attached to the robot wrist (however the camera was not
used in the experiments). Additionally, there is a Kinect sensor
mounted above the manipulator workspace. The system cali-
bration procedure is presented in [78].

The presented control system was implemented using the
Robot Operating System (ROS) [23, 45]. The virtual effectors
constituting the low-level robot controllers were implemented
as OROCOS (Open Robot Control Software [16]) components.
Detailed description of the components can be found in [79].
Here it is only indicated that along with the library of com-
ponents for control of the IRp-6 robot a high-level API was
developed. It facilitates programming of diverse tasks. The li-
brary and the API together form the IRPOS controller. The
virtual receptor was implemented using DisCODe (Distributed
Component Oriented Data Processing [71]) – a component-
based framework that can also work as a ROS node. Dis-
CODe components rely on two libraries: OpenCV [12, 46] for
2D vision (e.g. extraction of SIFT features) and PCL (Point
Cloud Library) [61] for 3D perception (processing of point
clouds, filtering, matching etc.). The mapping of subsystems
to ROS/OROCOS/DisCODe is presented in Fig. 26.

We validated the system making it pick specific objects out
of several different, randomly placed ones. Fig. 25 presents im-
ages acquired during one of such experiments. In the middle
row RViz visualization of the first three steps is presented, with

Bull. Pol. Ac.: Tech. 68(1) 2020 21

24

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 25. Images from one of the experiments. Top row: (a) initial pose and recognition of objects on the scene, (b) pre-grasp pose reached,
(c) grasp pose reached. Middle row: visualization of (a–c) in RViz. Bottom row: (g) griper closed, (e) object picked, (f) gripper opened and thus

the object dropped

ROS

IRP-6

MANIPULATOR

VIRTUAL

EFFECTOR

TWO

FINGER GRIPPER

VIRTUAL

EFFECTOR

VIRTUAL

RECEPTOR

KINECT

SENSOR

CONTROL

SUBSYSTEM

OROCOS

DISCODE

Fig. 26. Mapping of agent subsystems onto control software modules
implemented in ROS, OROCOS and DisCODe

all the relevant reference frames indicated, such as: gripper ref-
erence frame, pre-grasp, grasp, grasping pose etc. The film pic-
turing this experiment, along with the visualization of consec-
utive phases of object recognition, generation of grasp parame-
ters etc. can be seen at1.

1https://vimeo.com/139905134

5. Related work and discussion

The survey [43] of robot control system architectures pointed
out that the majority of designed systems uses informal meth-
ods of specification usually relying on boxes and arrows ap-
proach. This observation did not change in the recently ex-
tended and updated version [44] of that paper. Although some
work has been done on formal specification of robot control
software (e.g. [52, 51, 83, 87, 5]) and its formal verification (e.g.
[53, 8]), unfortunately it has not gained widespread adoption.
One of the few systems that employs formal specification and
generation of code for the implementation of the lowest layer
of robotic system controller is GenoM (Generator of Modules)
[26, 1]. It is integrated with BIP (Behaviour Interaction Priori-
ties) [9] framework and toolset, which is used to formally spec-
ify and verify the correctness of the produced system, treated as
real-time component based complex structure.

As this paper not only fosters a formalised approach to
robotic system specification, but also promotes a specific archi-
tecture, a fundamental question is whether the proposed archi-
tecture is flexible enough to accommodate other architectures

22 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

that have been proposed by other researchers, i.e. can the func-
tionality of other architectures be reproduced within the pro-
posed architecture? To show that this is the case, some popular
architectures will be outlined using the proposed approach.

Behavioural systems [4, 57] based on reactivity have gained
widespread attention. In order to satisfy the requirement of the
fastest possible response, reactivity should be implemented at
the lowest level. The shortest possible loop starts with proprio-
ceptors and directly influences the real effector. As the activities
of the reactive layer rely mainly on sensor input and to a very
limited degree on internal state (i.e. memory) it is very easy
to reproduce this layer within an embodied agent, where the
quickest responses are organized within the virtual effector and
are based on proprioceptive input. An example of this approach
is the utilisation of force/torque sensing directly within the vir-
tual effector (e.g. [92]). If a subsumption architecture [13, 14]
is to be reproduced, its modules can be represented by blocks
within the DFD definition of a transition function by using in-
hibiting and suppressing links. Otherwise, the modules can de-
liver the results of their computations to a composition unit,
which will compute the final outcome, subsequently dispatched
to a real effector for execution. If a slower reaction is permis-
sible then exteroceptive input from the virtual receptors can be
used by the control subsystem, which will use the same scheme
of operation as the virtual effector. Thus the same pattern will
be reproduced at different levels of the control hierarchy. This
can be continued at even higher levels of the hierarchy by using
extra CT type agents (Section 2.2 or [93]).

Many systems have been designed utilising a muti-tiered ar-
chitecture – usually employing either three-tier (3T) [28] or
two-tier (2T) structures, e.g. NASREM (NASA Standard Ref-
erence Model) [50]. Components of each layer conform to the
function of each layer. The lowest layer is behavioural. It is
tightly coupled with actuators and sensors. The middle layer
is the sequencing layer (sometimes termed as executive layer
[44]), which is responsible for selecting behaviours that will
eventually realise the task. The uppermost tier usually involves
deliberation. In robotics deliberation is associated with plan-
ning. Planning itself can be devoted to different aspects of
robot’s activities, e.g. path planning, trajectory planning, task
planning. However the most demanding form is task planning,
as it requires symbolic representations of the mission as well
as the environment and the robot itself – all of those repre-
sentations should enable reasoning leading to control decisions
(hence this layer usually requires the definition of an adequate
ontology, e.g. [76, 74, 20]). This influences the architecture of
the robot control system. On the one hand, the perception sys-
tem has to transform the sensor readings into symbolic repre-
sentations (e.g. K-CoPMan [59]), i.e. solve the anchoring prob-
lem [22], and on the other hand the sequencing layer has to act
as demanded by the produced plan. The sequencing layer has
to have access to the plan treated as data (e.g. CRAMm [35])
or the planning layer can invoke the sequencing layer to pro-
duce the effects required by the plan (e.g. LAAS architecture
[9])). Some systems, especially set in industrial environment,
rely on one-time generation of plans, which are subsequently
executed without an on-line planning service, e.g. [73]. As in

non-industrial environments fixed plans rarely succeed, replan-
ning has do be done. Moreover, planning requires handling of
inconsistent or missing data [10]. The classical SPA architec-
ture usually involves a heavy computational load associated
with planning. Thus those computations should be delegated
to the supporting computational agents (agents without recep-
tors and effectors), which can either reside in the robot’s control
computer or be offloaded to a cloud [89].

From the above it is evident that planning and sequencing
layers act together to accomplish the plan and in some systems
are tightly bound together (e.g. CRAM [7], CLARAty [58]),
hence 2T instead of 3T architecture results. The proposed em-
bodied agent based architecture can accommodate all of those
possibilities. By design an embodied agent forms a two tier ar-
chitecture: virtual entities controlling the real devices form the
first tier and the control subsystem forms the second one.

A computationally demanding planning task can be decom-
posed into several parts implemented in several interacting CT
agents. In the simplest case the CERT agent is supplemented by
one computational agents (CT type) producing plans based on
the internal imperative to solve a certain problem or on demand
from the user. The planning process can be described in terms
of transition functions, taking in percepts from CERT agents
and the goal embedded in the internal memory of the control
subsystem of a given CT agent, and producing a plan in the
required form. Such a plan as a whole can be transmitted to a
CERT agent, that subsequently interprets that plan, or the CERT
agent obtains the plan as a sequence of consecutive commands
executed one by one. In both cases, if the plan fails the CERT
agent informs the CT agent to replan the activities based on new
evidence obtained from the perception subsystem (i.e. virtual
receptors). This reflects the 3T architecture.

The Syndicate architecture [63] extends the 3T architecture
onto multi-robot systems. In this case the layers are not only
interconnected hierarchically, but also horizontally with com-
ponents of each layer interconnected between themselves, en-
abling direct communication at each level of abstraction. The
architecture based on the concept of an embodied agent does
not allow the virtual entities to communicate with each other,
both internally to the agent and between the agents. However,
if the embodied agents controlling the hardware are structured
appropriately (i.e. the CERT agents), direct communication be-
tween virtual entities is not necessary. Even if it would be re-
quired it can be implemented indirectly through the control sub-
system of the agent. Nevertheless, the CERT agents can be con-
nected between themselves forming the bottom layer. Above
this lowest layer, layers composed of mutually interconnected
CT agents can be constructed, as postulated by the Syndicate ar-
chitecture. Moreover, this structure of layers can be reproduced
creating multi-tier systems. Both in robotics and artificial in-
telligence architectures based on blackboards are used. In that
case agents cooperate with each other sharing and updating the
data in the blackboard (e.g. [68]). Such an architecture is read-
ily reproducible using the postulated approach. In this case the
blackboard becomes a CT type agent catering to the needs of all
other agents. Blackboards can also be utilised by the communi-
cation inter-subsystem layer, that has not been discussed here,

Bull. Pol. Ac.: Tech. 68(1) 2020 23

25

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

that have been proposed by other researchers, i.e. can the func-
tionality of other architectures be reproduced within the pro-
posed architecture? To show that this is the case, some popular
architectures will be outlined using the proposed approach.

Behavioural systems [4, 57] based on reactivity have gained
widespread attention. In order to satisfy the requirement of the
fastest possible response, reactivity should be implemented at
the lowest level. The shortest possible loop starts with proprio-
ceptors and directly influences the real effector. As the activities
of the reactive layer rely mainly on sensor input and to a very
limited degree on internal state (i.e. memory) it is very easy
to reproduce this layer within an embodied agent, where the
quickest responses are organized within the virtual effector and
are based on proprioceptive input. An example of this approach
is the utilisation of force/torque sensing directly within the vir-
tual effector (e.g. [92]). If a subsumption architecture [13, 14]
is to be reproduced, its modules can be represented by blocks
within the DFD definition of a transition function by using in-
hibiting and suppressing links. Otherwise, the modules can de-
liver the results of their computations to a composition unit,
which will compute the final outcome, subsequently dispatched
to a real effector for execution. If a slower reaction is permis-
sible then exteroceptive input from the virtual receptors can be
used by the control subsystem, which will use the same scheme
of operation as the virtual effector. Thus the same pattern will
be reproduced at different levels of the control hierarchy. This
can be continued at even higher levels of the hierarchy by using
extra CT type agents (Section 2.2 or [93]).

Many systems have been designed utilising a muti-tiered ar-
chitecture – usually employing either three-tier (3T) [28] or
two-tier (2T) structures, e.g. NASREM (NASA Standard Ref-
erence Model) [50]. Components of each layer conform to the
function of each layer. The lowest layer is behavioural. It is
tightly coupled with actuators and sensors. The middle layer
is the sequencing layer (sometimes termed as executive layer
[44]), which is responsible for selecting behaviours that will
eventually realise the task. The uppermost tier usually involves
deliberation. In robotics deliberation is associated with plan-
ning. Planning itself can be devoted to different aspects of
robot’s activities, e.g. path planning, trajectory planning, task
planning. However the most demanding form is task planning,
as it requires symbolic representations of the mission as well
as the environment and the robot itself – all of those repre-
sentations should enable reasoning leading to control decisions
(hence this layer usually requires the definition of an adequate
ontology, e.g. [76, 74, 20]). This influences the architecture of
the robot control system. On the one hand, the perception sys-
tem has to transform the sensor readings into symbolic repre-
sentations (e.g. K-CoPMan [59]), i.e. solve the anchoring prob-
lem [22], and on the other hand the sequencing layer has to act
as demanded by the produced plan. The sequencing layer has
to have access to the plan treated as data (e.g. CRAMm [35])
or the planning layer can invoke the sequencing layer to pro-
duce the effects required by the plan (e.g. LAAS architecture
[9])). Some systems, especially set in industrial environment,
rely on one-time generation of plans, which are subsequently
executed without an on-line planning service, e.g. [73]. As in

non-industrial environments fixed plans rarely succeed, replan-
ning has do be done. Moreover, planning requires handling of
inconsistent or missing data [10]. The classical SPA architec-
ture usually involves a heavy computational load associated
with planning. Thus those computations should be delegated
to the supporting computational agents (agents without recep-
tors and effectors), which can either reside in the robot’s control
computer or be offloaded to a cloud [89].

From the above it is evident that planning and sequencing
layers act together to accomplish the plan and in some systems
are tightly bound together (e.g. CRAM [7], CLARAty [58]),
hence 2T instead of 3T architecture results. The proposed em-
bodied agent based architecture can accommodate all of those
possibilities. By design an embodied agent forms a two tier ar-
chitecture: virtual entities controlling the real devices form the
first tier and the control subsystem forms the second one.

A computationally demanding planning task can be decom-
posed into several parts implemented in several interacting CT
agents. In the simplest case the CERT agent is supplemented by
one computational agents (CT type) producing plans based on
the internal imperative to solve a certain problem or on demand
from the user. The planning process can be described in terms
of transition functions, taking in percepts from CERT agents
and the goal embedded in the internal memory of the control
subsystem of a given CT agent, and producing a plan in the
required form. Such a plan as a whole can be transmitted to a
CERT agent, that subsequently interprets that plan, or the CERT
agent obtains the plan as a sequence of consecutive commands
executed one by one. In both cases, if the plan fails the CERT
agent informs the CT agent to replan the activities based on new
evidence obtained from the perception subsystem (i.e. virtual
receptors). This reflects the 3T architecture.

The Syndicate architecture [63] extends the 3T architecture
onto multi-robot systems. In this case the layers are not only
interconnected hierarchically, but also horizontally with com-
ponents of each layer interconnected between themselves, en-
abling direct communication at each level of abstraction. The
architecture based on the concept of an embodied agent does
not allow the virtual entities to communicate with each other,
both internally to the agent and between the agents. However,
if the embodied agents controlling the hardware are structured
appropriately (i.e. the CERT agents), direct communication be-
tween virtual entities is not necessary. Even if it would be re-
quired it can be implemented indirectly through the control sub-
system of the agent. Nevertheless, the CERT agents can be con-
nected between themselves forming the bottom layer. Above
this lowest layer, layers composed of mutually interconnected
CT agents can be constructed, as postulated by the Syndicate ar-
chitecture. Moreover, this structure of layers can be reproduced
creating multi-tier systems. Both in robotics and artificial in-
telligence architectures based on blackboards are used. In that
case agents cooperate with each other sharing and updating the
data in the blackboard (e.g. [68]). Such an architecture is read-
ily reproducible using the postulated approach. In this case the
blackboard becomes a CT type agent catering to the needs of all
other agents. Blackboards can also be utilised by the communi-
cation inter-subsystem layer, that has not been discussed here,

Bull. Pol. Ac.: Tech. 68(1) 2020 23

26

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

but is presented in [85]. Service Oriented Architecture (SOA)
fosters another approach presenting devices as a collection of
capabilities which are exposed as services [3]. Those capabili-
ties can be represented as behaviours of the control subsystem
of a device, including a robot. CT type agents can then organ-
ise publishing, discovering and arranging composite services.
Thus the embodied agent-based approach seems to be flexible
enough to fully support all of the above mentioned architec-
tures. Moreover, focusing on the modelling of a robotics sys-
tem aspect of the presented approach, it is clear that the derived
model can also be used as a system pattern in Model Driven
Engineering (MDE), e.g. [47, 15] and thus subsequently for au-
tomatic code generation.

6. Conclusions

The paper focused on the methodology of designing robot con-
trol systems. The proposed method is based on a general archi-
tecture (universal model) of an embodied agent which is sub-
sequently tailored to the required hardware of the system and
the task it has to execute. It requires the definition of the struc-
ture of the communication buffers and internal memory of the
subsystems of the agent. Those buffers are used as arguments
of transition functions that define the behaviours of subsystems.
All behaviours are based on the same pattern, parametrised by
transition functions and terminal and error conditions. The thus
defined behaviours are assembled into the overall task of a sub-
system by defining an adequate FSM, with the general task of
a given embodied agent being realised by its control subsystem.
As a result the approach leads to definition of both the system
structure and activities.

We also provide an associated design procedure, leading to
a detailed specification of the considered robotic system. As
the design process of any complex system is inherently itera-
tive, we describe the steps that the system architect should fol-
low iteratively in order to refine the specification from general
description to satisfactory level of details. Once the specifica-
tion is detailed enough it is used for the implementation of the
system. It should be noted that the transformation of an FSM,
transition functions and conditions into code is straightforward
in any programming language, so such a specification can be
readily used in the implementation of the control system.

The resulting systematic, formalised and domain-specific ap-
proach, conveys in a synthetic form years of experience of the
research team in the design of robot control systems. Thus
we briefly discuss the evolution of our approach and indicate
the most important robotic systems and turning points that
influenced both the architectural model and the specification
method, enabling them to mature. The diversity of those sys-
tems, both in terms of the hardware utilized and the executed
tasks enables the formulation of the conclusion that this design
method is general enough to be applied to any robotic system
and is not constrained with respect to a hardware type, control
paradigm or task. To support that statement we additionally dis-
cuss how several different robotic architectures present in the
literature can be expressed through the prism of our approach.

We provide examples showing how specific systems following
reactive or deliberative as well as hybrid approaches can be de-
scribed as agents and deliberate how multi-tier architectures can
be composed by assembling agents into layers.

Only a full specification of a realistic system performing use-
ful tasks can show the merits of the proposed design procedure
and convince the reader of its utility. For this reason we present
an example of a specification of a robotic system performing
picking operation relying on visual perception combined with
position-force control. Both the comprehensive presentation of
the methodology and the exemplary specification resulting from
it are novel, not presented earlier.

Acknowledgements. This project was supported by the Na-
tional Science Centre according to the decision no. DEC-
2012/05/D/ST6/03097, the National Centre for Research and
Development grant no. PBS1/A3/8/2012 and grant of the Dean
of Faculty of Electronics and Information Technology of War-
saw University of Technology no. 504/01446/1031/42.

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M.M. Ghallab, and F. Ingrand,
“An architecture for autonomy”, Int. J. of Robotics Research 17
(4), 315–337 (1998).

[2] A. Aldoma, F. Tombari, R.B. Rusu, and M. Vincze, OUR-
CVFH–Oriented, Unique and Repeatable Clustered Viewpoint
Feature Histogram for Object Recognition and 6DOF Pose Es-
timation, Springer, 2012.

[3] S. Ambroszkiewicz, W. Bartyna, M. Faderewski, and G. Ter-
likowski, “Multirobot system architecture: environment repre-
sentation and protocols”, Bull. Pol. Ac.: Tech. 58 (1), 3–13
(2010).

[4] R. C. Arkin, Behavior-Based Robotics, MIT Press, 1998.
[5] C. Armbrust, L. Kiekbusch, T. Ropertz, and K. Berns, Soft robot

control with a behaviour-based architecture, In Soft Robotics,
pages 81–91. Springer, 2015.

[6] V. Azizi, A. Kimmel, K. Bekris, and M. Kapadia, Geometric
reachability analysis for grasp planning in cluttered scenes for
varying end-effectors, In Automation Science and Engineering
(CASE), 2017 13th IEEE Conference on, pages 764–769. IEEE,
2017.

[7] M. Beetz, L. Mösenlechner, and M. Tenorth, CRAMm – a cogni-
tive robot abstract machine for everyday manipulation in human
environments, In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS, October 18–22, 2010, Taipei,
Taiwan, pages 1012–1017. IEEE, 2010.

[8] M. O. Ben Salem, O. Mosbahi, M. Khalgui, Z. Jlalia, G. Frey,
and M. Smida, “Brometh: Methodology to design safe reconfig-
urable medical robotic systems”, The International Journal of
Medical Robotics and Computer Assisted Surgery 13 (3), e1786
(2017).

[9] S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A verifiable
and correct-by-construction controller for robot functional lev-
els”, Journal of Software Engineering for Robotics, 2 (1), 1–19
(2011).

[10] Ł. Białek, M. Borkowska, A. Borkowski, B. Dunin-Kęplicz,
M. Gnatowski, A. Szałas, and J. Szklarski, “Coordinating mul-
tiple rescue robots”, Prace Naukowe Politechniki Warszawskiej.
Elektronika, (194), 185–196 (2014).

24 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

[11] F. Bonsignorio, “A new kind of article for reproducible research
in intelligent robotics [from the field]”, IEEE Robotics & Au-
tomation Magazine 24 (3), 178–182 (2017).

[12] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vi-
sion with the OpenCV Library, O’Reilly, first edition, September
2008.

[13] R.A. Brooks, “A robust layered control system for a mobile
robot”, IEEE Journal of Robotics and Automation 2 (1), 14–23
(1986).

[14] R.A. Brooks, “Intelligence without representation”, Artificial In-
telligence 47 (1-3), 139–159, January (1991).

[15] D. Brugali, “Model-driven software engineering in robotics”,
IEEE Robotics Automation Magazine 22 (3), 155–166, Sept
(2015).

[16] H. Bruyninckx, The real-time motion control core of the ORO-
COS project, In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 2766–2771, IEEE,
September 2003.

[17] H. Bruyninckx and J. De Schutter, “Specification of Force-
Controlled Actions in the Task Frame Formalism: A Synthesis”,
IEEE Trans. on Robotics and Automation 12 (4), 581–589, Au-
gust (1996).

[18] E. Cervera, “Try to start it! the challenge of reusing code in
robotics research”, IEEE Robotics and Automation Letters 4 (1),
49–56 (2019).

[19] H. Chen and B. Bhanu, “3d free-form object recognition in range
images using local surface patches”, Pattern Recognition Letters
28 (10), 1252–1262 (2007).

[20] D. Choiński and M. Senik, “Distributed control systems integra-
tion and management with an ontology-based multi-agent sys-
tem”, Bull. Pol. Ac.: Tech. 66 (5), 613–620 (2018).

[21] A. Collet, M. Martinez, and S.S. Srinivasa, “The MOPED frame-
work: Object Recognition and Pose Estimation for Manipula-
tion”, The International Journal of Robotics Research 30 (10),
1284–1306 (2011).

[22] S. Coradeschi and A. Saffiotti, “An introduction to the anchor-
ing problem”, Robotics and Autonomous Systems 43 (2), 85–96
(2003).

[23] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O.C. Jenkins, Ros-
bridge: Ros for non-ros users, In Robotics Research, pages 493–
504, Springer, 2017.

[24] W. Dudek, W. Szynkiewicz, and T. Winiarski, “Cloud computing
support for the multi-agent robot navigation system”, Journal of
Automation Mobile Robotics and Intelligent Systems 11 (2), 67–
74 (2017).

[25] M. Figat, C. Zieliński, and R. Hexel, Fsm based specification of
robot control system activities, In 11th International Workshop
on Robot Motion and Control (RoMoCo), pages 193–198, July
2017.

[26] S. Fleury, M. Herrb, and R. Chatila, “GenoM: A tool for
the specification and the implementation of operating modules
in a distributed robot architecture”, Proceedings of the 1997
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’97), 2, 842–849, September (1997).

[27] E. Gamma, J. Vlissides, R. Johnson, and R. Helm, Design pat-
terns: elements of reusable object-oriented software, Addison-
Wesley, 1994.

[28] E. Gat, On three-layer architectures, In D. Kortenkamp,
R.P. Bonnasso, and R. Murphy, editors, Artificial Intelligence
and Mobile Robots, pages 195–210, AAAI Press Cambridge,
MA, 1998.

[29] H. Golnabi and A. Asadpour, “Design and application of
industrial machine vision systems” Robotics and Computer-
Integrated Manufacturing 23 (6), 630–637 (2007).

[30] A.R. Graves and C. Czarnecki, “Design patterns for behavior-
based robotics”, IEEE Transactions on Systems, Man, and Cy-
bernetics – part A: Systems and Humans 30 (1), 36–41 (2000).

[31] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes, In
Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 858–865, IEEE, 2011.

[32] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch,
D. Kraft, B. Drost, J. Vidal, S. Ihrke, et al., Bop: benchmark
for 6d object pose estimation, In Proceedings of the European
Conference on Computer Vision (ECCV), pages 19–34, 2018.

[33] M. Hutson, “Artificial intelligence faces reproducibility crisis”,
Science 359 (6377), 725–726 (2018).

[34] M. Janiak and C. Zieliński, “Control system architecture for the
investigation of motion control algorithms on an example of the
mobile platform Rex”, Bull. Pol. Ac.: Tech. 63 (3), 667–678
(2015).

[35] J. Winkler, M. Tenorth, A.K. Bozcuoglu, and M. Beetz, CRAMm
– memories for robots performing everyday manipulation activ-
ities, In 2nd Annual Conference on Advances in Cognitive Sys-
tems, pages 91–108, 2013.

[36] S. Kaisler, Software Paradigms, Wiley Interscience, 2005.
[37] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, Ssd-

6d: Making rgb-based 3d detection and 6d pose estimation great
again, In Proceedings of the International Conference on Com-
puter Vision (ICCV 2017), Venice, Italy, pages 22–29, 2017.

[38] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation”, IEEE
Journal on Robotics and Automation 3 (1), 43–53 (1987).

[39] M. Kopicki, R. Detry, M. Adjigble, R. Stolkin, A. Leonardis,
and J.L. Wyatt, “One-shot learning and generation of dexterous
grasps for novel objects”, The International Journal of Robotics
Research, 2015.

[40] T. Kornuta and M. Stefańczyk, “Modreg: a modular framework
for rgb-d image acquisition and 3d object model registration”,
Foundations of Computing and Decision Sciences 42 (3), 183–
201 (2017).

[41] T. Kornuta, T. Winiarski, and C. Zieliński, Specification of
abstract robot skills in terms of control system behaviours,
In R. Szewczyk, C. Zieliński, and M. Kaliczyńska, editors,
Progress in Automation, Robotics and Measuring Techniques.
Vol. 2. Robotics, volume 351 of Advances in Intelligent Systems
and Computing (AISC), pages 139–152, Springer, 2015.

[42] T. Kornuta and C. Zieliński, “Robot control system design exem-
plified by multi-camera visual servoing”, Journal of Intelligent
& Robotic Systems 77 (3–4), 499–524 (2015).

[43] D. Kortenkamp and R. Simmons, Robotic systems architec-
tures and programming, In O. Khatib and B. Siciliano, editors,
Springer Handbook of Robotics, pages 187–206, Springer, 2008.

[44] D. Kortenkamp, R. Simmons, and D. Brugali, Robotic systems
architectures and programming, In B. Siciliano and O. Khatib,
editors, Springer Handbook of Robotics, 2nd Edition, pages
283–306, Springer, 2016.

[45] A. Koubâa, Robot operating system (ros): The complete refer-
ence, volume 2, Springer, 2017.

[46] R. Laganiere, OpenCV 3 Computer Vision Application Program-
ming Cookbook, Packt Publishing Ltd, 2017.

Bull. Pol. Ac.: Tech. 68(1) 2020 25

27

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

[11] F. Bonsignorio, “A new kind of article for reproducible research
in intelligent robotics [from the field]”, IEEE Robotics & Au-
tomation Magazine 24 (3), 178–182 (2017).

[12] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vi-
sion with the OpenCV Library, O’Reilly, first edition, September
2008.

[13] R.A. Brooks, “A robust layered control system for a mobile
robot”, IEEE Journal of Robotics and Automation 2 (1), 14–23
(1986).

[14] R.A. Brooks, “Intelligence without representation”, Artificial In-
telligence 47 (1-3), 139–159, January (1991).

[15] D. Brugali, “Model-driven software engineering in robotics”,
IEEE Robotics Automation Magazine 22 (3), 155–166, Sept
(2015).

[16] H. Bruyninckx, The real-time motion control core of the ORO-
COS project, In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 2766–2771, IEEE,
September 2003.

[17] H. Bruyninckx and J. De Schutter, “Specification of Force-
Controlled Actions in the Task Frame Formalism: A Synthesis”,
IEEE Trans. on Robotics and Automation 12 (4), 581–589, Au-
gust (1996).

[18] E. Cervera, “Try to start it! the challenge of reusing code in
robotics research”, IEEE Robotics and Automation Letters 4 (1),
49–56 (2019).

[19] H. Chen and B. Bhanu, “3d free-form object recognition in range
images using local surface patches”, Pattern Recognition Letters
28 (10), 1252–1262 (2007).

[20] D. Choiński and M. Senik, “Distributed control systems integra-
tion and management with an ontology-based multi-agent sys-
tem”, Bull. Pol. Ac.: Tech. 66 (5), 613–620 (2018).

[21] A. Collet, M. Martinez, and S.S. Srinivasa, “The MOPED frame-
work: Object Recognition and Pose Estimation for Manipula-
tion”, The International Journal of Robotics Research 30 (10),
1284–1306 (2011).

[22] S. Coradeschi and A. Saffiotti, “An introduction to the anchor-
ing problem”, Robotics and Autonomous Systems 43 (2), 85–96
(2003).

[23] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O.C. Jenkins, Ros-
bridge: Ros for non-ros users, In Robotics Research, pages 493–
504, Springer, 2017.

[24] W. Dudek, W. Szynkiewicz, and T. Winiarski, “Cloud computing
support for the multi-agent robot navigation system”, Journal of
Automation Mobile Robotics and Intelligent Systems 11 (2), 67–
74 (2017).

[25] M. Figat, C. Zieliński, and R. Hexel, Fsm based specification of
robot control system activities, In 11th International Workshop
on Robot Motion and Control (RoMoCo), pages 193–198, July
2017.

[26] S. Fleury, M. Herrb, and R. Chatila, “GenoM: A tool for
the specification and the implementation of operating modules
in a distributed robot architecture”, Proceedings of the 1997
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’97), 2, 842–849, September (1997).

[27] E. Gamma, J. Vlissides, R. Johnson, and R. Helm, Design pat-
terns: elements of reusable object-oriented software, Addison-
Wesley, 1994.

[28] E. Gat, On three-layer architectures, In D. Kortenkamp,
R.P. Bonnasso, and R. Murphy, editors, Artificial Intelligence
and Mobile Robots, pages 195–210, AAAI Press Cambridge,
MA, 1998.

[29] H. Golnabi and A. Asadpour, “Design and application of
industrial machine vision systems” Robotics and Computer-
Integrated Manufacturing 23 (6), 630–637 (2007).

[30] A.R. Graves and C. Czarnecki, “Design patterns for behavior-
based robotics”, IEEE Transactions on Systems, Man, and Cy-
bernetics – part A: Systems and Humans 30 (1), 36–41 (2000).

[31] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes, In
Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 858–865, IEEE, 2011.

[32] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch,
D. Kraft, B. Drost, J. Vidal, S. Ihrke, et al., Bop: benchmark
for 6d object pose estimation, In Proceedings of the European
Conference on Computer Vision (ECCV), pages 19–34, 2018.

[33] M. Hutson, “Artificial intelligence faces reproducibility crisis”,
Science 359 (6377), 725–726 (2018).

[34] M. Janiak and C. Zieliński, “Control system architecture for the
investigation of motion control algorithms on an example of the
mobile platform Rex”, Bull. Pol. Ac.: Tech. 63 (3), 667–678
(2015).

[35] J. Winkler, M. Tenorth, A.K. Bozcuoglu, and M. Beetz, CRAMm
– memories for robots performing everyday manipulation activ-
ities, In 2nd Annual Conference on Advances in Cognitive Sys-
tems, pages 91–108, 2013.

[36] S. Kaisler, Software Paradigms, Wiley Interscience, 2005.
[37] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, Ssd-

6d: Making rgb-based 3d detection and 6d pose estimation great
again, In Proceedings of the International Conference on Com-
puter Vision (ICCV 2017), Venice, Italy, pages 22–29, 2017.

[38] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation”, IEEE
Journal on Robotics and Automation 3 (1), 43–53 (1987).

[39] M. Kopicki, R. Detry, M. Adjigble, R. Stolkin, A. Leonardis,
and J.L. Wyatt, “One-shot learning and generation of dexterous
grasps for novel objects”, The International Journal of Robotics
Research, 2015.

[40] T. Kornuta and M. Stefańczyk, “Modreg: a modular framework
for rgb-d image acquisition and 3d object model registration”,
Foundations of Computing and Decision Sciences 42 (3), 183–
201 (2017).

[41] T. Kornuta, T. Winiarski, and C. Zieliński, Specification of
abstract robot skills in terms of control system behaviours,
In R. Szewczyk, C. Zieliński, and M. Kaliczyńska, editors,
Progress in Automation, Robotics and Measuring Techniques.
Vol. 2. Robotics, volume 351 of Advances in Intelligent Systems
and Computing (AISC), pages 139–152, Springer, 2015.

[42] T. Kornuta and C. Zieliński, “Robot control system design exem-
plified by multi-camera visual servoing”, Journal of Intelligent
& Robotic Systems 77 (3–4), 499–524 (2015).

[43] D. Kortenkamp and R. Simmons, Robotic systems architec-
tures and programming, In O. Khatib and B. Siciliano, editors,
Springer Handbook of Robotics, pages 187–206, Springer, 2008.

[44] D. Kortenkamp, R. Simmons, and D. Brugali, Robotic systems
architectures and programming, In B. Siciliano and O. Khatib,
editors, Springer Handbook of Robotics, 2nd Edition, pages
283–306, Springer, 2016.

[45] A. Koubâa, Robot operating system (ros): The complete refer-
ence, volume 2, Springer, 2017.

[46] R. Laganiere, OpenCV 3 Computer Vision Application Program-
ming Cookbook, Packt Publishing Ltd, 2017.

Bull. Pol. Ac.: Tech. 68(1) 2020 25

28

T. Kornuta, C. Zieliński, and T. Winiarski

Bull. Pol. Ac.: Tech. 68(1) 2020

T. Kornuta, C. Zieliński, and T. Winiarski

[47] M. Lauder, M. Schlereth, S. Rose, and A. Schürr, “Model-driven
systems engineering: state-of-the-art and research challenges”,
Bull. Pol. Ac.: Tech. 58 (3), 409–421 (2010).

[48] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A.C. Berg, Ssd: Single shot multibox detector, In European
conference on computer vision, pages 21–37, Springer, 2016.

[49] D.G. Lowe, “Distinctive image features from scale-invariant
keypoints”, International Journal of Computer Vision 60 (2),
91–110 (2004).

[50] R. Lumia, J. Fiala, and A. Wavering, “The nasrem robot control
system standard”, Robotics and Computer-Integrated Manufac-
turing 6 (4), 303–308 (1989). Special Issue Robots in Manufac-
turing.

[51] D.M. Lyons, Prerational intelligence, volume 2: Adaptive be-
havior and intelligent systems without symbols and logic of
Studies in cognitive systems, chapter A Schema-Theory Ap-
proach to Specifying and Analysing the Behavior of Robotic
Systems, pages 51–70, Kluwer Academic, 2001.

[52] D.M. Lyons and M.A. Arbib, “A formal model of computation
for sensory-based robotics”, IEEE Transactions on Robotics and
Automation 5 (3), 280–293, June (1989).

[53] D.M. Lyons, R.C. Arkin, S. Jiang, M. O’Brien, F. Tang, and
P. Tang, “Performance verification for robot missions in uncer-
tain environments”, Robotics and Autonomous Systems 98, 89–
104 (2017).

[54] M. Mason, “Compliance and force control for computer con-
trolled manipulators”, IEEE Transactions on Systems, Man, and
Cybernetics (11), 418–432 (1981).

[55] A.T. Miller and P.K. Allen, “Graspit! a versatile simulator for
robotic grasping”, Robotics & Automation Magazine, IEEE 11
(4), 110–122 (2004).

[56] M. Muja and D.G. Lowe, Fast approximate nearest neighbors
with automatic algorithm configuration, In VISAPP (1), pages
331–340, 2009.

[57] S. Müller, P. Wolf, K. Berns, and P. Liggesmeyer, Combin-
ing behavior-based and contract-based control architectures for
behavior optimization of networked autonomous vehicles in
unstructured environments, In Commercial Vehicle Technology
2018, pages 324–335, Springer, 2018.

[58] I. Nesnas, The CLARAty project: Coping with hardware and
software heterogenity, In D. Brugali, editor, Software Engineer-
ing for Experimental Robotics, pages 9–30, Springer–Verlag,
2007.

[59] D. Pangercic, M. Tenorth, D. Jain, and M. Beetz, Combining per-
ception and knowledge processing for everyday manipulation, In
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, pages 1065–1071, 2010.

[60] C.R. Qi, H. Su, K. Mo, and L.J. Guibas, “Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation”, Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE 1 (2),
4 (2017).

[61] R.B. Rusu and S. Cousins, 3D is here: Point Cloud Library
(PCL), In International Conference on Robotics and Automa-
tion, Shanghai, China, 2011.

[62] S. Sabour, N. Frosst, and G.E. Hinton, Dynamic routing between
capsules, In Advances in Neural Information Processing Sys-
tems, pages 3856–3866, 2017.

[63] B. Sellner, F.W. Heger, L.M. Hiatt, R. Simmons, and S. Singh,
“Coordinated multiagent teams and sliding autonomy for large-
scale assembly”, Proceedings of the IEEE – Special Issue on
Multi-Robot Systems 94 (7), 1425–1444, July (2006).

[64] D. Seredyński and W. Szynkiewicz, Fast Grasp Learn-
ing for Novel Objects, In R. Szewczyk, C. Zieliński, and
M. Kaliczyńska, editors, Recent Advances in Automation,
Robotics and Measuring Techniques, volume 440 of Advances
in Intelligent Systems and Computing (AISC), pages 681–692.
Springer, 2016.

[65] D. Seredyński, T. Winiarski, K. Banachowicz, and C. Zieliński,
Grasp planning taking into account the external wrenches acting
on the grasped object, In Robot Motion and Control (RoMoCo),
10th International Workshop on, pages 40–45. IEEE, 2015.

[66] B.R. Shetty and M.H. Ang, Active compliance control of a puma
560 robot, In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 4, pages 3720–
3725, IEEE, 1996.

[67] K. Shoemake, Animating rotation with quaternion curves, In
ACM SIGGRAPH computer graphics, volume 19, pages 245–
254, ACM, 1985.

[68] P. Skrzypczyński, “Multi-agent software architecture for au-
tonomous robots: A practical approach”, Management and Pro-
duction Engineering Review 1 (4), 55–66, December (2010).

[69] M. Staniak, T. Winiarski, and C. Zieliński, Parallel visual-force
control, In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2008.

[70] M. Staniak and C. Zieliński, “Structures of visual servos”,
Robotics and Autonomous Systems 58 (8), 940–954 (2010).

[71] M. Stefańczyk and T. Kornuta, Handling of asynchronous data
flow in robot perception subsystems, In Simulation, Modeling,
and Programming for Autonomous Robots, volume 8810 of Lec-
ture Notes in Computer Science, pages 509–520, Springer, 2014.

[72] M. Stefańczyk, M. Laszkowski, and T. Kornuta, WUT Visual
Perception Dataset – a dataset for registration and recognition
of objects, In Challenges in Automation, Robotics and Measure-
ment Techniques, volume 440 (2) of Advances in Intelligent Sys-
tems and Computing (AISC), pages 635–645, Springer, 2016.

[73] M. Stenmark and J. Malec, “Knowledge-Based Instruction of
Manipulation Tasks for Industrial Robotics”, Robotics and Com-
puter Integrated Manufacturing, 33, 56–67, June (2015).

[74] M. Stenmark, J. Malec, K. Nilsson, and A. Robertsson, “On dis-
tributed knowledge bases for robotized small-batch assembly”,
IEEE Transactions on Automation Science and Engineering 12
(2), 519–528 (2015).

[75] C. Szegedy, S. Ioffe, V. Vanhoucke, and A.A. Alemi, Inception-
v4, inception-resnet and the impact of residual connections on
learning, In AAAI, volume 4, page 12, 2017.

[76] M. Tenorth and M. Beetz, “KnowRob: a knowledge processing
infrastructure for cognition-enabled robots”, International Jour-
nal of Robotics Research 32 (5), 566–590, May (2013).

[77] M. Walęcki, K. Banachowicz, and T. Winiarski, Research
oriented motor controllers for robotic applications, In
K. Kozłowski, editor, Robot Motion and Control 2011 (LNCiS)
Lecture Notes in Control & Information Sciences, volume 422,
pages 193–203, Springer Verlag London Limited, 2012.

[78] T. Winiarski and K. Banachowicz, Automated generation of
component system for the calibration of the service robot kine-
matic parameters, In 20th IEEE International Conference on
Methods and Models in Automation and Robotics, MMAR, pages
1098–1103, IEEE, 2015.

[79] T. Winiarski, K. Banachowicz, M. Walęcki, and J. Bohren,
Multibehavioral position-force manipulator controller, In 21th
IEEE International Conference on Methods and Models in Au-
tomation and Robotics, MMAR, pages 651–656, IEEE, 2016.

26 Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

[80] T. Winiarski and A. Woźniak, “Indirect force control develop-
ment procedure”, Robotica 31 (3), 465–478 (2013).

[81] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, “3d point-capsule
networks”, arXiv preprint arXiv:1812.10775, 2018.

[82] C. Zieliński, The MRROC++ system, In Proceedings of the First
Workshop on Robot Motion and Control, RoMoCo’99, pages
147–152, June 1999.

[83] C. Zieliński, A Quasi-Formal Approach to Structuring Multi-
Robot System Controllers, In Second International Workshop on
Robot Motion and Control, RoMoCo’01, pages 121–128, 18–20
October 2001.

[84] C. Zieliński, “Formal approach to the design of robot program-
ming frameworks: the behavioural control case” Bull. Pol. Ac.:
Tech. 53 (1), 57–67, March (2005).

[85] C. Zieliński, M. Figat, and R. Hexel, “Communication within
multi-fsm based robotic systems”, Journal of Intelligent &
Robotic Systems 93 (3-4), 787–805 (2019).

[86] C. Zieliński and T. Kornuta, Generation of linear Cartesian tra-
jectories for robots using industrial motion-controllers, In 16th
IEEE International Conference on Methods and Models in Au-
tomation and Robotics, MMAR, pages 62–67, August 2011.

[87] C. Zieliński and T. Kornuta, Diagnostic requirements in multi-
robot systems, In Intelligent Systems in Technical and Medical
Diagnostics, volume 230 of Advances in Intelligent Systems and
Computing (AISC), pages 345–356, Springer, 2014.

[88] C. Zieliński, T. Kornuta, and T. Winiarski, A systematic method
of designing control systems for service and field robots, In 19-

th IEEE International Conference on Methods and Models in
Automation and Robotics, MMAR, pages 1–14. IEEE, 2014.

[89] C. Zieliński, M. Stefańczyk, T. Kornuta, M. Figat, W. Dudek,
W. Szynkiewicz, W. Kasprzak, J. Figat, M. Szlenk, T. Winiarski,
K. Banachowicz, T. Zielińska, E. G. Tsardoulias, A. L. Symeoni-
dis, F.E. Psomopoulos, A.M. Kintsakis, P.A. Mitkas, A. Thal-
las, S.E. Reppou, G.T. Karagiannis, K. Panayiotou, V. Prunet,
M. Serrano, J.-P. Merlet, S. Arampatzis, A. Giokas, L. Pen-
teridis, I. Trochidis, D. Daney, and M. Iturburu, “Variable struc-
ture robot control systems: The RAPP approach”, Robotics and
Autonomous Systems 94, 226–244 (2017).

[90] C. Zieliński, W. Szynkiewicz, T. Winiarski, M. Staniak, W. Cza-
jewski, and T. Kornuta, “Rubik’s cube as a benchmark validat-
ing MRROC++ as an implementation tool for service robot con-
trol systems”, Industrial Robot: An International Journal 34 (5),
368–375 (2007).

[91] C. Zieliński and T. Winiarski, “General specification of multi-
robot control system structures”, Bull. Pol. Ac.: Tech. 58 (1), 15–
28 (2010).

[92] C. Zieliński and T. Winiarski, “Motion generation in the MR-
ROC++ robot programming framework”, International Journal
of Robotics Research 29 (4), 386–413 (2010).

[93] C. Zieliński, T. Winiarski, and T. Kornuta, Agent-based struc-
tures of robot systems, In J. Kacprzyk and et al, editors, Trends
in Advanced Intelligent Control, Optimization and Automation,
volume 577 of Advances in Intelligent Systems and Computing,
pages 493–502, 2017.

Bull. Pol. Ac.: Tech. 68(1) 2020 27

29

A universal architectural pattern and specification method for robot control system design

Bull. Pol. Ac.: Tech. 68(1) 2020

A universal architectural pattern

[80] T. Winiarski and A. Woźniak, “Indirect force control develop-
ment procedure”, Robotica 31 (3), 465–478 (2013).

[81] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, “3d point-capsule
networks”, arXiv preprint arXiv:1812.10775, 2018.

[82] C. Zieliński, The MRROC++ system, In Proceedings of the First
Workshop on Robot Motion and Control, RoMoCo’99, pages
147–152, June 1999.

[83] C. Zieliński, A Quasi-Formal Approach to Structuring Multi-
Robot System Controllers, In Second International Workshop on
Robot Motion and Control, RoMoCo’01, pages 121–128, 18–20
October 2001.

[84] C. Zieliński, “Formal approach to the design of robot program-
ming frameworks: the behavioural control case” Bull. Pol. Ac.:
Tech. 53 (1), 57–67, March (2005).

[85] C. Zieliński, M. Figat, and R. Hexel, “Communication within
multi-fsm based robotic systems”, Journal of Intelligent &
Robotic Systems 93 (3-4), 787–805 (2019).

[86] C. Zieliński and T. Kornuta, Generation of linear Cartesian tra-
jectories for robots using industrial motion-controllers, In 16th
IEEE International Conference on Methods and Models in Au-
tomation and Robotics, MMAR, pages 62–67, August 2011.

[87] C. Zieliński and T. Kornuta, Diagnostic requirements in multi-
robot systems, In Intelligent Systems in Technical and Medical
Diagnostics, volume 230 of Advances in Intelligent Systems and
Computing (AISC), pages 345–356, Springer, 2014.

[88] C. Zieliński, T. Kornuta, and T. Winiarski, A systematic method
of designing control systems for service and field robots, In 19-

th IEEE International Conference on Methods and Models in
Automation and Robotics, MMAR, pages 1–14. IEEE, 2014.

[89] C. Zieliński, M. Stefańczyk, T. Kornuta, M. Figat, W. Dudek,
W. Szynkiewicz, W. Kasprzak, J. Figat, M. Szlenk, T. Winiarski,
K. Banachowicz, T. Zielińska, E. G. Tsardoulias, A. L. Symeoni-
dis, F.E. Psomopoulos, A.M. Kintsakis, P.A. Mitkas, A. Thal-
las, S.E. Reppou, G.T. Karagiannis, K. Panayiotou, V. Prunet,
M. Serrano, J.-P. Merlet, S. Arampatzis, A. Giokas, L. Pen-
teridis, I. Trochidis, D. Daney, and M. Iturburu, “Variable struc-
ture robot control systems: The RAPP approach”, Robotics and
Autonomous Systems 94, 226–244 (2017).

[90] C. Zieliński, W. Szynkiewicz, T. Winiarski, M. Staniak, W. Cza-
jewski, and T. Kornuta, “Rubik’s cube as a benchmark validat-
ing MRROC++ as an implementation tool for service robot con-
trol systems”, Industrial Robot: An International Journal 34 (5),
368–375 (2007).

[91] C. Zieliński and T. Winiarski, “General specification of multi-
robot control system structures”, Bull. Pol. Ac.: Tech. 58 (1), 15–
28 (2010).

[92] C. Zieliński and T. Winiarski, “Motion generation in the MR-
ROC++ robot programming framework”, International Journal
of Robotics Research 29 (4), 386–413 (2010).

[93] C. Zieliński, T. Winiarski, and T. Kornuta, Agent-based struc-
tures of robot systems, In J. Kacprzyk and et al, editors, Trends
in Advanced Intelligent Control, Optimization and Automation,
volume 577 of Advances in Intelligent Systems and Computing,
pages 493–502, 2017.

Bull. Pol. Ac.: Tech. 68(1) 2020 27

