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Abstract

The commercially available metal-oxide TGS sensors are widely used in many applications due to the

fact that they are inexpensive and considered to be reliable. However, they are partially selective and their

responses are influenced by various factors, e.g. temperature or humidity level. Therefore, it is important to

design a proper analysis system of the sensor responses. In this paper, the results of examinations of eight

commercial TGS sensors combined in an array and measured over a period of a few months for the purpose

of prediction of nitrogen dioxide concentration are presented. The measurements were performed at different

relative humidity levels. PLS regression was employed as a method of quantitative analysis of the obtained

sensor responses. The results of NO2 concentration prediction based on static and dynamic responses of

sensors are compared. It is demonstrated that it is possible to predict the nitrogen dioxide concentration

despite the influence of humidity.
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1. Introduction

Electronic devices which are able to detect gases, commonly known in the literature as

electronic noses, have found a wide range of potential applications. For example, in medicine

to the detection of diseases [1], in industry to monitoring quality of food or drinks [2] or in

environmental monitoring [3–5]. Their advantages, e.g. the possibility of working in the real-time

operation mode, compact size or low cost, resulted in electronic gas-analysing systems becoming

an attractive alternative to other gas-analysing systems, like gas chromatographs. However, these

devices still have their limitations, which need to be overcome.

A typical electronic gas-analysing device consists of four main elements, namely, a gas

delivery subsystem, an array of gas sensors, data acquisition and power supply circuits and data

analysis software. Such systems usually employ feature vectors created based on the measured
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responses, which are given as inputs for pattern recognition algorithms. There are reports, e.g.

[6–8], in which the features associated with the power supply system of sensors are used. This

technique is called temperature modulation. There are also reports in which the features for gas

recognition are associated with the data acquisition system, e.g. fluctuation-enhanced gas sensing

[9, 10] or electrochemical measurement techniques [11]. Another approach used for obtaining

additional information about the type and concentration of a measured gas uses a gas-delivery

subsystem and is associated with the changes of gas flow rate in the measurement chamber. The

application of different gas flow patterns enables to obtain unique shapes of the sensor responses

which provide additional features for the recognition algorithms [12].

The main drawback of electronic gas-analysing systems is associated with the properties of

gas sensors [13]. For example, gas sensors tend to drift [14]. The lack of long-term stability is one

of the crucial problems and impose the necessity of frequent recalibration of the gas-recognition

system. The influence of humidity is one of the sources of this instability and the methods used

for its mitigation are the topic of a number of reports [15–19]. Due to the fact that TGS sensors are

sensitive to many factors, the information obtained from static measurements can be insufficient

for reliable gas detection. There are reported several techniques of dynamic measurements of gas

sensors that are used to improve the possibility of gas detection [20, 21]. In general, they are

based on changing the measurement conditions by changing the gas flow rate in the measurement

chamber. One of the procedures of dynamic measurements of a sensor array is called the stop-

flow mode of operation [22]. It consist of three stages. During the first stage the target gas is

delivered to the measurement cell. In the next phase the gas flow is stopped. Finally, in the last

stage of measurement, the cell is cleaned with a reference gas, e.g. synthetic air. This technique

also enables to extract additional information hidden in the shape of the obtained acquisition. In

the study presented here, all measurements were performed using the stop-flow mode of sensor

operation.

There is a need for reports in which the gas-recognizing system performance is examined over

a longer period of time. In this study, we demonstrate the results of evaluation of the responses

of eight commercially available sensors combined in an array to predict the nitrogen dioxide

concentration measured at different humidity levels. The dynamic measurements performed

using the stop-flow technique had been performed for three months. The data obtained during the

initial successive weeks were used for system calibration and the data collected during further

measurements were used for validation. Partial Least Squares regression (PLS) [23] was chosen

as a method of creating a multivariate calibration model. Four approaches to the preparation of

regression models were compared. Namely, the regression models were calculated using single-

value resistances of the sensors, using raw and normalized acquisitions obtained during dynamic

measurements and using the features extracted from acquisitions with and without pre-processing.

2. Experimental

2.1. Measurement stand

The measurements were carried out on a sensor array consisting of two measurement cells

(denoted as #1 and #2) connected in series with, in total, eight commercially available semi-

conductor TGS sensors (four sensors in each cell) and two temperature sensors (one for each

cell). A scheme of the measurement stand is presented in Fig. 1 and a detailed description of the

measurement cells can be found in [24]. Temperature inside cell #2 was adjusted by a heating

cable wrapped around the measurement chamber #2, controlled by a Fuji PXR4 temperature con-
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troller. This made it possible to perform measurements at a constant temperature of the chamber.

Temperatures inside measurement chambers #1 and #2 (stabilized with the heating cable) were

equal to (43± 2)◦C and 47◦C, respectively. The sensors used in the array along with a list of their

catalogue data are shown in Table 1. The sensor heaters were supplied with a constant voltage

of 5 V or 6.2 V (TGS 2106) using HAMEG 8040 power supply. The responses of sensors were

automatically measured using a Keithley 2700 multichannel multi-meter and software designed

for data acquisition. The resistance was measured using the 4-probe method. The gas-delivery

system consisted of three Brooks GF Series mass flow controllers connected to the PC with an

RS 485 interface. For measurements at changing relative humidity levels, one of the controllers

was connected to an air bubbler. The gas profiles were programmed with MEDSON software.

The total gas flow in the measurement cell was constant and set to 100 cm3min−1. Two humidity

sensors (SY-HS-220) were used for monitoring the humidity level. One of the humidity sensors

was placed at the inlet of the measurement chamber and the second was placed at the outlet of the

measurement chamber to ensure obtaining a required humidity level. For further analysis, only

the readings from the sensor placed at the inlet were selected.

Fig. 1. The measurement stand.

Table 1. Composition of an array.

Number Sensors Target gases Concentrations of target gases*

S1 TGS 826 #1
NH3 > 5 ppm

S2 TTGS 826 #2

S3 TGS 825 #1
H2S > 3 ppm

S4 TGS 825 #2

S5 TGS 2106 #1
NO2 0.1~10 ppm

S6 TTGS 2106#2

S7 TGS 880 #2 Air pollutants –

S8 TGS 2600 #1 Air pollutants 1~30 ppm H2

*according to the catalogue data of sensors
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3. Data analysis

3.1. Measurement procedure for dynamic measurements

The air pollutant selected for the measurements as a target gas was nitrogen dioxide. Despite

the fact that only one type of sensor (TGS 2106) was designed for the detection of this compound,

all used sensors changed their output resistance in the presence of the target gas due to their partial

selectivity. As the reference gas, synthetic air was used. All gases were provided by Linde Gaz.

Concentrations of nitrogen dioxide for the measurements were equal to 25 ppm, 50 ppm, 75 ppm

and 100 ppm. All nitrogen dioxide concentrations were measured in dry air and at 10%, 20%,

30%, 40% and 50% relative humidity levels. Before performing the dynamic measurements, the

sensor responses were measured at all NO2 concentrations, all relative humidity levels, as well

as different flow rates to characterize TGS sensors. One cycle of the stop-flow procedure took

1 hour. The exposure to the target gas had lasted for 7 min, then the gas flow had been stopped for

another 7 min. For the remaining 46 minutes the clean air had flowed through the measurement

chambers. Originally [22], all stages in the stop-flow mode of operation lasted 7 minutes, but,

for the purpose of cleaning, the air-on stage was extended. The resistance values were measured

every 30 seconds, thus a single acquisition contained 120 values. All measurements taken for

further analyses were acquired with a total flow rate of 100 cm3min−1.

The measurements were carried out over a period of three months. The most frequently

occurring data for calibration and validation sets were selected randomly from the available

dataset. However, this work was intended to demonstrate the behaviour of sensors over a longer

period of time and to examine stability of the calibrated system, which is closer to an electronic

gas-recognition system working in real conditions. Therefore, the acquisitions obtained in the first

successive weeks were composed into a calibration set, while the remaining ones were used as a

validation set. In total, 79 acquisitions for each sensor were obtained. The initial 51 acquisitions

obtained in the first two months were treated as a calibration set. The remaining 28 ones were

used to validate the performance of sensors. The obtained multivariate set was not large enough

to use popular machine learning techniques, such as Artificial Neural Networks or Support Vector

Machine. Therefore, the statistical linear regression method PLS was selected, since it does not

require a large calibration dataset [25].

There were two main goals of the analysis performed using the dynamic responses of TGS

sensors presented in this work. The first was to find the optimal calibration model for prediction of

the nitrogen dioxide concentration. For this purpose the Partial Least Squares Regression method

was employed and tested with various feature vectors obtained from sensor responses. The results

were compared with a PLS model calibrated using only single-value resistances of eight sensors,

as well as with a PLS model obtained from all points of acquisitions from dynamic measurements.

Such values were derived from the dynamic acquisitions as the resistance response of sensors after

seven minutes of exposure to the target gas. The second goal was to create a calibration model

which was insensitive to changes in humidity levels. This goal was achieved by using techniques of

pre-processing data obtained from the dynamic measurements of sensors and feature extraction.

3.2. Feature extraction and data pre-processing techniques

The analysis of the dynamic responses of TGS sensors was based on an assumption that the

shape of acquisition obtained during the dynamic measurements contained information about

the concentration of the measured target gas. By calculating the number of parameters (features)

it is possible to preserve this information about gas concentration and reduce the volume of
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data used as the input vector for the calibration model. Additionally, through appropriate data

processing, such as normalization of the acquisitions and monitoring of the current humidity

level, drift caused by the influence of humidity can be compensated. In this work, the features

for the calibration set were calculated based on both – normalized and raw acquisitions. The

acquisitions were normalized according to [26].

Various features can be extracted from the response curves obtained during dynamic measure-

ments [21]. Some of them are taken directly from the acquisition, e.g. the minimum or maximum

value of sensor response, based on which amplitude or relative amplitude can be calculated.

Some features are connected with the dynamic properties of sensors, i.e. quasi time-constants (a

selected part of the initial exposure to the target gas), or the features which represent the total

information about the reaction on the sensing layer of sensors, i.e. the surface under the measured

curve. Some features which can be calculated, such as kurtosis or skewness, are measures which

describe the shape of the measured curve. Skewness is the indicator of the curve asymmetry,

while kurtosis describes its flatness. These parameters are usually used in the context of statistical

distribution shapes, but in this paper we use them as features for gas concentration recognition.

They were calculated from each obtained dynamic acquisition. A total of five features were se-

lected to prepare the feature vectors, according to [21], namely: amplitude (A), surface under the

curve (S), skewness (Sk), kurtosis (K) and full width at half maximum (T1/2). All of the features

described were calculated automatically using software written by the authors in Matlab. Matlab

was also used in the preparation of the calibration model.

3.3. Partial Least Squares

The PLS method was used to create a multivariate calibration model. This linear supervised

method requires two datasets – a matrix of measured samples X and a corresponding matrix of

responses Y. The PLS method models a relationship between these two matrices. In some cases,

instead of a matrix of dependent variables, a vector of one dependent variable is considered.

In this work, there is used a vector of dependent variables Y which contains the values of NO2

concentrations. The method determines a set of latent variables (LVs) in such a way that the LVs

explain both the variance of X (i.e. a set of feature vectors described above or a set of vectors

of sensor resistances) as well as the correlation with Y. As a result, a matrix of predictors is

obtained, which estimates the gas concentration. Another advantage of using this method is the

possibility of achieving a reduction in data volume since only in the first few latent variables there

is included most information from the original data.

3.4. Analysis scenario and model verification

In Fig. 2a flowchart of the performed analysis is presented. There are four prepared sets of

vectors: V1 composed of eight values of TGS single-value resistance responses and information

about the measured RH level; V2 – composed of the acquisitions from all sensors (120 mea-

surement points ×8 sensors + information about the measured RH level); V3 – composed of

the normalized acquisitions from all sensors (120 measurement points ×8 sensors + information

about the measured RH level); V4 – containing 41 elements (5 features ×8 TGS sensors + in-

formation about the measured RH level). The features in this case were calculated based on raw

acquisitions, without normalization. The last prepared set of feature vectors; V5 – contains 41

elements (5 features ×8 TGS sensors + information about RH levels). The features were calcu-

lated based on normalized acquisitions. The calibration sets contain 51 observations collected in

different NO2 concentrations and RH levels over a few weeks. Thus, dimensions of the resulting
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multivariate calibration sets were equal to 51 (number of observations)×8 for vector V1, 51 ×921

for vectors V2 and V3, 51 ×41 for vector V4 and 51 ×41 for vector V5. The validation sets contain

28 observations for each set of prepared vectors collected within a few weeks after the calibration

data were obtained.

Fig. 2. A flowchart of analysis scenario.

In order to analyse the significance of sensors and features, the length of the feature vectors was

reduced by omitting responses of selected sensors or calculated features from the input vector.

Namely, the responses of single consecutive sensors and their combinations were iteratively

excluded from the dataset. In each case, the calibration was performed (including optimization

of the parameters of PLS method by selecting the number of LVs, which provide the lowest value

of prediction error) and the prediction error was calculated based on the validation data. The

excluded sensor or combination of sensors was rejected permanently if the value of obtained Root

Mean Squared Error of prediction (RMSEp) increased or did not change. In the other case, the

sensor responses were preserved. Only the combination of sensor responses which gave the lowest

prediction error was preserved. For input vectors V4 and V5 further reduction of dimension of

the datasets were performed by omitting the features or their combinations in a similar way that

in the case of eliminating a sensor. The optimal number of LVs used for preparation of the final

prediction models was selected independently for each analysis scheme, based on the observation

of the value of prediction errors. In each case, the value of variance in data explained by the latent

variables was higher than 96% .

4. Results and discussion

4.1. TGS sensor responses to various NO2 concentrations and changes in relative humidity

level

In Fig. 3a, the normalized responses of seven TGS sensors to 100 ppm NO2 concentrations

for all measured relative humidity levels are presented. The response of the sixth sensor, namely

TGS2106#2 (S6) is not presented in the figure. During validation measurements it was noticed that

this sensor was damaged, thus it was rejected from further analyses. The normalized responses

NNO2
shown in Fig. 3a were calculated by the subtraction of the response in the presence of

synthetic air (the baseline) from the sensor resistance response at 100 ppm of NO2, and dividing

the difference by the baseline. It can be interpreted as a measure of sensor sensitivity that occurs
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when sensors are exposed to the presence of NO2. It can be seen that the normalized response

NNO2
differs not only among sensors, but also varies for each measured relative humidity level.

Some of sensors, e.g. S4 and S7, are characterized with a lower variability of response, while e.g.

the changes of responses of sensors S3 or S8 are significantly higher. It can be seen that sensors

belonging to the same type (e.g. S3 and S4) behave differently in the presence of nitrogen dioxide

concentrations. It results from the fact that one of sensors of the same type was new, whereas the

other was used before in other experiments. In Fig. 3b an example of responses of two selected

sensors, namely S1 and S2, to the NO2 concentrations at 20% RH and 40% RH is shown. Both

sensors have similar sensitivities, however their resistance responses are different.

a) b)

Fig. 3. Normalized responses of TGS sensors to 100 ppm NO2 at different relative humidity levels (a). An example of

resistance responses of S1 and S2 sensors to NO2 concentrations at 20% RH and 40% RH (b).

Figure 4a presents the normalized responses of seven TGS sensors to the changes in relative

humidity for all of the measured NO2 concentrations. The parameter NRH was calculated by

the subtraction of the response in dry air (the baseline) from the sensor resistance response

in the presence of 50% RH, and dividing the difference by the baseline. The interpretation of

NRH is similar to that in the case of parameter NNO2
, presented earlier. However, in this case, the

a) b)

Fig. 4. Normalized responses of TGS sensors to 50% RH at different NO2 concentrations (a). Examples of resistance

responses of S1 and S5 sensors in the presence of different humidity levels at 25 ppm and 75 ppm NO2 (b).
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variability of sensor responses is associated with the changes in relative humidity level. In the case

of parameter NRH it is expected that it should have negative values due to the fact that, when used

in an array, the responses of TGS semiconductor sensors decrease in the presence of humidity. It

may be observed that in some cases (e.g. in the case of sensor S1 – TGS 826#1) the calculated

values are positive for selected concentrations of NO2. This is presented in detail in Fig. 4 b), in

which there are shown the dependencies of two sensors, namely S1 and S5, on humidity. It may

be observed that for S5 there is a visible trend observed in the case of two presented nitrogen

dioxide concentrations. The characteristics of S1 behave differently in the presence of humidity.

Namely, there is no visible monotonic trend.

4.2. Dynamic measurements of TGS sensors

An example of single-sensor dynamic responses (TGS 2600#1) obtained using the stop-flow

technique is shown in Fig. 5. Three stages, namely the gas-on, gas-stop and air-on are marked. The

responses were measured in the presence of 50 ppm and 100 ppm of dry nitrogen dioxide. The

characteristic shape of the acquisitions can be seen. Given an assumption that all sensors provide

unique responses, the calculated features should have different values, which will be sufficient to

obtain a prediction of nitrogen dioxide concentration.

Fig. 5. Sensor S8 responses in the stop-flow mode to 50 ppm and 100 ppm of NO2.

In Fig. 6a the results of measurements performed using the stop-flow method for five levels

of relative humidity are presented. An example of drift caused by the presence of humidity is

shown. The shape of acquisitions are preserved; however, the baseline of the sensor responses

changes in such a way that it decreases with an increase in humidity level. Fig. 6b shows the

normalized acquisitions, based on which a set of vectors V3 and features for vector V5 were

calculated. The normalization revealed that there are some differences, e.g. in amplitude of the

acquisitions, despite the fact that the presented results were measured in the presence of the same

concentration of NO2. It is not clear whether those differences were caused by the influence

of humidity or by another drift-causing factor. It can also be seen that after normalization the

baseline drift was compensated and some characteristic features, e.g. slopes of the acquisitions,

are practically the same in all presented cases. Therefore, it is expected that by extracting features

from the normalized acquisitions it would be possible to achieve a calibration model for prediction

of NO2 concentration independent of the influence of humidity.
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a) b)

Fig. 6. Sensor S2 dynamic responses to 100 ppm of NO2 at different humidity levels (a). Normalized dynamic responses

of sensor S2 to 100 ppm of NO2 at different humidity levels (b).

4.3. Calibration using PLS regression

A. Regression based on a set of single resistances

The first approach was based on a set of vectors V1, which are composed of a single resistance.

In the first step, the responses from seven sensors (S6 – TGS 2106#2 was omitted) were taken

for the analysis. All further analyses were performed without using sensor S6. The goal was to

achieve the minimal value of RMSE. Additionally, the information about RH levels was added

to the dataset to improve the results. The calculations showed that the errors obtained with

models enhanced using information about the measured RH levels were almost the same as the

errors obtained without enhancement; further analyses were performed using a set of vectors

without information concerning the relative humidity level. The goal of a further analysis

using a set of vectors V1 was to improve the results of the prediction by reducing dimension

of the vectors. Namely, the successive sensor responses from vector V1 were eliminated and

RMSE was calculated. The obtained results showed that the information from all sensors

gives the best results by means of the minimal RMSE value. Further elimination of resistance

responses of individual sensors as well as their combinations does not improve the final results

and often causes an increase in RMSE.

B. Regression based on dynamic acquisitions

A similar analysis scenario was employed with the use of a set of vectors V2 which contained

raw acquisition data obtained from all sensors using the stop-flow method. The results showed

that the achieved predictions were significantly better in the case of using the acquisitions

from dynamic measurements than in the previously presented case of using a set of vectors

V1. The lowest error was obtained with the use of five TGS sensors, with S1, S2 and S6

eliminated. The achieved error was equal to 8.25 ppm. Dynamic responses of sensors S1 and

S2 were not reproducible enough to provide satisfactory results, thus the elimination of their

responses caused the most significant reduction in the RMSE value. Moreover, it can be seen

in Fig. 5 that dynamic responses from sensor S2 were different for the same concentration

of target gas when measured at different relative humidity levels. This was also the reason

justifying the elimination of responses of that sensor from the analysis.

C. Regression based on normalized dynamic acquisitions

In this case, a set of vectors V3, containing the normalized dynamic acquisitions, was used

for calibration with the PLS method. The lowest error was obtained with the use of six TGS

sensors, with S1 and S6 eliminated. The achieved value of prediction error, equal to 8.89, was

comparable with that of case B, and significantly lower than obtained in case A. However, it
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was shown that the normalization is not obligatory in the case of PLS analysis. A possible

reason of errors can be associated with the problem which was shown in Fig. 5. The sensor

responses measured in the same conditions are different, and it is revealed in the values of

RMSE.

D. Regression based on features obtained from non-normalized acquisitions

Similarly to the previous case, the PLS model calibrated using a set of vectors V4 enabled to

significantly reduce the RMSE value compared with the PLS model based on a set of vectors

V1. The elimination of specific sensors showed that the best results were achieved using the

features from five sensors, with S1, S3 and S6 eliminated. This is different from the previous

case, where sensor S2 was removed from the feature vector. This time the contribution from

sensor S2 was significant enough to preserve its response as part of the reduced features

of vector V4. The possibility of improving the results was examined by the elimination of

specific features from vector V4. In the case of eliminating amplitude (A), surface under the

curve (S) or full width at half maximum (T1/2) from vector V4, the values of prediction errors

increased. Thus, those features should not be eliminated from the set of vectors V4. The error

decreased when skewness (Sk) and kurtosis (K) were eliminated. The best resulting set of

features, based on which the PLS model for prediction of nitrogen dioxide concentration was

calibrated, contains amplitude (A), surface under the curve (S) and full width at half maximum

(T1/2) for five selected sensors. From the original compositionof 41 features included in vector

V4, after reduction, there remained 15 elements (3 features × 5 sensors).

E. Regression based on features obtained from normalized acquisitions

The last analysis scenario was employed with the use of a set of vectors V5 which contained

features calculated from normalized acquisitions obtained with the stop-flow method. The

purpose of normalization of the data was to eliminate the baseline shift caused by humidity

and to examine whether it was possible to improve the results. The achieved prediction ability

was comparable to the case of vectors V4. The lowest value of RMSE was obtained with the

use of four TGS sensors (S2, S3, S4 and S8). It is the smallest number of used sensors amongst

the analysed scenarios. Moreover, the achieved error was the second lowest comparing with

the best case for a set of vectors V2. The elimination of features associated with specific

sensors from vector V5 revealed that the RMSE did not change significantly when amplitude

(A) was eliminated from vector V5; however, the error changed its value from 9.24 ppm before

reductions to 9.28 ppm after elimination of amplitude. Therefore, this feature was preserved

in vector V5. An increase of the error value is also observed when full width at half maximum

(T1/2) is eliminated. Only one feature, surface (S), was rejected due to the highest decrease

in the error value – from 9.24 ppm to 9.09 ppm. The final composition of the reduced vector

V5 contains 16 elements (4 features ×4 sensors).

4.4. Summary of analysis

The summary of the performedanalyses is presented in Table 2. Since the error in the best case

is rather high, in a practical application it would make a serious problem. However, for the purposes

of this examination this factor is of secondary importance. Responses from commercially available

TGS sensors are influenced by many factors, e.g. humidity, effects of aging or poisoning, so that

their metrological properties vary in time. The results obtained showed significant advantages of

applying dynamic measurements. This can be seen in Fig. 7a, where distributions of prediction

values of concentrations of NO2 calculated by the PLS model compared with the actual ones for

the worst (with the use of a set of vectors V1) and best (with the use of a set of vectors V2) cases

are shown. It can be seen that the results obtained from dynamic acquisitions form less spread
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distributions and thus the errors obtained with the PLS are smaller. The acquisitions obtained

using the stop-flow method contained more information about the gas concentration that could

be extracted in the form of features. The PLS regression calibrated using whole acquisitions as

well as a set of features provided a better prediction ability compared with the approach based on

the use of only single resistance responses of the sensors.

Table 2. Prediction errors obtained in all analysis scenarios.

Analysis case RMSE/ppm Eliminated sensors Eliminated features

A 18.78 TGS 2106#2 –

TGS 826 #1

B 8.25 TGS 825 #1 –

TGS 2106#2

C 8.89 TGS 826#1 –

TGS 826 #1

C 9.56 TGS 825 #1 skewness, kurtosis

TGS 2106#2

TGS 826 #1

D 9.09 TGS 2106 #1 surface

TGS 2106#2

TGS 880 #2

a) b)

Fig. 7. Distribution of predicted concentrations of NO2 vs. actual concentration for PLS (a). Instability of the responses of

TGS 826#1 and TGS826#2 measured in the presence of 10% RH. Validation measurements were performed one month

after calibration measurements (b).

High error values were also caused by the procedure of gathering the data for the purposes of

calibration and validation. In many literature reports concerning gas recognition or prediction of

gas levels, the data are collected continuously. It is well known that without a significant amount

of time between gathering data for the training and validating sets, the interfering factors such

as the aging effect and other drift-causing effects will not occur. In this study, the first validation

measurements were carried out after at least a two-week interval after the end of collecting the

calibration set. Further measurements were used without the recalibration process. An example

of instability of characteristics of TGS sensors is shown in Fig. 7b, where responses of two used

TGS 826 sensors are plotted. The concentration values measured a month after the calibration
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give totally different resistances. This proves that taking single-value resistances for calibration

generates massive errors and should not be used in gas-analysing systems.

5. Conclusions

In this work, an array of commercially available TGS sensors was examined. The ability of

predicting the nitrogen dioxide concentration value was checked for varying relative humidity

levels over a period of three months. The results of analysis of the behaviour of sensors in the

presence of the target gas for different relative humidity levels as well as different low gas flow

rates were shown. Four approaches to calibration using the PLS method were presented and com-

pared. The best prediction ability was achieved when the PLS regression was performed based

on dynamic measurements using the stop-flow technique. The feature extraction enabled to sig-

nificantly reduce the dataset volume preserving the information about the nitrogen concentration

from dynamic measurements. The approach where static measurements were used as a feature

vector shows the worst prediction ability and should not be used in gas recognition systems. It was

also shown that complementing the feature vectors with additional information about measured

humidity levels does not improve the results.
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