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Hybrid GRA-PCA and modified weighted TOPSIS
coupled with Taguchi for multi-response process
parameter optimization in turning AISI 1040 steel

The objective of the present study is to optimize multiple process parameters in
turning for achievingminimum chip-tool interface temperature, surface roughness and
specific cutting energy by using numerical models. The proposed optimization models
are offline conventional methods, namely hybrid Taguchi-GRA-PCA and Taguchi
integrated modified weighted TOPSIS. For evaluating the effects of input process
parameters both models use ANOVA as a supplementary tool. Moreover, simple linear
regression analysis has been performed for establishing mathematical relationship
between input factors and responses. A total of eighteen experiments have been
conducted in dry and cryogenic cooling conditions based on Taguchi L18 orthogonal
array. The optimization results achieved by hybrid Taguchi-GRA-PCA and modified
weighted TOPSIS manifest that turning at a cutting speed of 144 m/min and a feed
rate of 0.16 mm/rev in cryogenic cooling condition optimizes the multi-responses
concurrently. The prediction accuracy of the modified weighted TOPSIS method is
found better than hybrid Taguchi-GRA-PCA using regression analysis.

1. Introduction

AISI 1040 steel is popularly utilized for producing crank shafts, automobile
axles, spindles, and lightly stressed gears etc. But, at higher speed and feed rate,
excessive heat generation under dry machining hampers machinability [1]. Appli-
cation of cutting fluids is one of the possible solutions, but conventional cooling
involves higher cost with environmental pollution as well as damage to human
health [2]. Cryogenic cooling with liquid nitrogen (LN2) is now practiced as a
popular cooling technique in turning [3], milling [4], drilling [5], and grinding [6]
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due to its some attractive features. Despite of having some complexity of handling
(without genuine pressure relief valve explosion may occur) the proper temperature
and pressure with minor health hazards (due to extremely low temperature skin
problems may arise) liquid nitrogen (LN2) is almost absorbed by nature (because
natural air comprises 78% N2) with no direct bad effect on environment [7]. More-
over, owing to less disposal hassles, cryogenic cooling is selected as the cooling
technique in this research. Turning is the oldest machining process and plays a
notable role in manufacturing [8]. The turning performances can be expressed
in terms of chip-tool interface temperature, roughness, tool wear, specific cut-
ting energy, coefficient of friction, cutting force, chip thickness, MRR etc., and
those performances are affected by the process parameters such as speed, feed
rate, depth of cut, cutting environment, tool and work material. In a word, for
achieving desired machinability, appropriate selection of process parameters is
mandatory.

Taguchi method (TM) is one of the most widespread and constructive opti-
mization tools due to its low time-consuming design of experiments (DoE) and
less complexity of computation [9]. But the significance rate of input factors on
responses cannot be determined by TM, while it can be solved by adding analy-
sis of variance (ANOVA) as a supplementary tool. Besides, another drawback of
TM is that this method cannot deal with multi-responses at a time. To pursue this
objective, various multi-response optimization tools such as Taguchi-DEAR (Data
Envelopment Analysis based Ranking), response surface methodology (RSM), ar-
tificial neural network (ANN), grey relational analysis (GRA), technique for order
of preference by similarity to ideal solutions (TOPSIS), particle swarm optimiza-
tion (PSO) can be applied. Taguchi-DEAR is one of the simplest optimization tool,
but it can only deal with conflicting characteristics of responses [10]. RSM is an ef-
fective optimization method, but its lengthy computation is very troublesome [11].
The prediction accuracy of ANN is higher with a larger number of trials, but this
is time-consuming [12]. GRA is able to optimize process with less information,
but the same weights are considered for all responses, which is not practical [13].
TOPSIS can optimize multiple responses, but in it assigning weights to responses
is vague [14]. PSO is a straightforward simple method, but its tendency to wander
during optimization limits its applications [15].

Recently, among these optimization methods, GRA and TOPSIS are cou-
pled with TM by researchers in different process optimization at a growing rate.
Meral et al. [16] optimized process parameters in drilling of AISI 4140 steel us-
ing Taguchi method for mono-objective optimization and Taguchi based GRA for
multi-objective optimization. Priyadarshini et al. [17] studied energy consumption,
MRR and surface roughness in turning mild steel with high-speed steel tool mate-
rial and optimized those responses using Taguchi-supported fuzzy TOPSIS. In this
research work, two different weight assigning methods (principal component anal-
ysis (PCA) and modified standard deviation method) are selected for diminishing
the drawbacks of Taguchi-GRA and Taguchi-TOPSIS, respectively. PCA assists
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Taguchi-GRA by computing relative weights of each assigned response [10]. Con-
versely modified standard deviation method is selected to obtain a better accuracy
than in entropy weight method, so to expand the application of TOPSIS [18]. De-
tails of recent research related to process parameter optimization in turning using
Taguchi-GRA-PCA and TOPSIS are shortlisted in Table 1.

Table 1.
Lists of some reviewed papers on optimization of turning AISI 1040 using Taguchi-GRA-PCA and

TOPSIS
Refer-
ences

Work material
cooling method Optimization tool Input factors Outputs

[19] AISI 1060 steel,
HPC Taguchi-GRA-PCA Speed, feed and depth

of cut

Temperature, force,
roughness, material
removal rate (MRR)

[20] Ti-6Al-4V, dry Taguchi-GRA-Kernel
PCA

Inserts type, feed and
depth of cut

Thrust force, power,
friction coefficient

[21] AISI 52100, dry Taguchi-GRA-PCA Speed, feed, depth of
cut, nose radius

Temperature, force,
roughness

[22] AISI 4340 steel,
MQL Taguchi-GRA-PCA Speed, feed, depth of

cut, nose radius Force, roughness

[23] Mg AZ 31D alloy,
dry Taguchi-GRA-PCA Speed, feed and depth

of cut
Force, roughness,
MRR, tool wear

[24] Mg AZ 31D alloy,
dry TOPSIS with RSA Speed, feed Roughness, flank tool

wear

[25] Incoloy 800H TOPSIS Speed, feed and depth
of cut

Roughness, micro-
hardness, MRR

[26] Inconel 718 Taguchi-TOPSIS Speed, feed and depth
of cut

Roughness, MRR

The abovementioned literature review reveals that little attention have been
paid to optimization of performances (chip-tool interface temperature (θ), surface
roughness (Ra) and specific cutting energy (Esp)) in turning AISI 1040 steel con-
sidering cutting condition (dry and cryogenic cooling) as an input factor using
hybrid Taguchi-GRA-PCA. The optimization of turning process by Taguchi inte-
grated modified weighted (based on standard deviation) TOPSIS is fully missing.
After finding out those research shortages, the motivation of our research is as
follows:

• To experimentally investigate the efficiency of cryogenic cooling over dry
turning and to optimize the assigned responses by hybrid Taguchi-GRA-PCA
and Taguchi integrated modified weighted TOPSIS.

• To determine the influence of process parameters using ANOVA and to com-
pare the prediction accuracy of both optimization methods by a confirmation
test.
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2. Experimental details

2.1. Materials and methods

A rigid powerful HMT lathe (11 kW: NH22 HMT, India: maximum spindle
speed 3000 rpm) has been used for turning a work-piece of AISI 1040 steel having
a length of 750 mm and an initial diameter of 200 mm by uncoated carbide insert
SNMG 120408-26TTS (tool signature: −6◦, −6◦, 6◦, 6◦, 15◦, 75◦ and 0.8 mm)
with PSBNR 2525 M12 tool holder at different speed-feed combinations recom-
mended by tool manufacturers based on common industrial applications. In view
of lower cost with high availability and less time consumption, only uncoated tung-
sten carbide inserts were considered for the analysis. The composition, hardness,
ultimate tensile strength of work material has been determined by XR-F (X-ray
fluorescence), universal testing machine (UTM) and hardness tester, respectively
and is given in Table 2. The setup of LN2-assisted cryogenic turning is based on
the principle followed by [2] which is schematically shown in Fig. 1. LN2 was
stored in the XL-45 Dewar at fixed pressure of 10 bars and its storage capacity
was 180L. The flow rate was 0.35 l/min while a relief valve was used for 1.5 bar

Table 2.
Chemical compositions, hardness and UTS of AISI 1040 steel

Material
% composition Hardness (BHN) Ultimate tensile

strength, UTS (MPa)
C Mn P S

180 617.8
AISI 1040 0.41 0.70 0.04 0.05
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Fig. 1. Turning with liquid nitrogen-assisted dual jets cooling [2]
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pressurized coolant supply. Highly insulated stainless steel hose carried out LN2
from the Dewar to a nozzle, and a solenoid valve was attached just prior to the
nozzle to control the flow on/off. 2.0 mm bore diameter sized nozzle with dual jets
(0.5 mm each) supply was designed for cooling both the rake and flank faces of the
cutting inserts.

2.2. Variables and responses

Chip-tool interface temperature (θ), arithmetic surface roughness (Ra) and
specific cutting energy (Esp) were considered as the responses. The reasons behind
choosing those responses were: θ is the indication of heating status of cutting area
which is themainmalefactor ofmachinability, Ra is the quality representative index
and Esp is another influential factor of sustainability that indicates the requirement
of energy for material cutting. The input process variables were the cutting speed,
the feed rate and the cutting condition shown in Table 3. Due to the requirement
of saving work material, the depth of cut was considered less significant and was
kept fixed at 1.5 mm.

Table 3.
Input variables with their levels in turning

Notations Variables Units No. of levels Level 1 Level 2 Level 3

Vc Cutting speed m/min 3 85 110 144

S0 Feed rate mm/rev 3 0.16 0.20 0.24

CC Cutting condition – 2 Dry Cryogenic –

θ was measured by following the tool work thermocouple method through
proper calibration during continuous chip formation. For proper calibration, a
piece of long continuous chip and a tungsten carbide rod were brazed together as
the thermocouple point instead of work material and carbide inserts. Heat sink
was prepared by placing a graphite block on electrically-heated porcelain. Then,
the brazed end and a reference K type thermocouple were attached on the top of
graphite block. After heating, the heat sink the temperature of graphite block was
measured directly by means of a digital temperature reading meter (Eurotherm,
UK) connected to a reference thermocouple. The open end of the brazed chip and
the tungsten carbide rodwas linkedwith a digitalmulti-meter (Rishmulti 15s, India)
which recorded the voltage. Afterwards, the graph of temperature against voltage
was plotted in Fig. 2a for AISI 1040 steel and cutting insert. Finally, keeping in
mind the above relations (the correlation between temperature and Emf is 99.9%),
the chip tool interface temperature was measured, as shown in Fig. 2b. Surface
roughness was checked out at three different positions on the turned surfaces in each
experimental condition using a contact type roughness checker (Talysurf model:
Surtronic 3P Rank Taylor Hobson Limited, UK) for achieving a better precision.
Specific cutting energy (Esp) was computed from the ratio of the principal cutting
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force (Fc) to the product of feed rate (S0) and the depth of cut (t), as shown
in the equation below, and the cutting force was measured by 3-D dynamometer
(KISTLER, 9257B type and charge amplifier: 5007) with a PC for data acquisition.

Esp =
Fc

S0 × t

(
N

mm2

)
. (1)

 
(a)
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Fig. 2. Calibration curve (a) and tool-work thermocouple setup (b)

3. Objectives and stepwise details of optimization models

3.1. Problem statements with objectives

Lower energy consumption is desirable during metal cutting. Within a certain
range of increasing feed rate and depth of cut, a minimum Esp can be achieved, but
it increases Ra and θ [27]. For performing a trade-off among this three responses
(θ, Ra, Esp) it is hardly tried to optimize responses at a time within selected bound-
ary conditions using hybrid Taguchi-GRA-PCA and Taguchi integrated modified
weighted TOPSIS. Finally, the objectives with their boundary conditions are given
below:

Objective function:
minimize, θ, Ra, Esp

boundary conditions,

85 ≤ Vc ≤ 144;
0.16 ≤ S0 ≤ 0.24;

CC = dry, cryogenic.

Note that symbols are explained in Table 3.
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3.2. Optimization models in detail

Detailed steps of optimization models are discussed briefly in the following
subsections.

3.2.1. Hybrid Taguchi-GRA-PCA

Taguchi method is one of the popular statistical tools, developed byDr. Genichi
Taguchi [28], for parameter design with reducing the variation of quality charac-
teristics to achieve the target result. In this research work, for evaluating multiple
input factors, a Taguchi-based design of experiment (DoE) has been adopted, which
contains L18 orthogonal array design structure for performing experimental trials,
whose details have been listed in Table 4. In this method, the signal-to-noise (S/N )
ratio has beenmathematically used for optimizing the quality characteristics. Based
on the current analysis the following principle is used for calculating the (S/N )
ratio.

Table 4.
L18 orthogonal array of input variables (using SNMG 120408-26 TTS)

Experi-
mental
runs

Vc ,
m/min

S0,
mm/rev CC

Experi-
mental
runs

Vc ,
m/min

S0,
mm/rev CC

1. 85 0.16 Dry 10. 85 0.16 Cryogenic

2. 85 0.20 Dry 11. 85 0.20 Cryogenic

3. 85 0.24 Dry 12. 85 0.24 Cryogenic

4. 110 0.16 Dry 13. 110 0.16 Cryogenic

5. 110 0.20 Dry 14. 110 0.20 Cryogenic

6. 110 0.24 Dry 15. 110 0.24 Cryogenic

7. 144 0.16 Dry 16. 144 0.16 Cryogenic

8. 144 0.20 Dry 17. 144 0.20 Cryogenic

9. 144 0.24 Dry 18. 144 0.24 Cryogenic

Principle I: ‘Smaller the better’

S
N
= −10 log

1
n

∑
z2, (2)

where z is the representative of responses (θ, Ra, Esp) and n is the total number
of repetitive observations at each experimental run.

The next step is to synchronize GRA with Taguchi analysis. Grey relational
analysis (GRA) was developed by Ju Long in 1982 utilizing the normalized (S/N )
values obtained from Taguchi loss function for calculating grey relational coeffi-
cients (GRCs) and finally for defining ranks based on grey relational grade (GRG).



30 Mst. Nazma Sultana, Nikhil Ranjan Dhar

Three most popular computation stages of grey relational analysis (GRA) are de-
scribed below:

Stage I (Data pre-processing): Converting responses into dimensionless form
ranging from 0 to 1 based on the situation: ‘smaller the better’ and ‘larger the
better’ [29]. In this study, all responses are normalized with ‘smaller the better’
objective using the following equation [29].

yi (k) =
max Si (k) − Si (k)

max Si (k) −min Si (k)
, (3)

where Si (k) represents the (S/N ) value of individual responses in each experimen-
tal run i = 1 to 18 before normalizing and k represents each individual response;
max Si (k) represents the highest value of each response k and min Si (k) represents
the lowest value of each response k. On the other side, yi (k) is the normalized
value of responses in each experimental run.

Stage II (Computing Grey Relational Coefficient (GRC)): Then, GRC calcula-
tion is made for each experimental run using the following equation.

GRC = ωi (k) =
∆min+ξ · ∆max
∆0i (k) + ξ · ∆max

, (4)

where ωi (k) represents the GRC value of each response at each experimental run
i, and ξ is the distinguishing coefficient which is assumed 0.5 [29]. ∆0i (k) =
|y0(k) − yi (k) | represents the deviation sequence. ∆max is the largest value of
∆0i (k) and ∆min is the smallest value of ∆0i (k) which are computed by the
following formulas, sequentially:

∆max = max
i,k
∆0i (k), (5)

∆min = min
i,k
∆0i (k). (6)

Stage III (Determining Grey Relational Grade (GRG)): Finally, GRG value
is made by multiplying the relative weight value (wk ) by the computed GRC as
follows:

γi (GRG) =
n∑

k=1
wk · ωi (k). (7)

In this study, the relative weight value (wk ) of each response has been cal-
culated using the principal component analysis (PCA). The principal component
analysis (PCA) was introduced by Pearson [30] and Hotelling [31] for explaining
the structure of variance covariance matrix in a linear way. The detailed stepwise
procedure of incorporating principal component analysis (PCA)with Taguchi-GRA
is discussed below:
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Step 1: Development a new variance covariance matrix (W ) of multiple quality
characteristics as follows:

W =



ω1(1) ω1(2) . . . ω1(n)
ω2(1) ω2(2) . . . ω2(n)
. . . . . . . . . . . .

ωm(1) ωm(2) . . . ωm(n)



; i = 1, 2, . . . ,m; p = 1, 2, . . . , n, (8)

where m is the number of experimental runs, n is the number of responses and ω
is the grey relational coefficient of each response. In this study, m = 18 and n = 3.
Then the correlation coefficient array can be evaluated as follows:

rpq =
cov

(
ωi (p), ωi (q)

)
∂ωi (p) × ∂ωi (q)

, (9)

where cov(ωi (p), ωi (q)) represents the covariance of the sequence ωi (p) and
ωi (q) ·∂ωi (p) is the standard deviation ofωi (p) and ∂ωi (q) is the standard deviation
of ωi (q).

Step 2: Determining the eigenvalues and eigenvectors from the correlation
coefficient array using the following equation.

(r − λk Im) Vik = 0, (10)

where λk represents numerical eigenvalues,
∑n

k=1
λk = n; k = 1, 2, . . . , n; Vik =[

a(k,1) a(k,2) . . . a(k,n)
]T represents the eigenvectors corresponding to the

eigenvalues λk .
Step 3: Then, computing the principal components using the following equa-

tion.

Cmk =

n∑
i=1

xm(i) · Vik , (11)

where Cm1 is the first principal component, Cm2 is the second principal component
and so on.

Step 4: Because the first principal component describes the highest variance
of the process [19], this value is used for further processing. Finally, the squared
value of first principal component is considered as the relative weight value (wk )
of each response.

3.2.2. Modified weighted Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS)

TOPSISwas developed byHwang andYoon in 1981 as amulti-criteria decision
analysis (MCDA) method. At the former stage, the basic concept was that the
chosen alternative represents the smallest geometrical distance from the positive
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ideal solution and the longest distance from the negative ideal solutions. Using an
appropriate algorithm, this technique selects the optimum alternative which means
the smallest distance from the positive ideal solution and the farthest distance from
the negative ideal solution. In TOPSIS, a trade-off is made between the criteria in
which poor result of one criterion is counterbalanced by a better result in another
criterion, so this technique can be considered as a realistic way of decision making.
The stepwise procedure is given below in detail:

Step 1: To create a decision matrix consisting of m alternatives and n attributes
with their intersection symbolized as (Ai j )m×n. Here, m = 18, n = 3 and the
formulated matrix can be expressed as follows:

(Ai j )m×n =



A11 A12 . . . A1n

A21 A22 . . . A2n

. . . . . . . . . . . .

Am1 Am2 . . . Amn



; i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (12)

Step 2: To convert matrix (Ai j )m×n into normalized matrix Ri j using the
following formula:

Ri j =
Ai j√
m∑
i=1

A2
i j

. (13)

Step 3: To measure the individual weight of each attribute using the following
equation without the influence of decision maker’s preference value.

δ j =
σ j

n∑
k=1

σk

. (14)

Next step is to multiply this weight value by the normalized matrix Ri j for
formulating a weighted normalized matrix N = ϑi j .

N = δ j × Ri j ;
n∑
j=1

δ j = 1. (15)

Step 4: To find out the best solution and the worst solution.
Best solution:

Sol+ =
{

maxi ϑi j | j ∈ J, mini ϑi j | j ∈ J ′; i = 1, 2, . . .m
}

= {ϑ+1 , ϑ
+
2 , . . . , ϑ

+
n }.

(16)

Worst solution:
Sol− =

{
mini ϑi j | j ∈ J, maxi ϑi j | j ∈ J ′; i = 1, 2, . . .m

}
= {ϑ−1 , ϑ

−
2 , . . . , ϑ

−
n }.

(17)

Sol+ symbolizes the positive ideal solutions and Sol− defines the negative ideal
solutions.
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Step 5: To calculate distance measures using n-dimensional Euclidean distance
formula expressed as:

d+i =

√√√ n∑
j=1

(ϑi j − S+j )2 ; i = 1, 2, . . . ,m, (18)

d−i =

√√√ n∑
j=1

(ϑi j − S−j )2 ; i = 1, 2, . . . ,m. (19)

For any response, d+i is the calculated best distance from Sol+ value and d−i is
the calculated worst distance from Sol− value [24].

Step 6: The final step is to compute closeness coefficients (coeff+i ) to the ideal
solutions and to provide appropriate ranks for each alternative according to their
relative closeness coefficients (coeff+i ).

coeff+i =
d−i

d+i + d−i
. (20)

4. Results and discussions

All the aforementioned measured and computed responses are listed in Table 5
with their corresponding (S/N ) ratios which are calculated using Eq. (3). Calcula-
tions are facilitated by MINITAB 17 statistical software package. Then, the mean
influence of input parameters on each response is graphically depicted in Fig. 3
and the highest point in the graph represents the optimal level of an individual
factor [19].

Cutting speed ranges from 85 m/min to 144 m/min, and it has remarkable
effects on θ, Ra and Esp. One can notice easily from Fig. 3a that θ has an increasing
tendency with rising level of Vc because of excess heat generation in the cutting
vicinity. In this study, Ra and Esp decrease very sharply with increasing Vc due to
thermal softening of the work specimen at high heat generation, which has also
been reported previously [32]. This accelerates the smooth cutting with minimum
surface damage and less energy. From Fig. 3c one can notice that the cutting speed
is the most dominating factors for changing specific cutting energy, this fact is also
confirmed by a previous analysis report [32].

Like Vc, feed rate has also a significant influence on each response. At higher
S0, material removal volume increases, which results in immense heat formation in
the cutting area [19]. Ra increases at a high level of S0 due to extensive formation
of feed marks on the machined surface for larger chip load, which is in agreement
with other research results [19]. Actually, for the work specimen being softer due
to immense heat at a high level of feed rate, a lower force is needed, in the result



34 Mst. Nazma Sultana, Nikhil Ranjan Dhar

 

(a)

 

(b)

 

(c)

Fig. 3. Main effect plot of (S/N ) ratios of (a) θ; (b) Ra and (c) Esp
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Table 5.
Experimentally measured and computed responses with their corresponding (S/N ) ratios

Experi-
mental runs

Responses (S/N ) ratios of

θ, ◦ Ra , µm Esp, N/mm2 θ, dB Ra dB Esp, dB

1. 654 3.02 2991.67 −56.3116 −9.6001 −69.5183

2. 672 3.80 2850.00 −56.5474 −11.5957 −69.0969

3. 693 4.46 2772.22 −56.8147 −12.9867 −68.8566

4. 667 2.40 2616.67 −56.4825 −7.6042 −68.3550

5. 687 2.89 2520.00 −56.7391 −9.2180 −68.0280

6. 711 3.54 2466.67 −57.0374 −10.9801 −67.8422

7. 680 2.00 2350.00 −56.6502 −6.0206 −67.4214

8. 706 2.40 2383.30 −56.9761 −7.6042 −67.5436

9. 733 2.92 2305.56 −57.3021 −9.3077 −67.2555

10. 527 2.53 2716.67 −54.4362 −8.0624 −68.6807

11. 563 3.21 2526.67 −55.0102 −10.1301 −68.0510

12. 576 3.85 2416.67 −55.2084 −11.7092 −67.6643

13. 555 2.05 2441.67 −54.8859 −6.2351 −67.7537

14. 584 2.58 2453.33 −55.3283 −8.2324 −67.7951

15. 592 3.25 2350.00 −55.4464 −10.2377 −67.4214

16. 582 1.80 2250.00 −55.2985 −5.1055 −67.0437

17. 604 2.20 2333.33 −55.6207 −6.8485 −67.3595

18. 620 2.65 2255.56 −55.8478 −8.4649 −67.0651

of which energy consumption rate is reduced [33]. As far as surface roughness is
concerned, the feed rate is observed as the most significant factors in Fig. 3b that
again coincides with another research results [32].

In this analysis, dry and cryogenic cooling was applied in the cutting envi-
ronments. All the selected responses θ, Ra and Esp decrease in cryogenic cooling
(according to Fig. 3), which confirms the effectiveness of cooling and lubrication
property of the used cryogenic coolingmethod. θ is drastically reduced in cryogenic
cooling because of lower working temperature of LN2 (−196◦C) which evacuates
heat from the cutting zone [34]. Lubrication effect of LN2 helps to reduce friction
[35] between tool-work interfaces, so a smoother surface is achieved and lower
specific cutting energy is required in cryogenic cooling.

In summary, it can be mentioned that maximum chip tool temperature at lower
speed (85 m/min) with lower feed rate (0.16 mm/rev) under cryogenic cooling
is reduced compared to that in dry turning. But, minimum surface roughness is
observed at the higher speed (144 m/min) with the lower feed rate (0.16 mm/rev)
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under cryogenic cooling and finally, specific cutting energy requirement is reduced
at the higher speed (144 m/min) with the higher feed rate (0.24 mm/rev) under
cryogenic cooling. The significance of input factors is different in terms of the
three responses and, moreover, the desirable response values are found at different
levels of input factors. These facts encouraged the authors to move towards multi-
response optimization. Besides, in this experiment, tool wear was also checked out
for both cutting condition at 135 m/min cutting speed, 0.2 mm/rev feed rate and
1.5 mm depth of cut depicted in Fig. 4. In cryogenic cooling, the growth rate of
flank wear was found uniform and slower than that in dry turning, which might
be due to the positive impact of extreme cooling by liquid nitrogen at work-tool
interface. Conversely, notch wear was also minimized in cryogenic cooling which
prevents the sudden breakage of tool, reduces cutting force requirements and as a
whole improves process reliability with lowering tool cost. The span of tool life
was also increased under cryogenic cooling (50 min), compared to only 35 min in
dry turning. But, after 45 min machining, chipping was noticed in cutting edges,
which was assumed the result of non-uniform cooling by cryogen due to improper
penetration into some intricate regions.

 

Dry 

(a)
 

Cryogenic cooling 

(b)

Fig. 4. Growth rate of tool wear under (a) dry and (b) cryogenic cooling

4.1. Coupling hybrid GRA-PCA with Taguchi for multi-response
optimization

Normalized values, deviation sequences and Grey relational coefficients
(GRCs) of the corresponding responses are determined using Eqs. (3), (4) and
are listed in Table 6. Next, the relative weights of each response are computed
on PCA using MINITAB 17. Initially, the eigenvalues with their explained vari-
ations are calculated and afterwards the eigenvectors related to these eigenvalues
are computed, as it is listed in Table 7. Finally, the grey relational grades (GRGs)
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Table 6.
Normalized values, deviational sequences and GRC for responses

Experi-
mental
runs

Normalized values Deviational sequences GRC

θ Ra Esp θ Ra Esp θ Ra Esp

1. 0.3456 0.4297 0.0000 0.6544 0.5703 1.0000 0.4331 0.4672 0.3333

2. 0.2633 0.1765 0.1703 0.7367 0.8235 0.8297 0.4043 0.3778 0.3760

3. 0.1701 0.0000 0.2674 0.8299 1.0000 0.7326 0.3760 0.3333 0.4056

4. 0.2860 0.6830 0.4701 0.714 0.3170 0.5299 0.4119 0.6120 0.4855

5. 0.1964 0.4782 0.6022 0.8036 0.5218 0.3978 0.3836 0.4893 0.5569

6. 0.0924 0.2546 0.6773 0.9076 0.7454 0.3227 0.3552 0.4015 0.6078

7. 0.2275 0.8839 0.8474 0.7725 0.1161 0.1526 0.3929 0.8116 0.7662

8. 0.1138 0.6830 0.7980 0.8862 0.3170 0.2020 0.3607 0.6120 0.7123

9. 0.0000 0.4668 0.9146 1.0000 0.5332 0.0854 0.3333 0.4839 0.8541

10. 1.0000 0.6248 0.3385 0.0000 0.3752 0.6615 1.0000 0.5713 0.4305

11. 0.7997 0.3625 0.5929 0.2003 0.6375 0.4071 0.7140 0.4396 0.5512

12. 0.7306 0.1621 0.7492 0.2694 0.8379 0.2508 0.6499 0.3737 0.6660

13. 0.8431 0.8567 0.7131 0.1569 0.1433 0.2869 0.7612 0.7772 0.6354

14. 0.6887 0.6032 0.6964 0.3113 0.3968 0.3036 0.6163 0.5575 0.6222

15. 0.6475 0.3488 0.8474 0.3525 0.6512 0.1526 0.5865 0.4343 0.7662

16. 0.6991 1.0000 1.0000 0.3009 0.0000 0.0000 0.6242 1.0000 1.0000

17. 0.5867 0.7788 0.8724 0.4133 0.2212 0.1276 0.5475 0.6933 0.7967

18. 0.5074 0.5737 0.9914 0.4926 0.4263 0.0086 0.5037 0.5398 0.9831

Table 7.
Eigenvalues and explained variation

Principal
component Eigenvalues Variations (%)

Eigenvectors

θ Ra Esp

Pc1 1.5663 52.20 0.248 0.713 0.656

Pc2 1.0190 34.00 0.923 0.033 −0.384

Pc3 0.4147 13.80 −0.295 −0.701 −0.649

Relative weights 0.062 0.508 0.430

for all experimental runs are calculated using Eq. (7) and contained with their
corresponding ranks in Table 8.

In order to achieve the desired goal, the maximum GRG is selected, which
appears at experimental run no. 16 corresponding to the highest level of speed
(144 m/min) with the lowest level of feed rate(0.16 mm/rev) under cryogenic cool-
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Table 8.
Grey relational grades (GRG) for 18 comparability sequences

Experi-
mental runs GRG Rank Experi-

mental runs GRG Rank Experi-
mental runs GRG Rank

1. 0.4075 16 7. 0.7661 2 13. 0.7152 5

2. 0.3787 17 8. 0.6395 6 14. 0.5890 8

3. 0.3670 18 9. 0.6337 7 15. 0.5865 9

4. 0.5452 10 10. 0.5373 11 16. 0.9767 1

5. 0.5118 13 11. 0.5046 14 17. 0.7287 3

6. 0.4873 15 12. 0.5165 12 18. 0.7282 4

ing. It can be deduced from the mean response Table 9 that the cutting speed,
followed by the cutting condition and the feed rate, noticeably overwhelm the mean
GRG. According to the main effect plot in Fig. 5a, the optimal input factors for
highest GRG can be symbolically presented as Vc3S01CC2. This results are then
reconfirmed by ANOVA at 95% confidence level, which is given in Table 10. It can
be concluded from ANOVA table that all the selected input process variables are
statistically significant, because the calculated P-values of all input factors are less
than 0.05. Moreover, the proposed model is also statistically significant because its
P-value is much lower than 0.05. Cutting velocity, having 65.19% contribution, is
the most important factor for maximizing the GRG value. Then, the cutting condi-
tion is the secondmost influential process variable having 18.20%, and the feed rate
is found the third influential input factor (10.42% contribution). The percentage
contribution of error is found 6.19% which indicates the high acceptability of the
proposed technique with the obtained results [36].

Table 9.
Average GRG values at various levels of input factors

Factors Level 1 Level 2 Level 3 Max–Min Rank

Vc 0.4519 0.5725 0.7455 0.2936 1

S0 0.6580 0.5587 0.5532 0.1048 3

CC 0.5263 0.6536 – 0.1273 2

Bold numbers containing levels denote the optimum level of input variables.

Moreover, the correlations are explained with the help of interaction plot and
one can see easily the combined effect of input factors on responses. From Fig. 5b,
it can be easily noticed that there is a strong interaction between cutting speed
and feed because non-parallel line depicts the greater correlation between the two
factors for changing a response. In a similar manner, parallel lines between cutting
speed and cutting condition, as well as feed rate and cutting condition, denote the
poor correlation between the mentioned input factors.
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(a)

 

(b)

Fig. 5. (a) Main effects plot of average grey relational grade (GRG); (b) Interaction plot of GRG

Table 10.
ANOVA using general linear model (within 95% confidence level) for average GRG with percent

contribution (here, SS – sum of squares, MS – mean squares, DoF – degrees of freedom)

Source DoF SS MS F-ratio P-value % contribution

Model 5 0.75161 0.07413 36.33 0.00001 93.81

Vc 2 0.26126 0.130631 63.19 0.0000 65.19

S0 2 0.04174 0.020871 10.10 0.0030 10.42

CC 1 0.07295 0.072949 35.29 0.0000 18.20

Error (e) 12 0.02481 0.002067 – – 6.19

Total 17 0.40076 – – – 100

Here R − sq = 93.81%.



40 Mst. Nazma Sultana, Nikhil Ranjan Dhar

In the regression analysis, cutting condition is the only categorical factor having
two different levels: dry and cryogenic cooling. For each cutting condition, a sep-
arate equation is generated, as it is numerically presented in following equations,
sequentially.

GRG
(
Vc, S0, Dry

)
= 0.2254 + 0.004982Vc − 1.310S0 , (21)

GRG
(
Vc, S0, Cryogenic

)
= 0.3527 + 0.004982Vc − 1.310S0 . (22)

From mathematical analysis of both equations it is found that the only dif-
ference between these equations is their intercept value. Equation (22) manifests
that turning under cryogenic cooling is able to provide results at least 56.60%
better than dry turning, which again proves the effectiveness of cryogenic cooling
in turning AISI 1040 steel. The consistency between GRG values predicted using
regression model and experimental GRG values is shown in Fig. 6. Notice that the
predicted values fit well the experimental ones, which confirms the suitability of
this model for prediction of response variables in the defined situation.
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Fig. 6. Experimental and predicted values of GRG using linear regression

4.1.1. Predicting the optimum value of GRG and validation tests

The predicted optimum value of grey relational grade at optimal parameter
settings has been computed using following equation.

ρGRG = ρ̄GRG +
(
V̄c opt − ρ̄GRG

)
+

(
S̄0 opt − ρ̄GRG

)
+

(
CCopt − ρ̄GRG

)
. (23)

Here ρGRG denotes the optimum predicted value of GRG and ρ̄GRG is the mean
value of GRG for a total of 18 experimental trials. V̄c opt represents the mean value
of GRG at optimal level of cutting speed when other input parameters may vary
similarly, S̄0 opt and CCopt carry out the mean value of GRG at optimal level of feed
rate and cutting condition. The predicted mean GRG value is found 0.8772 using
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Eq. (23) in Table 11 and the previously achieved experimental GRG value is 0.9767.
This clearly indicates that the experimental result is 10.19%better than the predicted
optimum result. So, it can be concluded that this hybrid optimization technique has
successfully provided the solution of multi-response optimization problem with
minimizing temperature, surface roughness and specific cutting energy.

Table 11.
Results of validation tests for mean GRC

Initial parameter
Optimal parameter

Experimental value Predicted value

Level Vc1 − S01 − CC1 Vc3 − S01 − CC2 Vc3 − S01 − CC2

Mean GRG 0.3456 0.9767 0.8772

The subscript number of each input parameter represents the corresponding level.

4.2. Coupling modified weighted TOPSIS with Taguchi for optimization

As far as the methodology discussed in previous section is concerned, the
normalized (S/N ) values are calculated using Eq. (13). Then, the relative weights
of responses are determined using Eq. (14) and putting these weights into Eq. (15)
one computes the weighted normalized (S/N ) value. All the calculated normalized
(S/N ) values and weighted normalized (S/N ) values are listed in Table 12.

Afterwards, the positive ideal (best) solutions (Sol+) and negative ideal (worst)
solutions (Sol−) are defined by applying Eqs. (16) and (17) finally, by putting those
values into Eqs. (18) and (19), one measures the distance from Sol+ to Sol−. The
closeness coefficients are shown in Table 13 with their corresponding ranks. The
experimental run order with the largest value of closeness coefficient is generally
selected as the optimum condition [37]. It was found that the optimal turning
performance was obtained at experimental run order 16 (cutting speed 144 m/min
(level 3) feed rate 0.16 mm/rev (level 1) and cryogenic cooling (level 2), which
agreed with previous results of hybrid Taguchi-GRA-PCA. The mean response of
closeness coefficients is given in Table 14 and graphically presented in Fig. 7a. The
highest (max–min) value is found for the feed rate (rank 1) that is a little bit greater
than the cutting speed (rank 2) and the cutting condition has the least influence
(rank 3). Fig. 7b represents the interaction plot of input factors and closeness
coefficients.

Similarly as in the case of previous results from Taguchi-GRA-PCA, it has
been proven that cryogenic cooling is more effective than dry turning due to higher
intercept value in the second of following equations.

coeff+i
(
Vc, S0, Dry

)
= 0.7356 + 0.007324Vc − 5.562S0 , (24)

coeff+i
(
Vc, S0, Cryogenic

)
= 0.8748 + 0.007324Vc − 5.562S0 . (25)
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Table 12.
Calculated normalized and weighted normalized (S/N ) ratios of all responses

Experi-
mental
runs

Normalized (S/N ) ratios of Weighted normalized (S/N )
ratios of

Distance
measures

θ Ra Esp θ Ra Esp d+i d−i
1. −0.23700 −0.24786 −0.24120 −0.01396 −0.22334 −0.00965 0.1046 0.0788

2. −0.23799 −0.29938 −0.23974 −0.01402 −0.26976 −0.00959 0.1509 0.0324

3. −0.23912 −0.33530 −0.23890 −0.01409 −0.30213 −0.00956 0.1834 0.0002

4. −0.23772 −0.19633 −0.23716 −0.01401 −0.17691 −0.00949 0.0581 0.1252

5. −0.23880 −0.23800 −0.23603 −0.01407 −0.21445 −0.00944 0.0957 0.0877

6. −0.24006 −0.28349 −0.23538 −0.01414 −0.25544 −0.00942 0.1367 0.0467

7. −0.23843 −0.15544 −0.23392 −0.01405 −0.14006 −0.00936 0.0213 0.1621

8. −0.23980 −0.19633 −0.23435 −0.01413 −0.17691 −0.00938 0.0581 0.1252

9. −0.24117 −0.24031 −0.23335 −0.01421 −0.21654 −0.00934 0.0978 0.0856

10. −0.22911 −0.20816 −0.23829 −0.01350 −0.18757 −0.00953 0.0687 0.1146

11. −0.23152 −0.26155 −0.23611 −0.01364 −0.23567 −0.00945 0.1169 0.0665

12. −0.23236 −0.30232 −0.23477 −0.01369 −0.27241 −0.00939 0.1536 0.0297

13. −0.23100 −0.16098 −0.23508 −0.01361 −0.14505 −0.00941 0.0263 0.1571

14. −0.23286 −0.21255 −0.23522 −0.01372 −0.19152 −0.00941 0.0727 0.1106

15. −0.23336 −0.26432 −0.23392 −0.01375 −0.23817 −0.00936 0.1194 0.0639

16. −0.23274 −0.13182 −0.23261 −0.01371 −0.11878 −0.00930 0.0002 0.1834

17. −0.23409 −0.17682 −0.23371 −0.01379 −0.15933 −0.00935 0.0406 0.1428

18. −0.23505 −0.21855 −0.23269 −0.01385 −0.19693 −0.00931 0.0782 0.1052

The relative weight value of temperature, surface roughness and specific cutting energy are:
wθ = 0.058918; wRa = 0.901070; wEsp = 0.040013.
Here, Sol+ = −0.01350, −0.11878, −0.0002; Sol− = −0.01421, −0.30213, −0.00965.

Table 13.
Computation of distance measures, closeness coefficients and ranking of alternatives

(bold numbers denote rank)
Experi-

mental run coeff+i Rank Experi-
mental run coeff+i Rank Experi-

mental run coeff+i Rank

1. 0.4297 12 7. 0.8839 2 13. 0.8567 3

2. 0.1765 16 8. 0.6829 6 14. 0.6033 8

3. 0.0008 18 9. 0.4668 11 15. 0.3488 14

4. 0.6829 5 10. 0.6248 7 16. 0.9989 1

5. 0.4782 10 11. 0.3625 13 17. 0.7788 4

6. 0.2547 15 12. 0.1621 17 18. 0.5738 9
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Table 14.
Mean response table of closeness coefficients

Factors Level 1 Level 2 Level 3 Max–Min Rank

Vc 0.2928 0.5374 0.7309 0.4400 2

S0 0.7462 0.5137 0.3012 0.4450 1

CC 0.4507 0.5900 – 0.1392 3

Bold numbers containing levels denote the optimum level of input variables.

 

(a)

 

(b)

Fig. 7. (a) Main effects plot of average closeness coefficients; (b) Interaction plot of showing
the effect of input parameters on closeness coefficients
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Table 15.
ANOVA using general linear model (within 95% confidence level) for closeness coefficients

(here, SS – sum of squares, MS – mean squares, DoF – degrees of freedom)

Source DoF SS MS F-ratio P-value % contribution

Model 5 1.26012 0.2520 346.6 0.0000 99.30

Vc 2 0.57842 0.2892 397.9 0.0000 45.58

S0 2 0.59445 0.2972 408.9 0.0000 46.85

CC 1 0.08725 0.0872 120.04 0.0000 6.87

Error (e) 12 0.00872 0.0007 – – 0.70

Total 17 1.26885 – – –

Here, R − sq = 0.9931.

One can easily notice that the experimental and predicted values fit very well,
which proves the applicability of this model for predicting the response variables
in turning of AISI 1040 steel (Fig. 8).
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Fig. 8. Experimental and predicted values of closeness coefficients using linear regression

4.2.1. Predicting the optimum value of closeness coefficient at optimal
parameter settings and validation tests

The prediction of optimum value of closeness coefficient at optimal parameter
settings has been done using the following equation.

ρcoeff+i = ρ̄coeff
+
i
+

(
V̄c opt − ρ̄coeff+i

)
+

(
S̄0 opt − ρ̄coeff+i

)
+

(
CCopt − ρ̄coeff+i

)
. (26)

Here ρcoeff+i denotes the optimum predicted value of closeness coefficient and
ρ̄coeff+i is the mean value of closeness coefficients for a total of 18 experimental
trials. V̄c opt represents the mean value of closeness coefficients at optimal level
of cutting speed when other input parameters may vary similarly S̄0 opt and CCopt
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carry out the mean value of closeness coefficients at optimal level of feed rate
and cutting condition. Three more experimental trials were performed in optimal
parameter setting for validating the model. The experimental and predicted mean
closeness coefficient values are 0.9986 and 0.9993, as shown in Table 16. The
predicted result is 0.07% better than the predicted optimum result, which denotes
the higher accuracy of this proposed optimization technique with lower error rate.

Table 16.
Results of validation tests for mean closeness coefficients

Initial parameter
Optimal parameter

Experimental value Predicted value

Level Vc1 − S01 − CC1 Vc4 − S01 − CC2 Vc4 − S01 − CC2

Mean closeness coefficients 0.429722 0.9986 0.9993

The subscript number of each input parameter represents the corresponding level.

4.3. Comparison of results achieved by two MCDM techniques

In this subsection, we compare the results obtained by two different multi-
criteria decision making (MCDM) techniques in terms of ranking different alter-
natives. From Table 17, one can easily notice that in both optimization techniques
the experiment number 16 provides the optimum result within the boundary con-
ditions. Both optimization techniques provide good optimum results, but one can
see that accuracy of prediction is higher in Taguchi integrated modified weighted
TOPSIS, which has been already discussed in the previous subsection 4.2.1.

Table 17.
Comparative results in hybrid Taguchi-GRA-PCA and Taguchi integrated modified weighted

TOPSIS for optimization (bold numbers represent rank)

Experi-
ment
run

Rank by
Experi-
ment
run

Rank by

Hybrid
Taguchi-
GRA-PCA

Taguchi with
modified
weighted
TOPSIS

Hybrid
Taguchi-
GRA-PCA

Taguchi with
modified
weighted
TOPSIS

1. 16 12 10. 11 7
2. 17 16 11. 14 13
3. 18 18 12. 12 17
4. 10 5 13. 5 2
5. 13 10 14. 8 8
6. 15 15 15. 9 14
7. 2 2 16. 1 1
8. 6 6 17. 3 4
9. 7 11 18. 4 9
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5. Conclusions

This paper evaluates the effect of turning process parameters: cutting speed,
feed rate and cutting condition on machining capability taking into account chip-
tool interface temperature, surface roughness and specific cutting energy in turn-
ing AISI 1040 steel through experimentation. In addition, two different Multi-
Criteria Decision Making techniques, i.e., hybrid Taguchi-GRA-PCA and mod-
ified weighted TOPSIS integrated with Taguchi were applied for optimization.
ANOVA and regression models were developed for identifying the significant
input factors and for accurate mathematical prediction of the responses. Valida-
tion tests were performed at optimal settings of input parameters for declaring
the validity of the proposed models. Now, the outcomes can be summed up as
follows:

1. Cryogenic cooling improves surface finish as well as reduces chip tool
interface temperature and specific cutting energy better than dry turning.

2. Hybrid Taguchi-GRA-PCA andmodifiedweighted TOPSIS integratedwith
Taguchi are very easy and simple ways of multi-response optimization. The
grey relational grade (GRG) is the indicator’s single key of multiple re-
sponses in hybrid Taguchi-GRA-PCA and the closeness coefficient is the
representative of multi-response performance index (MRPI) in themodified
weighted TOPSIS integrated with Taguchi. The predicted optimal param-
eters settings are the same for both optimization methods and those are
the following: cutting speed 144 m/min (level 3), feed rate 0.16 mm/rev
(level 1) and cutting condition (cryogenic cooling, level 2).

3. ANOVA also manifested that the both models are significant within 95%
confidence level. The cutting speed exerts themost notable impacts on GRG
and the feed rate has the highest influence on the closeness coefficient.

4. Using the simple linear regression for both models, one observed that the
predicted values fit well the corresponding experimental values. However,
the prediction accuracy of Taguchi integrated modified weighted TOPSIS
is found higher than that of hybrid Taguchi-GRA-PCA. Moreover, the ad-
vantage of cryogenic cooling-assisted turning over dry turning in terms
of efficiency has been proven experimentally as well as mathematically in
regression equation.

The prediction results highlighted the better performance of the modified
weighted TOPSIS integrated with Taguchi compared to the hybrid Taguchi-GRA-
PCA in terms of optimization. It is expected that both of these optimization tech-
niques will be helpful for future practitioners, manufacturers and researchers in
problem solving area. But, in the present work material removal rate (MRR),
chip morphology and wear profile have not been analysed. This can be carried
out in future using both coated and uncoated cutting inserts in future for attain-
ing a better robustness of turning AISI 1040 steel under LN2 assisted cryogenic
cooling.
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