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THE PROBABILISTIC MODEL OF FATIGUE LIFE ESTIMATION
FOR STRUCTURAL ELEMENTS WITH HETEROGENEOUS STRESS

DISTRIBUTION

The paper presents the method of determination of two-dimensional probability
distribution Pf of crack initiation versus fatigue life N and the fatigue damage pa-
rameter : Pf − N −σ. The proposed distribution Pf uses parameters of the standard
fatigue characteristics and allows calculating fatigue life of elements with heteroge-
neous stress fields at any probability level. The model was successfully verified on
experimental test results.

1. Introduction

Many machine elements work under variable loadings, which can cause
the element damage and the machine failure. In order to avoid such unde-
sirable events, many researchers investigate fatigue of materials, and they
formulate algorithms allowing estimating fatigue life of structural elements.

Non-uniform stress fields are common in machine elements, and their
presence makes calculations of fatigue life more difficult. Complicated shapes
of the elements and ways of their loading cause formation of areas with
different stresses and, in a consequence, with different levels of fatigue effort.
From the experimental results it appears that fatigue life of such elements
cannot be determined from the maximum local stresses [1, 2].

In the existing literature, we can find two groups of methods including
influence of the stress gradient on fatigue life. One of them includes deter-
ministic methods where fatigue life is determined without defining fatigue
life scatters. In this group, the dominating methods reduce the stress field to
local stresses by averaging [2]. The other group includes probabilistic meth-
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ods assuming that: (i) the material contains various defects, (ii) the fatigue
crack starts from the most harmful defect, i.e. the defect where morphology
and stress level around the defect are conducive to the crack development
[3-6]. According to these assumptions, size of the area subject to variable
stresses influences probability of the crack occurrence.

In this paper, the author presents a probabilistic model of fatigue life
estimation related to constructional elements, using the weakest link concept
[3-6]. Contrary to the conventional determination of probability distribution
of fatigue strength for a given fatigue life (a number of cycles to failure), the
model presented in this paper insists on determination of the probability that
the fatigue life N is less than a certain specific life Ni. Such approach allows
determining fatigue life for any probability level. The Weibull probability
distributions were used for calculations; their parameters were dependent on
local equivalent stresses.

The presented approach includes the influence of both stress gradients
and the element size on fatigue life. The model was verified by comparison
of its results with the experimental results.

2. The tests

Cruciform specimens made of 18G2A (Fig. 1) with holes as stress con-
centrators were subjected to tests.

Fig. 1. (a) Geometry of a cruciform specimen, (b) scheme of specimen loading

Cyclic properties of the tested steel, i.e. relation between the number
of cycles to failure Nf and the stress amplitude a as well as the param-
eters of the cyclic hardening curve (εp

a − σa) are given in Table 1. The
tests were performed under the controlled force courses: Fx(t)=Fxasin(2π f t),
Fy(t)=Fyasin(2π f t − δ) with the same frequencies ( f = 13 Hz) and similar
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amplitudes of forces Fxa and Fya with the phase shift δ = 180◦ (Tab. 2). Table
2 also contains numbers of cycles to the crack initiation Ni corresponding
to the crack length ai and maximum (at the time domain t and geometry of
the specimen) principal stress σ1 calculated from the model of a body with
kinematic hardening using the COMSOL program [7]. The cyclic hardening
curve according to Ramberg-Osgood and the condition of plasticity according
to the Huber-Mises-Hencky hypothesis were applied while calculations. A
way of loading and geometry of specimens influenced a place where fatigue
cracks occurred (Fig. 2). The crack length ai assumed as the moment of
crack initiation is the length of the first registered crack. The crack lengths
were registered with an optical microscope (magnification 7 x) and a digital
camera (0.0085 mm/pixel). More information about the tests can be found
in [8].

Table 1.
Cyclic properties of 18G2A steel under alternating tension-compression

σa = σa f (Nσ /Nf )1/mσ εp
a = (σa/K‘)1/n‘

σa f , MPa mσ , - Nσ , cycles K‘, MPa n‘, -

204 8.3 1.24·106 1323 0.207

Indices: a f – fatigue limit, a – amplitude, p – plastic part

(a) (b)

Fig. 2. Positions and orientation of fatigue cracks
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Table 2.
Characteristics of loading of cruciform specimens and numbers of cycles Ni to the fatigue crack

of length ai

Specimen.
d,

mm
h,

mm
Fxa ,
kN

Fya ,
kN

σ1,
MPa

Ni ,
cycles

ai, mm

P02 3.0 1.40 13.30 13.10 366 39700 0.22

P03 3.0 1.54 13.50 13.30 359 31100 0.37

P04 3.0 1.86 13.55 13.30 344 60048 0.07

P05 2.5 1.50 10.21 9.90 308 246695 0.25

P07 3.0 1.75 11.20 10.80 318 140700 0.20

P08 2.4 1.20 9.30 9.10 328 167050 0.10

3. The model

3.1. The classical Weibull theory

Probability distribution of the random variable elaborated by Weibull in
1939 [3] is widely applied in many fields. The distribution function was
formulated after analyses of experiments concerning determination of static
strength of brittle materials. The Weibull theory explains differences in the
strength limits between tension and bending, and the scale effect. The con-
ventional form of distribution of probability PmV of element failure versus
stress σ is expressed as

PmV = 1 − e
− 1

V0

∫
v

g(σ)dv
, (1)

where V0 is the so-called reference volume of the element characterized by
distribution (1), and g(σ) is the so-called function of failure risk, dependent
on the material properties. Weibull proposed two forms of the function g(σ),
containing two or three parameters:

g(σ) =
(
σ − σ0

σu

)m

, g(σ) =
(
σ

σu

)m

, (2)

where σ0, σu, m are the parameters of displacement, scale and shape of
distribution, respectively (1). Because of different properties of the material
on its surface and in its volume, Weibull considered separate determination
of distribution of failure probability in the material volume (1) and on the
free surface of the element.

In the case of non-uniform stress distribution in the material, the known
parameters of the function (2) can be used for determination of failure proba-
bility (1) for a given element. Such an approach explains differences between
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strengths of the materials subjected to tension and bending – in such cases
stress distributions are different.

3.2. The Weibull theory concerning fatigue of materials

Weibull considered application of his theory in many fields. In [4], he
analysed its implementation for fatigue processes. In such a case, distribution
of failure probability is a two-dimensional function of stress σ and number of
cycles N to failure of the element Pf = f (σ,N). However, any form of such
function has not been proposed. Other researchers [5,6] were developing this
idea, but they concentrated on determination of the one-dimensional function
Pf = f (σ,N = fatigue limit level), i.e. they tried to answer the question if
the element undergoes failure or not.

3.3. The weakest link concept and two-dimensional distribution of
fatigue failure probability

The foundations of the weakest link concept, being the base of the Weil-
bull theory, were formulated in the twenties of the 20th century (see [9]). This
chapter presents the weakest link concept and its application for formulation
of the two-dimensional distribution of fatigue failure probability.

From the experiments it appears that for elements made of homogeneous
materials loaded by a variable force F(t) generating the homogeneous stress
field with amplitude σa in the volume V of these elements, the logarithm of
the number of cycles N to the crack initiation is a random variable with a
determined probability density distribution pf . According to the weakest link
concept, let us assume that a given element of volume V or surface A includes
various microdefects, statistically distributed. The crack initiation is going to
occur in a certain elementary area (link) of the element, V (i), A(i), which
contains the “most dangerous defect”. As for the next elements (specimens)
of the same geometry (V, A) and loading (F(t)), “the most dangerous defect”
exhibits other features, and the crack initiation occurs under another number
of cycles N . In the case of heterogeneous stress field, the given element is
divided into subdomains V (i) or A(i). The probability that a crack will not
occurs in the interval [0, N] means that the crack initiation will not occur
in any elementary subdomain (the weakest link concept). Let us assume that
Pe(A(i)) is the probability that the subdomain A(i) will not initiate a crack in
a certain interval of the number of cycles [0, N] and that for each subdomain
the probabilities are independent. Then, the probability for all the element
Pe(A) is the product of probabilities Pe(A(i))
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Pe(A) =
i=k∏
i=1

Pe(A(i)). (3)

Crack initiation in the subdomain A(i) at a certain level of probability is a
function of stress and life N. The following general form of this function is
assumed:

Pf (A(i)) = 1 − Pe(A(i)) = 1 − e−
1

A0
h(N,σ)A(i)

, (4)

where h(N, σ) is a function dependent on a level of stress σ, at which we
can observe scattering of a number of cycles to failure N; A0 is the reference
surface. The probability of failure of a system including k subdomains is
expressed by the following relationship

Pf (A) = 1−Pe(A) = 1−
i=k∏
i=1

Pe(A(i)) = 1−
i=k∏
i=1

e−
1

A0
h(N,σ)A(i)

= 1−e
i=k∑
i=1
− 1

A0
h(N,σ)A(i)

.

(5)
Assuming k → ∞, i.e. a continuous and homogeneous body, we can write
Eq. (5) as

Pf (A) = 1 − e
− 1

A0

∫
A

h(N,σ)dA
. (6)

Eq. (6) is analogical to the Weibull equation (1), but in Eq. (6) the function of
failure risk h is the function of two variables: σ and N . Since it is convenient
to consider scatter of the fatigue life in the logarithmic scale, such a form of
variable will be used in the expression for the function h. A general form of
this function is analogical to the two-parameter Weibull function (2)

h(N, σ) =
(
log(N)
f (σ)

)m(σ)

. (7)

Since scatters of the fatigue life N depend on the stress level , the parameters
of shape and scale of distribution (6) become the stress functions. A fatigue
characteristics, i.e. σa − Nf , joining the mean number of cycles Nf with the
stress level σa can be used as the scaling function f (σ = σa)=log(Nf ). The
shape function m(σ) is responsible for fatigue life scatter at a given level σa,
so it can be expressed as the function log(Nf ). Under high loadings, i.e. low
life Nf , the scatters are smaller than under low loadings. Under a loading
equal to the static strength limit, the fatigue life Nf does not exhibit any
scatter (Nf → 1 a loading cycle). On the other hand, under loadings at the
level of the fatigue limit, some specimens are subjected to failure, and some
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others have unlimited fatigue life, i.e. large scatters. From the simulations it
appears that for the constant scaling function f the scatter decreases for the
increasing function m. A simple function satisfying such requirements takes
the following form

m(σ) = m(Nf ) =
p

log(Nf )
, (8)

where p is the constant coefficient of distribution indicating a level of fatigue
life scatter at the given level Nf . Finally, distribution of probability (6) of
the element failure takes the form

Pf (A,N) = 1 − e
− 1

A0

∫
A

(
log(N)

log(Nf )

) p
log(Nf ) dA

. (9)

In the case of uniform stress distribution of a free area A0, Eq.(9) reduces to

Pf (A) = 1 − e
−
(

log(N)
log(Nf )

) p
log(Nf )

. (10)

Fig. 3 shows an exemplary, two-dimensional distribution of failure probability
obtained from Eq. (10), using the fatigue characteristic (σa − Nf ) of 18G2A
steel (Tab. 1) under the assumption that p = 100.
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Fig. 3. Simulated two-dimensional distribution of the failure probability for the element made of
18G2A steel

Crossing the two-dimensional distribution Pf (σ,N) by a horizontal plane,
we obtain the fatigue characteristic σ − N for any probability level. In the
case of the distribution function according to Eq.(10), the basic characteristic
σa − Nf (Tab. 1) corresponds to probability Pf = 0.63 (for N = Nf ).
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4. Implementation of the two-dimensional probability distribution Pf
in calculations of fatigue life

Let us assume that the cracks occurring on the free surface of the element
are responsible for failure. If the parameters of two-dimensional probability
distribution (10) are known, we determine fatigue life of the element with
heterogeneous stress distribution according to the following procedure:
(1) The free surface of the considered element is divided into subdomains

A(i) of suitable size, with homogeneous stress distribution (Fig. 4a).
(2) In each subdomain A(i), the multiaxial stress state σ(i)

kl (t) should be re-
duced to the equivalent state σ(i)

eqa with the use of a criterion of multiaxial
fatigue.

(3) The equivalent stress σ(i)
eqa and the fatigue characteristic σa−Nf are used

for calculations of a number of cycles to failure N (i)
f for each subdomain

A(i) (Fig. 4b).
(4) When the scaling function log(N (i)

f is known, we determine the fatigue
life distribution Pe(A(i)) = 1 − Pf (A(i)) (Fig. 4b)

Pe(A(i),N) = e
− 1

A0

 log(N)

log(N(i)
f )


p

log
(
N(i)

f

)
A(i)

. (11)

Fig. 4. (a) The separated subdomains of the element with homogeneous stress distributions, (b)
distributions of probability of life Pe of particular subdomains against the fatigue characteristic

(5) For each fatigue life N , the exponents of the number e from (11) are
summed along all the subdomains A(i), and we obtain the function Pe(N).

(6) The distribution of probability of failure of all the element versus the
number of cycles is a result of the simple operation: Pf (N) = 1 − Pe(N).
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(7) The fatigue life Ncal of the maximum probability density is calculated
for Pf (Ncal) = 0.63. Fatigue life for any other probability level, i.e. the
scatter of results, can be calculated in a similar way.

5. Determination of parameters of two-dimensional distribution of
failure probability

Taking advantage of the standard fatigue characteristic σa−Nf , the num-
ber of the two-dimensional distribution parameters (9) was reduced to two,
i.e. A0 and p. The reference surface area A0 is the area with the uniform stress
distribution characterized by distribution (10). When the fatigue characteristic
σa − Nf is applied, it is the free surface area of the specimen applied for
determination of this characteristic. In the case of the steel considered in this
paper, the round specimens 10 mm in diameter and the base length 40 mm
were tested, so A0 = 1256 mm2 [10].

The parameter p responsible for distribution of fatigue life scatters can
be determined from the tests of specimens having the same distribution of
defects (kind and morphology) as the considered element. However, qualities
of elements and specimens are usually different. In such a case, the param-
eters of distribution should be fitted on the basis of one series of tests of a
real element subjected to simple loadings. Such a procedure was applied, for
example, by Delahay and Palin Luc [6] for determination of parameters of
the one-dimensional distribution of type (2).

In this paper, the author applied different values of the parameter p, which
were used while calculations of fatigue life and analysis of the proposed
model.

6. The results of calculations

All initiations of the fatigue cracks in the cruciform specimens (Fig.1)
were observed on the surface hole (Fig.2), thus calculations were reduced to
that area. The crack planes coincided with the planes of maximum normal
stresses. Thus, the criterion of maximum normal stresses on the critical plane
was assumed as the criterion of multiaxial fatigue. The equivalent stresses
are calculated according to the following equation

σeq(t) = σi j(t)ninj, (12)

where ni is a vector perpendicular to the plane with the maximum normal
stress. Under cyclic loadings described in chapter 2, the equivalent stress
amplitude (12) at each point on the surface hole is equal to the maximum
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principal stress σ1 in the considered observation time. Owing to that, numer-
ical calculations become easier. Because of loading symmetry and geometry,
calculations were performed for 1/8 of the specimen (Fig.5). Division of the
surface hole into finite elements and distribution of the equivalent stress am-
plitudes are shown in Fig.5. Surfaces of the finite elements were understood
as subdomains A(i) described in chapter 4. Fig. 6 shows one of the obtained
distributions of probability Pf of crack initiations (specimen P05, tab. 2).

Fig. 5. 1/8 of geometry of the cruciform specimen with distribution of the equivalent stress σeq

on the surface hole (specimen P05, Tab.2)

The distributions Pf were used for calculations of the number of cycles to
crack initiation Ncal for three levels of probability: Pf = {0.05; 0.63; 0.95} and
for different values of the parameter p (Figs. 6b and 7a). The best agreement
between the calculation and experimental fatigue lives was obtained for p =
560 (Fig. 7a). For such a parameter p, the fatigue life scatters were simulated
for the basic fatigue characteristic σa−Nf (Fig. 7b). From Fig. 7b it appears
that in a big range of the fatigue life the experimental points σa − Nf are
included in the scatter band defined for Pz = {0.05; 0.95}. Only for Nf >

Nσ = 1.24 · 106 (the fatigue limit level) the fatigue life scatters are greater
than the defined band.

The parameter p=560 should estimate the fatigue lives of the notched
cruciform specimen under different loadings but of the same quality as those
considered in the paper.
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Fig. 6. (a) Distribution of probability of the crack initiation Pf for specimen P05 (Tab. 2),
(b) comparison of the experimental Nexp and calculation life Ncal for p=400

Fig. 7. (a) Comparison of the experimental life Nexp with the calculation life Ncal for p=560;
(b) basic fatigue characteristic σa − Nf with experimental points and with fatigue life scatter

determined for p=560

7. Conclusions

The author proposeda procedure fordetermination of the two-dimensional
distribution of probability of the element failure Pf −N−σ and its application
for calculations of fatigue life of structural elements. The presented approach
allows calculating fatigue life at any probability level. Moreover, the approach
includes non-uniform stress distribution in the material and the scale effect.
The presented probability distribution according to (9) has a general form and
it can be used for different fatigue characteristics (stress, strain or energy).
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Generally speaking, the paper presents the two-dimensional distribution Pf
– fatigue life – fatigue parameter.

The calculated fatigue life Ncal well correlates with the experimental
fatigue life for p≈560.

The proposed function of distribution of probability (9) to the crack ini-
tiation needs determination of only one additional parameter (parameter p).
Such a simple form is suitable for the considered cruciform specimens with
holes. However, it should be expected that other elements made of the same
steel but of different quality (manufacture process) will require determination
of a more complicated distribution. The parameters of such distribution will
be defined from additional tests.

The paper financed from the funds for science in 2007-2009 as a research
project.
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Probabilistyczny model szacowania trwałości zmęczeniowej elementów konstrukcyjnych
o niejednorodnych rozkładach naprężeń

S t r e s z c z e n i e

W pracy przedstawiono metodykę wyznaczania dwuwymiarowego rozkładu prawdopodobień-
stwa Pf inicjacji pęknięcia w funkcji trwałości zmęczeniowej N i parametru uszkodzenia zmęczenio-
wego σ: Pf − N − σ. Zaproponowany rozkład Pf wykorzystuje parametry standardowej charak-
terystyki zmęczeniowej i pozwala na obliczenie trwałości zmęczeniowej elementów o niejednorod-
nych polach naprężeń na dowolnym poziomie prawdopodobieństwa. Model został pozytywnie zw-
eryfikowany na podstawie badań eksperymentalnych.




