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DOROTA PAWLUS 

DYNAMIC STABILITY OF THREE-LAYERED ANNULAR PLATES 

WITH VISCOELASTIC CORE 

Three-layered, annular plate with viscoelastic core is subjected to loads 
acting in the plane of the plate facings. One formulates the dynamic, stability 
problem concerning the action of time-dependent compressive stress on a plate 
with imperfection. This problem has been solved. One created the basic system 
of differential equations in which the approximation finite difference method was 
used for calculations. The essential analysis of the problem was concentrated 
on evaluation of the influence of the plate imperfection rate and the rate of plate 
loading growth on the results of calculation of critical parameters at the moment 
of loss of plate stability. It determines the analysed problem of sensitivity of 
the plate to imperfection and loading. In the evaluation of the dynamics of this 
problem, the dynamic factor defined as the quotient of the critical, dynamic 
load to the static one was used. The idea of dynamic factor and the type of the 
accepted criterion of the loss of plate stability were taken from the Volmir's work. 
The observations were confirmed by comparable results of calculations of plate 
models built in finite element method using the ABAQUS system. The analysis 
of the stress state in an exemplary plate model calculated in FEM demonstrated 

the importance of the strength condition in total evaluation of the plate work. One 
achieved satisfactory correctness of results in both methods. 

1. Introduction

The investigations in the field of the stress-strain analysis of annular 
plates with laminar transverse structure subjected to the lateral loads 

are still being undertaken. These investigations consider the plates with 
different properties of layer material, particularly with damping layer and 

the plates with different geometrical parameters. The effects of the facing 
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to core thickness ratio or the radius dimension to total plate thickness 
ratio are studied. The problems, like e.g.: static and dynamic stability or 
the vibrations analysis are examined. Certain works concerning these 
problems, which appeared recently are written by the following authors: 
Yu and Huang [1], Krizhevsky and Stavsky [2], Paydar [3], Dumir, Joshi 
and Dube [4], Wang and Chen [5], [6], [7], Chen, Chen and Wang [8]. The 
evaluation of behaviour of plates analysed in such problems is a multi­
parameter complex task. 

In the present work, examinations of dynamic stability of annular plates 
with three-layered structure were undertaken. Especially, the attention was 
focused on the influence of the plate imperfections and the increase in load 
parameter on critical plate parameters and its supercritical behaviour. This 
work is an extension and a complement to the analyses of examined plates 
presented in work by Pawlus [9], [ 1 O], [ 11]. The form of the basic system of 
the differential equations, which is the solution to the problem of deflections 
of three-layered, annular plates with elastic core under compressive loads, 
has been presented in work [9]. The calculations were carried out using the 
approximation finite difference method. The evaluation of the critical plate 
parameters depending on the effect of thickness and material parameters of 
plate core was the subject of consideration in work [10]. The calculations 
were carried out using the method presented in [9] and using the finite 
element method in the ABAQUS system. 

Introducing in considerations of the buckling problem the formulae 
of the viscoelastic core of three-layered plate subjected to a lateral time­
dependent load is the stage of the investigations undertaken in present work. 
The main goal of the considerations is the plate problem of imperfection 
and loading sensitivity. Each of the analysed plate examples with specific 
parameters of core material and thickness constitutes a certain individual 
plate structure, which has its own preliminary deflection and rate of loading 
growth expressed by the calibrating number and the plate critical, static 
load. Some observations in this field for plates with elastic core have been 
indicated in [11]. The analysis of the loading sensitivity of plates were made 
for fixed value of the rate of loading growth independently of the material 
and geometrical parameters of plate. 

The way to the solutions to the buckling problem, presented in works 
[9], [10], [11], refers to the solutions obtained for elastic or viscoelastic 
homogeneous plate described in works by: Wojciech [12], Trombski and 
Wojciech [13], Pawlus [14], [15], respectively. The analytical formulae of 
homogeneous plates have been conformed to the laminar structure keeping 
the way of numeric solution based on the approximation, finite difference 
method. In work by Pawlus [16] the behaviours of both homogeneous 
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and laminar plates with viscoelastic properties have been analysed. The 
calculations have been carried out using the finite element method in 
ABAQUS system. 

In the present work, the study is also supported by the calculations in 
finite element method using the ABAQUS system. One presents the mesh 
model of three-layered plate structure with soft, foam, viscoelastic core. 

2. Problem formulation

The three-layered, annular plate loaded in the plane of the plate facings 
is the subject of the consideration. The classical, three-layered transverse 
structure of the plate is composed of elastic, steel facings and a suitably 
thicker, soft core made of a foam with viscoelastic properties. The outer 
plate layers are loaded with uniformly distributed compressed stress p

proportionally increasing in time t with the velocity s. The formula is as 
follows: 

where: 
p- compressive stress,
s - rate of plate loading growth,
t-time.

p=st (1) 

The geometry of the analysed plate is expressed by the dimensions of
its inner r; and outer r

0 
radius, equal thicknesses of facings h', the thickness 

of core h
2 

and by the form and the rate of plate preliminary deflection. The 
scheme of the examined plate is presented in Fig. 1. 

I I lj .. ' 
I 

h1 = � = h' I ro I 
1,3 - outer layers 

�,z 2- core v 

Fig. 1. Scheme of the plate 

An axially-symmetrical form of the plate pre-deflection has been accepted 
in the analysis. This form corresponds with the total axially-symmetrical 
form of plate buckling. The plate loaded on inner perimeter and supported 
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in slidably clamped edges is the object of the analysis. The plate loses its 
stability in this regular form for a minimal value of critical load, important in 
stability problem. It was observed in static and dynamic stability problem of 
homogeneous plates [17] and in static stability problem of sandwich plates 
[18]. The assumed case of plate loading and the form of plate buckling are 
showed in Fig. 2. 

·-l
·-l

(a) (b)

Fig. 2. Full annulus plate model with the case of loading (a) and the form of axially-symmetrical 

buckling (b) 

The values of critical, dynamic loads denoted in the range of quickly 
increasing plate deflections in the time of loading strongly depend on both 
loading velocity and the rate of plate imperfection. The evaluation of the 
influence of the rate of loading growth s and the imperfection number � 
on the dynamic behaviour of plates with different thicknesses and material 
parameters of their core is the goal of the undertaken analysis, which could be 
formulated as the sensitivity of plate to imperfection and loading growth. 

The parameter Kd , called the dynamic factor in paper [19], is the quantity
accepted in the study, which characterizes the plate dynamic stability. 
Dynamic factor Kd is defined as the quotient of the critical, dynamic load to
critical, static one: 

K = Pcrdyn 
d 

Per 
(2) 

The criterion presented by Volmir [ 19] has been adopted as the criterion of 
loss of plate stability.According to this criterion, the loss of plate stability occurs 
at the moment of time when the speed of the point of maximum deflection 
reaches the first maximum value. This criterion corresponds with the criterion 
presented by Budiansky-Hutchinson in work [20]. According to this criterion, 
the critical, dynamic load is the amplitude of the impulse, whose small change 
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causes the greatest increase in deflections. It was used in the analysis of static 
and dynamic buckling of laminated composite shells presented by Tanov 
and Tabiei [21] as the Budiansky-Roth criterion. The criterion presented· 
by Budiansky-Hutchinson is used in work [22] in the problem of dynamic 

buckling in structures sensitive to imperfection, like: bars, plates and shells. 
In the description of rheological properties of the core material, one adopted 

the formulae of the standard model (Fig. 3) of the linear viscoelastic medium. 
The transverse deformation of plate core and facings is based on the assumptions 
of the classical theory of sandwich plates [23] with the broken line hypothesis 
and the distribution of the plate layers in carrying the stresses: normal stress by 
the facings, and the shearing one by the core. This scheme of the division of 
layer loads was used in building the plate computational models: 

- in the formulation of the expressions of the basic system of differential
equations solving the presented problem with the use of approximation

finite difference method;
- in the selection of the mesh elements of the plate models built in

finite element method for additional, numeric calculations using the
ABAQUS system.

Fig. 3. Standard model 

3. Basic equations

In formulating the system of differential equations, which solves the 
plate buckling problem, one assumed equal values of preliminary and 
additional deflections of each layer. The deformations of the outer layers 
have been expressed by the nonlinear Karman's plate equations. The linear 
physical relations of the Hooke's law and the viscoelastic medium describe 
the properties of the outer layers and the core, respectively. 

3.1. Equations of dynamic equilibrium 

The system of forces that load the layers of an axially symmetrical, 
annular sector of a plate is presented in Fig. 4. The equilibrium equations of 
the plate layers are given by the following formulae: 
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layer 1 

layer 2 

layer 3 

where: 
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M -M h 'I 01 + M - Q +---1..,: =O
r 

l\'r 'I 2 'I 

M -M h 
r:i 03 + M _ Q + _3 ,: =O 

r r:i·, r:i 2 r3 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

M
'l
<
3
> , M01<3>

- elementary, radial and circumferential bending moments of the 
outer plate layers, respectively, 
Q

'l
<
3
> , Q

12 
- transverse forces on the unit of length of the plate outer layers 

and the core layer, respectively, 
N '1<

3
> , N 

01
<
3> the normal radial and circumferential forces on the unit of length

of the outer plate layers, respectively, 
i:'1

<
3
> - shearing stress of the outer layers, 

r - radius of the plate , 
w - plate absolute deflection, 
h

1
<3>, h

2 
(h1 

= h
3 = h') - thickness of the outer layers and the core,

respectively, 
µ ,c3>, µ2 (JI, 1 = µ3 = µ) - mass density of the outer layers material and the core
material, respectively. 
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Fig. 4. Loading of layers 
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3.2. Geometric relations 

Figure 5 presents the deformation in cross-section structure of the plate. 
The angle f3 expresses the core deformation, according to the equation: 

where: 

it u 1 
- u

3 
- h

0

w d• 
I-'= r +w 

h2 

°'• (9) 

u
1

, u
3 

- displacements of the points of the middle plane of the outer layers in 
the radial direction, 
w 

O 
- preliminary deflection,

w d - additional deflection. 

3.3. Physical relations 

Linear physical relations of the Hooke's law for a plane stress state are 
expressed as follows: 

E. 
a. =--'-

2 
(E

0 
+VE

9;
) 

I 1- V; I 

(10) 

E. 
CT

9
. =--'-

2 
(Ea, +vE.) 

, 1- V; , , 
(11) 

where: 
i - denotes the outer layer, i = 1 or 3. 

The values of Young's modulus and Poisson's ratio of the material of the 
outer layers are equal: E=E

1
=E

3 
and V=V

1
=V

3
, respectively. 

The physical relationship between stresses and displacement in the 
viscoelastic core material subjected to shearing stress is presented by the 
equation: 

where: 
Y rz2 is the shearing strain of plate core, expressed by: 

Y =u<•> +w rz2 2-, d'r 

(12) 

(13) 

ui•> =u
2 

- z� + zw °'• is the radial displacement of the point in the z distance 
from of the middle surface of plate core, 
u

2 
- displacement of the points of the middle plane of core layer in the radial 

direction, 
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G
2 

- the modulus expressed by the formula corresponding to the form of
constitutive equation of the standard model: 

a 
~ (a)_A c+oatG - --

2 at B E+F�
at 

(14) 

C, D, E, F -the quantities formulated by the elastic G
2

, G/ and viscosity 
rJ constants of the core material [24]: 

E=l

! - differential operator.

F fl 

G
2 
+G�

3.4. Sectional forces and moments 

(15) 

The relations between sectional forces, moments and stresses in the plate 
facings are expressed by the force and moments equations in the following 
form: 

NG ---2 U;•r +-(w . .) +-U; 
_ Eh; ( 1 2 v )

1- V 2 r 

N9. =--
2 

-U; +-v(w,r) +vu i'r 

Eh; ( 1 1 2 ) 

' 1- v r 2 

(16) 

(17) 

(18) 

(19) 

By using Eqs. (9), (12), (13) one obtains the following form of core 
transverse force Q

ri
, determined as Q,

2 
='t

rz2
h2: 

(20)
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where: 
6 = u

3 
- u

1 
: H' = h' + h

2 
• 

The resultant, transverse force Q, has been calculated as the sum oflayers 
forces Q,10_1) 

obtained using Eqs. (3), (5), (7). Introducing the expressions 
presented by the Eqs. (18), (19), (20), after the transformation, one obtains 
the following form of resultant, transverse force Qr: 

where: 

2D 2D ~ ( , ) H' 
Q, =-2Dwd'm - -wd, +-

2 
Wd, +G2 &+Hwd'r -r rr r r h2 

,3 

D = 12�: v2) is the flexural rigidity of the plate facings.

(21) 

The resultant radial Nr and circumferential forces N
9 

as the sum of the 
facing forces N, = N ,

1 
+ N

I') 
, N 

8 
= N 

81 
+ N

83 
have been determined by the 

stresses function <I>: 
' 1 

N, =2h -fl>
'r (22) 

(23) 

3.5. Initial conditions 
The initial state of the plate determined for additional deflection and its 

velocity is expressed as follows: 

wd l,=0 =0 Wd't' t=O =O 

3.6 Boundary conditions 
The conditions of slidably clamped edges are: 

(24) 

w 1,=r.(r,) =O w., 1,=r.(r,) =O & 1,=r.(r,) =O &., l,....,(r,) =O (25) 

The loading boundary conditions for the radial stresses and their 
derivatives with respect to time t can be written as follows: 

a, l,"'l =- p(t) ·d 1 a, 1,=r. =- p(t) ·d2 
(26)
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a. 1,=r. =- s ·d1 a. lr=i: 
=- s ·d2 

I I l O 
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(27) 

d 1, d
2 

- determined by the value, equal to 0 or 1 of the loading inner or/and
outer plate edges. 

3.7. Form of predeflection 

The assumed form of pre-deflection of axially symmetrical plate 
presented earlier in [13], [17] is described by the following equation: 

(28) 

where: 
� is the calibrating number, 

w r 
;0 =-t, P =-;- are the dimensionless values of pre-deflection and plate
radius. 

0 

3.8. Basic system of differential equations 

Adding the terms of Eqs. (4), (6), (8) and using Eqs. (21), (22) ofradial, 
resultant forces, one calculates the following form of the differential equation 
of plate deflections: 

~ ~ 2k ~ kl 
~ kl 

~ 
H02 

~ 1 H
02 

Bklwd ,rrrr +B-1 wd ,rrr - B-wd +B3wd ,, - A-
h 
wd ,., - A--

h 
W

e.t-
r r2 

'rr f 
2 r 

2 

where: 
k1=2D, M=2h'µ+h2µ2

(29) 

Using Eqs. (16), (17), (22), (23), we obtain the equation of inseparability 
of the deformations (30) and its time differential form (31 ): 

1 1 ( )2 r<l>,
rrr 

+Cl>,
rr 

- -Cl>,, +-E W,, =O 
r 2 

1
r<l>.

mt 
+Cl>

'rrt 
- -ct>,

rt 
+Ew.,w.

rt 
=O 

r 

(30) 

(31)
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The unknown quantity 6 in Eq. (29) has been calculated from the 
additional equation (32): 

Eh 0 

where: k
2 

=--
2 

h
2

• 

• 1- v

(32) 

Eq. (32) was formulated using the differences of the terms of equilibrium 
equations of projections on the x-directions of forces acting on the undeformed 
plate facing. 

4. Problem solution

The following dimensionless quantities and parameters have been used 
in the solution: 

where: 

<I>F =- t• =t ·K7 
h2E 

w 
i; =­

h 

Per is the critical, static plate load. 

�=� K7=-8 

h Per (33) 

Introducing the quantities (33) and replacing the derivatives with respect 
to Q by central, finite differences in discrete points, one transforms Eqs. (29), 
(30 ), (31), (32) to the forms: 

where: 

FFY=UW 

FFY=UW 

. . 

ZTvD =ZvD+VTvU+VvU 

(34) 

(35) 

(36) 

Pv, PTv - matrixes with elements composed of geometric and material 
plate parameters and quantity b (b-length of the interval in the finite difference 
method); 
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Qv, QTv - vectors of the expressions composed of initial deflections, 
geometric and material parameters, components of stress function, quantity 
band coefficient o; 

FF - matrix with elements described by ratio a= b/Q.;
, I I 

UW, UW - vectors of the expressions of initial and additional deflections,
components of stress function and their derivatives, ratio a

i 
and quantity b;

ZTv, Zv, VTv, V v - matrixes of the components of plate geometry and 
plate material parameters and quantity b;

U, Y, D-vectors expresses by the additional plate deflections, components 
of stress function and coefficient o. 

The differential Eq. (34) has been solved using the Runge-Kutta's 
integration method for the initial state of plate. Earlier, one calculated the 
stress function components of the vector Y and the derivatives of stress 
function of the vector Y from Eqs. (35) and the coefficient o and its deri­
vatives as the elements of vectors D and i>, respectively. 

5. Critical loads of plate with elastic core

The solution to the problem of plate with elastic core requires only 
the modification of Eqs. (15) to the forms, which correspond to the case of 
instantaneous elastic deformation, i.e., when r (and G2 ' are equal to: r]'=O, 
G

2
'➔oo. Then, the values of the quantities C, D, E, F are equal, respectively: 

E=l, C=G, F=D=0. Eqs. (34), (35), (36) are transformed to the form of 
equations excluding the additional expressions connected with the existence 
of the differential operator f . Eq. (34) becomes a differential equation of
second order. The system of Eqs. (34), (35), (36) can be written in the 
form: 

(37) 

FFY=UW (38) 

(39) 

Critical, static stress Per has been calculated from the Eq. (37) neglecting 
the inertial components and initial deflection, and assuming the stresses 
function Fas a solution to the disk state. After transformation, Eq. (37) takes 
the following form: 
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MAP ·U + MACD ·D =p*MAC ·U (40) 

where: 
p* - dimensionless stress, p" = f 
MAP, MACD, MAC - matrices of components of geometric and material
plate parameters and quantity b.

By solving the eigenproblem, one calculates the minimal value of 
dimensionless stress p * as the critical, static load per* of plate: 

(41) 

where: 
Z/ is the inverse matrix to Zv in Eq. (39). 

6. Exemplary calculations

The exemplary calculations have been carried out for two kinds of 
polyurethane foams core material: 

- with values of constants G2, 02·, rf, µ2 presented in work [25] equal
to: 02=15.82 MPa, 02'=69.59 MPa, rf=7.93xl04 MPaxs, µ2=93,6 kg/m3,
respectively; 

-with the data presented in work [26] for the Kirchhoff"s modulus G
2

, 

equal to: G
2
=5MPa, the creep function q> = 0.845(2 - e.0361 - e.0·0361) and the 

mass density µ
2 

equal to: µ
2
=64 kg/m3 • 

Creep function presented in work [26] allows for calculating the values 
of elastic and viscous constants of five-parameters rheological model 
composed of two Kelvin-Voigt models and the spring element connected in 
series. Because the solution presented in this paper is for the core material 
described by the three-parameters, standard model (Fig.3), hence the 
presented characteristic of function q> has been approximated by the function 
of standard model using in the numeric analysis the following values of 
constants: 02=5 MPa, G2'=3.13 MPa, rf=212.92xl04 MPaxs, accepted for
examined three-layered plate. 

The plate facings are made of steel with the parameters: Young's modulus 
E=2.lxl05 MPa, Poisson's ratio v=0.3, mass density µ=7 .85xl03 kg/m3 • 

The evaluation of the influence of the imperfection degree on the values 
of dynamic loads has been analysed for the values of calibrating number � 
(presented by Eq. (28) ) in the range of: ;=0.125+2. However, the influence 
of the rate of plate loading growth s has been expressed accepting different 
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values of parameter K7, equal to: K7=10,20,40 1/s, which describes the 
velocity s by the formula: s=K7xpcr - Eq. (33). 

The calculations in finite difference method have been preceded by 
selection of the number N of discrete points from among numbers N, equal: 
N=l 1, 14, 17, 21, 26. The values of critical. dynamic loads Pcn1yn of plates with
viscoelastic core and values of critical, static loads Per have been evaluated. 
The numeric calculations show that the number N=14 allows us to achieve 
the accuracy up to 5% of technical error. The calculations were carried out 
for this number. Tables 1, 2, 3 present the exemplary results of the analysis. 

Values of critical loads for different values of number N 

E=2.lxl05 MPa, v=0.3,µ=7.85xl03 kg/m3, G
2
=5 MPa 

G
2
'=3.13 MPa, 17 °

=212.92xl04 MPaxs,µ
2
=64 kg/m3

K7=20 1/s, h2 = 0.005 m, g=2 

N 11 14 17 21 26 

p crdyn 78.81 79.62 79.78 80.10 80.17 

Per_ 74.70 75.61 76.05 76.36 76.57 

Values of critical loads for different values of number N 

E=2.lxl05 MPa, v=0.3,µ=7.85xl03 kg/m3, G
2
=15.82 MPa 

G
2
'=69.59 MPa, 17 °=7.93xl04 MPaxs,µ

2
=93,6 kg/m3

K7=40 1/s, h
2 

= 0.02 m, g=0.125 

N 11 14 17 21 26 

Pcr,1yn_ 373.57 391.48 398.43 401.49 402.12 

P
er 

322.32 338.94 345.56 348.82 350.58 

Values of critical loads for different values of number N 

E=2.lx105 MPa, v=0.3,µ=7.85xl03 kg/m3, G
2
=15.82 MPa 

G
2
'=69.59 MPa, r

i

=7.93x104 MPaxs,µ
2
=93,6 kg/m3

K7=20 1/s, h2 = 0.005 m, g=2 

N 11 14 17 21 26 

P 158.23 159.94 160.58 161.09 161.60 
crdyn 

P
er 

146.37 149.34 150.50 151.26 151.74 

Table 1. 

Table 2. 

Table 3. 
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6.1. Plate imperfection sensitivity 

The diagrams presented in Figs. 6, 7, 8, 9 show the influence of the 
values of calibrating numbers on the time history of plate deflections. The 
results in Figs. 6, 7 concern the plates with viscoelastic core with elastic 
constant 02 and thicknesses h2, equal to: 02=5 MPa, h2=0.005 m and 0.02
m, respectively. Figs. 8, 9 show the results of plates with the greater value 
of elastic constant 02 =15.82 MPa of the core material. The analysed plates
have been subjected to the load increasing slowly with the velocity expressed 
by the parameter K7, equal to: K7=10 1/s. The marked point in the curves 
�1 =f(t*) determines the critical time and critical deflection at the momentmax 
of the loss of plate stability according to the accepted criterion. 

-ksl..0.125 h2a0.005 m 
--ksl-0.5 h2=0.005 m 
--ksl=L0 h2=0.005 m 
-ksl-2.0 h2=0.005 m 

1 

0,5 

0,5 1,5 2 

G2=5 MPa 
K7al0 l,'s 

t• 
2,5 

Fig. 6. Time histories of plates with G
2
=5 MPa and �=0.005 m for different values of number t; 

The presented characteristics show the essential influence of the values 
of number � describing the plate preliminary deflections on the values 
of dynamic factor Kd. The influence is illustrated by the distribution of 
marked dots in Figs. 6, 7, 8, 9 for plates with different values of material 
core parameters and core thicknesses. The values of dynamic factor Kd of 
plates with greater imperfection and plates with thicker core but with lower 
value of the elastic constant 02=5 MPa approach the value equal to one,
or even lower than one. It means that the values of critical, dynamic loads 
correspond to the values of the critical, static loads or they are lower then 
static loads. In supercritical area of plate work, one observes the decay of 
vibrations initiated by the acting load of plates with preliminary deflection 
scaling greater by the number S, equal to s=2. 
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0,75 r--:_-:_-
_
-ks

-i-O
-
.l

-
2

_
5

_
h2

_
-0

_
.

_
02

_
m 
________ _

--ksl..0.5 h2=-0.02 m 
--ksl=l.O h2a0.02 m 
-ksi=2.0 h2=0.02 m 

0,5 

0,25 

0,5 1 1,5 2 

G2=5 MPa 
K7=10 l}s 

t• 
2,5 

Fig. 7. Time histories of plates with G
2
=5 MPa and h

2
=0.02 m for different values of number!; 

1,5 

1 

0,5 

--ksl=0.125 h2..0.005 m 
--ksl-0.5 h2=0.005 m 
--ksl=LO h2a0.005 m 
-ksl-2.0 h2=0.005 m 

G2=15.82 MPa 
K7•10 l}s 

0"'--llllle::;,t__ _________ _j 

0,5 1 1,5 2
t• 

2,5 

Fig. 8. Time histories of plates with G
2
=15.82 MPa and h

2
=0.005 m for different values of number!; 

0,75 

0,5 

0,25 

0 
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0,75 1 

G2=15.82 MP a 
K7=10 l}s 

1,25 t• 1,5 

Fig. 9. Time histories of plates with G
2
=15.82 MPa and h

2
=0.02 m for different values of number!; 
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6.2. Plate loading growth sensitivity 

The influence of the rate of plate loading growth s on plate behaviour 
is the significant element in its work, too. This influence is depicted by 
the curves �

t
max=f(t*) in Figs. 10, 11, 12, 13 for plates with different core 

stiffness having the greatest imperfection (;=2). Then, the dynamic factor 
K

d 
of slowly loaded plates is the lowest one, and the values of critical, 

dynamic loads Pcn1 n are minimal, too. The values of critical deflections 
w dcr increase together with the values of the loading growth rate s . Then, 
the vibrations are initiated by the supercritical, quickly increasing plate 
loads. They are observed, in particular, for the plates with thinner core 
(h

2
=0.005 m). 

Table 4. 
Values of critical loads depending on the values of number s and rate s 

�/G
2 P

cntyn 
[MPa] Per K

d [m/MPa] [MPa] 
K7=10 (1/s] K7=20 (1/s] K7=40 [1/s] 

f;=0.125 f;=l 1;=2 1;=2 f;=2 
0.005/5.0 84.91 77.95 1ti8. 79.62 87.33 75.61 Q.22 

0.005/15.82 166.22 157.55 lli..21 159.94 170.99 149.34 lJU
0.02/5.0 159.16 148.04 .llUl 154.35 159.46 150.29 Q..22 

0.02/15.82 356.90 346.06 l4ll7. 350.80 364.36 338.94 .Llil

Table 5.

Values of critical, additional deflections depending on the values of numbers and rate s 

�/G
2 

[m/MPa] 

0.005/5.0 
0.005/15.82 

0.02/5.0 
0.02/15.82 

f;=0.125 
2.49· 10:3

3.21 · 10-3

2.84 . 10-3

3.98· 10-3 

K7=10 [1/s] 
s=l 

1.99 . 10·3 
2.62· 10-3 
2.60· 10-3 

3.96· 10-3 

w
dcr 

[m] 

s=2 
1.91 . 10·3 

2.60· 10-3 

2.49· 10·3

4.25· 10·3

K7=20 (1/s] 
1;,,,;2 

2.52• 10"3 

3.26-10·3

3.80 · 10-3 

5.12· 10-3 

K7=40 (1/s] 
1;=2 

3.25· 10·3 

4.19· 10-3

4.21 . 10-3

6.21 · 10·3
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-K7=101/s h2=0.005m 
--K7=20 1/s h2=0.005 m 
--K7=40 1/s h2=0.005 m 

0,5 

0,5 1,5 2,5 
t* 

Fig. IO. Time histories of plates with G
2
=5 MPa and �=(l.005 m for different values of parameter K7 

-K7=10 1/s h2=0.02 m 

--K7=20 1/s h2=0.02 m 

--K7=40 1/s h2=0.02 m 

0,5 

0,25 

0,5 1,5 

G2•5 MPa 
�2 

2,5 

Fig. 11. Time histories of plates with G
2
=5 MPa and h

2
=0.02 m for different values of parameter K7 

The precise values of critical, dynamic loads Pcrdyn and critical, additional 
deflections w dcr for plates with different values of the rate s of plate loading 
growth are presented in the Tables 4, 5. The critical, additional deflections 
w dcr in the relation to the absolute plate thickness h are in the range of the 
0 .27 to O .6 for plates with thinner core (h

2
=0 .005 m), whereas for plates with 

thicker core (h
2
=0.02 m) suitable quotient w

dc
r/h is in the range from 0.11 

to 0.28. According to the accepted criterion of the plate stability loss, the 
critical deflections of the analysed three-layered plates are practically in the 
range of up to a half of the total plate thickness. 



46 DOROTA PAWLUS 

-K7=10 1/s h2=0.005 m 
i --K7=20 1/s h2=0.005 m 

� 2 --K7=40 1/s h2=0.005 m 

1,5 G2•15.82 MPa 
9=2 

0,5 

0,5 1,5 2 t• 2,5

Fig. 12. Time histories of plates with G
2
=15.82 MPa and h

2
=0.005 m for different values of parameter 

K7 

0,75 ,-----------------, 
-K7=101/s h2=0.02 m 
--K7=20 1/s h2=0.02 m 
--K7=401/s h2=0.02 m 

0,5 

0,25 

0,5 0,75 

G2•15.82 MPa 
9=2 

1,25 
t" 

1,5 

Fig. 13. Time histories of plates with G
2
=15.82 MPa and h

2
=0.02 m for different values of parameter K7 

7. Calculations in Finite Element Method

In order to build the computational mesh for the model of the analysed 
case of the plate, one applied the simplest solution strategy with the use 
of axially-symmetric elements. The facings mesh is built of 3-node shell 
elements, but the core mesh is composed of 8-node solid elements. The 
schemes of the plate model mesh, the inner loaded model and the axially­
symmetrical deformed model are presented in Fig. 14. The outer surfaces 
of the meshes of facings elements have been tied with the outer surfaces of 
the core mesh using the surface contact interaction. The conditions of the 
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slidably clamped edges with a limitation of the possibility of radial, relative 
displacements of outer layers in plate supports have been introduced. The 
rate and the shape of preliminary plate deflections correspond to the form 
accepted for the plate models examined using the finite difference method. 
The calculations were carried out at the Academic Computer Center 
CYFRONET-CRACOW (KBN/SGI_ORIGIN_2000/PL6dzka/030/1999) 
using the ABAQUS system. 

// 
said elements 

a) 

shell elements 

b) 

- T 
--

Fig. 14. FEM plate models of: (a) mesh, (b) loading, (c) buckling 

In the numerical calculations, the core foam was treated as an isotropic 
material. One evaluated the values of Young's moduli, equal to: E

2
=13 MPa 

and E
2
=41.13 MPa for the foam material with the values of G

2
, equal to: 

G
2
=5 MPa and G

2
=15.82 MPa, respectively. According to the standard 

specification PN-84/B-03230 [27], the value of Poisson's ratio assumed in 
calculations was v

2
=0.3. 

Viscoelastic properties of the core material have been described by a 
single term of the Prony series for the shear relaxation modulus [28]: 

where: 
q/, -r,

1
° - material constants, 

G
0 

- instantaneous shear G
2

• 

(42)
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The values of material constants qt, i:
1
° for the standard model of the 

plate core have been calculated from the following equations: 

(43) 

The results are as follows: 
-qt=0.615, ,:

1
°=26.19xl04 s for the foam with G

2
=5 MPa,

-qt=0.185, i:
1
°=928.46 s for the foam with G

2
=15.82 MPa.

The numerical calculations were carried out for two extreme values of 
the rate of plate loading growth determined by the parameter Kl, equal: 
K7=10 and 40 1/s and for minimal and maximum plate imperfection, i.e. for 
;=0.125 and ;=2. 

The results of critical loads and deflections are presented in detail 
in Tables 6, 7. The presented results confirm the observations made for 
plates calculated using the finite difference method. The minimal values of 
critical, dynamic loads have been obtained for slowly loaded plates with 
great imperfection. Then, the values of critical, dynamic loads are slightly 
lower than the values of critical, static loads, and the values of dynamic 
factor K

d 
are lower than 1 irrespective of the analysed plate example. 

The analysed plate with the stiffest core (h
2
=0.02 m, G

2
=15.82 MPa) is 

the exception in this observation. The value of critical, dynamic load is 
greater than value of the critical, static one. The obtained values of critical 
plate deflections are lower than those calculated using the finite difference 
method. 

Values critical loads calculated in FEM depending on the values of number � and rate s 

1½IG
2 

[m/MPa] 

0.005/5.0 
0.005/15.82 

0.02/5.0 
0.02/15.82 

Pcn1yn 
[MPa]

K7=10 [1/s] K7=40 [1/s] 
;=0.125 ;=2 
72.32 22.12. 
130. 71 .l.l.a.1Z
151.79 ill.TI 
340.02 333.7 

;=2 
74.24 
134.31 
148.93 
336.97 

Per 
[MPa] 

64.0 
119.92 
143.20 
324.01 

Table 6. 
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Table 7. 

Values of critical deflections calculated in FEM depending on the values of number ; and rate s 

�/G2 

[m/MPa] 

0.005/5.0 
0.005/15.82 

0.02/5.0
0.02/15.82

Wdcr [m] 

K7=10 [1/s] 

;=0.125 ;=2 
2.43 . 10-3 1. 78 . 10-3 

2.46 . 10-3 2.13 . 10-3 

2.66 . 10-3 3.11 . 10-3 

3.61 . 10-3 4.33 . 10·3 

K7=40 
[1/s] 
;=2 

2.98. 10-3 

3.49 · 10-3 

3.62· 10-3 

4.42 · 10-3 

Figs. 15, 16, 17 present time histories of deflections and velocity of 
deflections for plates with core parameters: h

2
=0.005 m, G

2
=15.82 MPa 

analysed for the following values: K7=10 1/s, ;=0.125; K7=10 1/s, ;=2; 
K7=40 1/s, ;=2, respectively. Time histories of deflections for plates 
with thicker core (h

2
=0.02 m) and value G

2
=5 MPa are presented in Fig. 

18. The courses of curves illustrating the tendency of rising or decaying
of the supercritical vibrations of plates with certain working parameters
are perfectly compatible with the results obtained by means of the finite
difference method. The FEM calculations make it possible to evaluate the
rate of loading of the layers by the analysis of the stress state in the critical
area of plate work.

a) b) 

I- Vl JtODS 171 I- V2JIOD&l71 

10.00 

] ....

j: 
0.00 o.o, o.JO O.lS G.JO 

-oo

Fig. 15. Time histories of displacements (a) and velocity of displacements (b) for plate with parameters: 

G
2
=15.82 MPa, 1½=0,005 m, s=0.125, K7=10 1/s 
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a) b) 

I- uz NODS 1' I
1- vz .,Da 191 

[110'] 

10.00 
D.10 

] 
LOO 

I
LOO 

..... 

.... 

0.00 
0.00 .... D.111 0.15 .... 

..... 00 
a.as Q.10 0.15 IUD 11.25 

.,._Isl 

Fig. 16. Time histories of displacements (a) and velocity of displacements (b) for plate with parameters: 
G

2
=15.82 MPa, h

2
=0.005 m, ;=2, K7=10 1/s 

The Figs. 19, 20 show the exemplary distributions of equivalent 
stresses of von Mises type, and core shearing stresses in the r _z plane 
(Fig.5), respectively. The results pertain to the moment of loss of dynamic 
stability of plate with parameters: G

2
=15.82 MPa, h

2
=0.005 m, K7=10 1/s, 

;=2. The maximum, critical von Mises stresses in the facing are in the 
range of 440 MPa, but the critical maximum core shearing stress is about 
0.63 MPa. One can notice that the values of stresses are significant. The 
knowledge about these stresses is important in evaluation of the strength 
of plate work. 

a) b) 

I- U.2 JI008 11 I I- Yl1'00&111 

[110") 16.00 

1100 

LOO 

-

D.CXI '--""'--'---'--'-..1.......,.__J_...,____J 
D.CXI 0.02 D.114 0.06 o.m 0.10 0.00 OJIZ OJl4 D.D6 ... D.10 

n.i,1 ,._Isl 

Fig. 17. Time histories of displacements (a) and velocity of displacements (b) for plate with parameters: 
G

2
=15.82 MPa, h

2
=0.005 m, ;=2, K7=40 1/s 
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a) 

I- U2 JIOOS n I 
r.t:J, 

J!WIO 

j 5J)I) 

Cl.00 
Cl.00 ..... 0.10 cw .... .... 

ftmOO 

b) c) 

I- U2JIODBUI

r.t:J, 

I- U2.0DBltl 

i lCl.00 

I .,,. 
0JD Q.04 o.o6 a.GI 0.10 

ftmOO 

Fig. 18. Time histories of displacements for plate with parameters: G
2
=5 MPa, �=0.02 m, (a) ;=0.125, 

K7=10 1/s (b) ;=2, K7=10 1/s (c) and ;=2, K7=40 1/s 

S, Mises 

SPOS, (fraction 1.0) 
(Ave. Crit.: 75%) 

+4.400e+0B
+4 .033e+0B
+3.667e+0B
+3.300e+OB
+2 .933e+0B
+2.567e+0B
+2.200e+0B
+l .833e+0B
+1.467e+OB
+l.l00e+OB
+7.334e+07
+3.667e+07
+6.226e+03

Fig. 19. Distribution of von Mises equivalent stresses in the facing of plate with parameters: G
2
=15.82 

MPa, �=0.005 m, ;=2, K7=10 1/s 
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S, S12 

SNEG, (fraction = -1.0) 
(Ave. Crit.: 75\) 

+6.29le+05
+5.582e+05
+4.874e+05
+4.165e+05
+3.457e+05
+2.748e+05
+2.039e+05
+l.33le+05
+6.223e+04
-8.626e+03
-7.948e+04
-1.503e+05
-2.212e+05

Fig. 20. Distribution of core shearing stresses in the r_z plane for plate with parameters: 
G

2
=15.82 MPa, �=0.005 m, ;=2, K7=10 1/s 

8. Conclusions

This paper presents a proposal of solution to the buckling problem of 
three-layered, annular plates with viscoelastic core subjected to a lateral, 
time-dependent load. The obtained system of differential equations for 
the analysed plate, applied for calculations in numerical analysis using 
the finite difference method, is the fundamental element of the solution. 
The results have been compared with the FEM results of computational 
plate models. The qualitative consistency and quantitative correspondence 
have been achieved. The possibilities offered by the finite element method 
in quick evaluation of the critical stress state for individual plate layers 
significantly broaden the range of investigations. This evaluation shows 
the importance of the two analyses, the stability analysis and the strength 
analysis, for the investigations that have been carried out. The results of the 
stress state analysis inform about the correctness of using a certain criterion 
of plate stability loss and essentially limit the supercritical area of plate 
deflections. It should be noticed that the strength criterion could be the 
one, which essentially limits the possibilities of plate work. The loading 
of the analysed plate should be limited to the values, which correspond 
with the critical, static loads. But for particular plate examples with great 
imperfection one should realize that the values of critical, dynamic loads 
are lower than the static ones. 

It could be shown that the sensitivity of the analysed plates to geometrical, 
material and loading parameters is significant. The differences in values of 
critical, dynamic loads for various numbers K7 and � are in the range of a 
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dozen or so MPa, but the values of critical deflections differ by up to 40% of 
their calculated values. 

The evaluation of critical loads of three-layered plates with imperfection 
is a multi-parameter, complex problem, which requires detailed analysis. The 

assumption that the form of plate preliminary deflection is different than that 
which corresponds to the total form of plate buckling could be an essential, 
additional factor influencing plate stability investigations. The analysis 
of homogeneous plates [13], [17] indicates that the influence of axially­
symmetrical components in the description of the shape of plate preliminary 
geometry on the final results (i.e. the form of plate buckling and the values 
of critical parameters) is significant. Such observations concern the plate 
examples in which the loss of stability takes wavy forms for the minimal values 
of critical loads. These solutions are expected for such plates as those analysed 

in this paper, but loaded on their outer perimeter. This problem could be.the 
subject of the future investigations based on general solution of plates with 
circumferential, wavy forms. Such solutions to the static stability problem of 
three-layered, annular plates were presented in work by Pawlus [18]. These 
were also based on the two methods: finite difference and finite element. 

Manuscript received by Editorial Board, October 16, 2007; 

final version, March 18, 2008. 
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Stateczn� dynamiczna piericieniowych plyt trojwarstwowych 
z rdzeniem lepkospr�zystym 

S t r e s z c z e n i e  

W pracy przedstawiono rozwi¥anie zagadnienia statecznosci dynamicznej pierscienio­
wej pfyty tr6jwarstwowej z mi�kkim, lepkosp�i:ystym rdzeniem. Rozwai:aniom poddano 
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przypadek plyty dwustronnie utwierdzonej przesuwnie, o symetrycznej strukturze poprzecz­
nej, §ciskanej na wewn�trznym brzegu jej okladzin liniowo narastaj4cym w czasie obcil!ie­

niem. W przedstawionym rozwi11zaniu zagadnienia wykorzystano dwie metody: metod� r6z­

nic skonczonych i metod� element6w skonczonych. Metod� r6znic skonczonych zastosowano 

w wyprowadzeniu i numerycznym rozwiiµ;aniu postaci podstawowego uldadu r6wnan r6znicz­
kowych (34), (35), (36) analizowanej plyty z rdzeniem lepksp�zystym. Obliczenia metod4 

element6w skonczonych prowadzono wykorzystuj4c system ABAQUS dla przedstawionego 

w pracy modelu badanej plyty. Otrzymane dwoma metodami wyniki numerycznych obliczei1 
por6wnano uzyskujllc dobf!! ich zgodno§c. W analizie problemu szczeg6ln4 uwag� zwr6cono 

na wplyw stopnia ugi�cia wst�pnego i p�dko§c obci�ia analizowanej plyty na wartosci 
krytycznych jej parametr6w wyznaczonych w momencie utraty stateczno§ci dynamicznej ply­
ty. W wyznaczeniu utraty dynamicznej stateczno§ci plyty przyj�to kryterium przedstawione 
w pracy [23]. W ocenie prezentowanych wynik6w dynamicznych i statycznych obcil!ie6 kry­

tycznych wykorzystano wsp6kzynnik dynamiczny K
d 

b¢l!CY ilorazem tych wielko§ci. Obser­

wowane znacZl!ce r6znice wartosci dynamicznych obcil!ien krytycznych plyt o r6znym stopniu 

ich wygi�ia wst�pnego i zmiennej p�ko§ci obci�ia wskazaly na istotn4 imperfekcyjn4 

i obci1!:ieniow4 wrazliwo§c badanej plyty i wazny udzial obu badany parametr6w w ocenie 
wynik6w ko6cowych. Wykorzystuj4c metod� element6w sko6czonych wyniki uzupclniono 

analizct stanu nap�zen krytycznych wyznaczonych w momencie utraty statecznosci plyty. 




