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Abstract. Modern and innovative road spreaders are now equipped with a special swiveling mechanism of the spreading disc. It allows for
adjusting a symmetrical or asymmetrical spreading pattern and provides for the possibility to maintain the size of the spreading surface and
achieve an accurately defined spreading pattern with spreading widths. Thus the paper presents a modelling and control design methodology, and
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1. Introduction

Replacing hydraulic or pneumatic cylinders with electrical lin-
ear actuators means a simpler and smaller-size installation, eas-
ier control, lower energy costs, higher accuracy, less mainte-
nance, less noise and cleaner, healthier environment [3–5].

Electrical actuator systems ensure consistent operation in both
directions. They also have additional features such as end-of-
stroke limit switches, mid-stroke protection and manual override
operation in case of a power failure. Optional features such
as analog or digital position feedback and adjustable end-of-
stroke limit switches are also available. Moreover, their vast
advantage lies in that the system is easy to integrate with other
control systems found in industrial systems such as PLCs, micro-
controllers, computers or simple relay based systems [4, 5, 21].

Electric actuators are widely used in agriculture, construc-
tion, mining, forestry, road work and the railway equipment
industry for the control of seats, hoods, doors, covers, balers,
pantographs, sprayer booms, throttles and many more.

Positioning control of such actuation systems constitutes a
significant research subject in both engineering and science [3].
In literature, there are many works related to modelling and
control of linear electric actuators, especially in the fields where
high-speed motion is required. Some design approaches are re-
ported in [4]. However, there still exist numerous meaningful
challenges, for example, controller designers are likely to en-
counter serious nonlinearities and disturbances which refer to
nonlinear friction, nonlinear parasitic force or precise position-
ing with high speed [5].

∗e-mail: Slawomir.Stepien@put.poznan.pl

This paper shows application of the high performance finite-
time SDRE-based suboptimal control of an electric linear ac-
tuator mounted onto a spreading device system as part of
road/highway spreaders [22].

The method, first proposed in 1962 [11] and later expanded
in 1975 [6], was further studied in more detail, creating its final
and useful form for practical implementation [8]. The method
entails parameterization of the nonlinear dynamics into the state
vector and the product of a matrix-valued function that depends
on the state itself [12]. The control algorithm fully captures the
nonlinearities of the system, bringing the nonlinear system to a
(non-unique) linear structure having state-dependent coefficient
(SDC) matrices, and minimizing a nonlinear performance index
having a quadratic-like structure.

An algebraic Riccati equation (ARE), using the SDC ma-
trices, is then solved on-line to give the suboptimum control
law. The SDRE feedback scheme for the infinite-time nonlin-
ear optimal control problem in the multivariable case is locally
asymptotically stable and locally asymptotically optimal, as de-
scribed in first solid theoretical contributions [1, 8, 10, 13, 18].

Applications of the SDRE control technique also include
satellite and spacecraft control and estimation, integrated guid-
ance and control design, autopilot design, robotics, control of
systems with parasitic effects, control of artificial human pan-
creas, ducted fan control and magnetic systems, including levi-
tation [1, 14].

Figure 1 shows the spreading vehicle for winter road service
with the spreading device indicated as a control plant.

The spreading device for winter road service vehicles, used
for applying spreading material, comprises a spreading material
container, a dispersing unit and a spreading material conveyor
section, arranged between the spreading material container and
the dispersing unit. The dispersing unit contains a rotary spread-
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Fig. 1. Road spreading vehicle.

ing plate. The spreading material drops on the rotary plate via
a metal claim. The claim can be positioned by the linear actu-
ator to change spreading width or spreading range angle. This
function is very important and useful, because:
• the spreading angle depends on the width of the road,
• the angle must be changed on-line employing a special con-

trol system for passing cars or other object protection.
The second function involves the swiveling mechanism of

the spreading disc, which allows for adjusting a symmetrical
or asymmetrical spreading pattern electronically via a special
control system. Application of the SDRE technique to the fi-
nite time horizon control of a linear actuator mounted onto a
spreading device system is a challenge because the control time
depends on passing car speed. This technique makes it possible
to maintain the size of the spreading surface and achieve an
accurately defined spreading pattern with the spreading widths.
The function is now implemented and introduced in modern and
innovative spreading vehicles. Range angle control is realized
by means of positioning of an electric linear actuator as shown
in Fig. 2.

Fig. 2. Spreading subsystem.

In this paper, the modelling and control design methodology
concept is proposed to design high-performance and optimal

drive systems for spreading devices. The paper presents a non-
linear model of an electric linear actuator along with the solution
of the finite-time suboptimal control problem for the actuator.

2. Actuator modelling

The linear actuator consists of a permanent magnet DC motor
with an electromagnetic-force-actuated positioning system.

Fig. 3. Linear actuator.

The control plant is equipped with a gear and mechanical
overload protection system through an integrated slip clutch.
An integrated brake ensures high self-locking ability. The brake
is deactivated when the actuator is powered in order to obtain
high efficiency.

The actuator model is an electro-mechanical system. Thus, it
should be described by equations of the mechanical motion and
electric circuit system [4, 5].

The force equilibrium relationship in the motion system, con-
sidering dynamic friction, is given by:

Mẍ(t)+Ffric(ẋ) = F(t) (1)

where M is a moving mass and x denotes position. The force
generated by an actuator is proportional to motor current i:

F(t) = k f i(t). (2)

The dynamic nonlinear friction via Stribeck model [3] is as
follows:

Ffric (ẋ) =
(
Fc +(Fm −Fc)e−α |ẋ(t)|

)
sign(ẋ(t))+β ẋ(t) (3)

where Fm is maximum static friction, Fc is Coulomb friction, α
is a damping coefficient which depends on servo system, and β
denotes the coefficient of viscosity.

The electric circuit equation in the DC motor is described by
the motor current, with consideration of winding resistance and
inductance:

L
di(t)

dt
+Ri(t)+ keẋ = u(t) (4)

where L denotes inductance, R denotes resistance, the term keẋ
stands for back electromotive force and u is motor terminal
voltage.

Employing the state-space modelling technique, the linear ac-
tuator model can be described by the nonlinear equation system
as follows:

d
dt




x1

x2

x3


=




x2

−Fcm

M
sign(x2)−

β
M

x2 +
k f

M
x3

−ke

L
x2 −

R
L

x3 +
1
L

u




(5)

where Fcm = Fc +(Fm −Fc)e−α |ẋ(t)| and the state vector con-
tains three quantities: position, speed and current:

x =
[

x1 x2 x3

]T
=
[

x ẋ i
]T

. (6)

3. Control problem solution

The method in its classic form is well described in [1, 10].
Interested readers can follow the state-dependent Riccati equa-
tion (SDRE) approach in the context of the nonlinear regulator
problem [8–10].

The finite-time control problem consists of finding optimal
control that minimizes the following objective function in finite
time t f [6]:

J(u) = 1
2

xT (t f )S x(t f )+
1
2

t f∫

0

(
xT Q x+uT R u

)
dt, (7)

subject to nonlinear dynamics for affine systems:

ẋ = F(x)+B u. (8)

Nonlinear dynamics (2) can be rewritten in the form of the
state-dependent coefficient (SDC) [12]:

ẋ = A(x)x+B u (9)

where S and Q are symmetric, positive semi-definite weighting
matrices for states while R is the symmetric, positive definite
weighting matrix for control inputs. The vector F(x) is piecewise
continuous over time and smooth in respect of their arguments
which satisfy the Lipschitz condition.

If the pair {A(x), B} constitutes stabilizable parameterization
of the nonlinear system (9), then to check controllability of the
affine system, this pair should be controllable in the linear sense.

Otherwise, checking controllability of that pair does not need
the state or control input information [16]. It can be simply
checked by a controllability matrix:

M(x) =
[

B A(x)B . . . An−1(x)B
]
. (10)

The system is controllable if the controllability matrix has full
rank.

In the proposed case, the fast controller is formulated as in
the classic SDRE form (7)–(8), but SDC parametrized form of
(8) uses a separated form of matrix A(x):

ẋ = (A1 +A2(x))x+B u. (11)

As in the previous case, to check controllability of the affine
system (11), the pair {A1 +A2(x), B} should be controllable.
This means that the controllability matrix:

M(x) =
[

B A1B . . . An−1
1 B

]
(12)

should have full rank.
Using the Hamiltonian theory:

H =
1
2
(
xT Qx+uT Ru+pT ((A1 +A2(x))x+Bu)

)
, (13)

and considering the necessary optimality condition
∂H
∂u = 0

with p = (K1 +K2(x))x, results in the following control law:

u =−R−1BT (K1 +K2(x))x. (14)

The control law (14) includes two feedback compensators. The
first is constant and the second is state-dependent.

Employing the optimality condition, the nonlinear system is
described by the following state-space equation:

ẋ = (A1 +A2(x))x−BR−1BT p (15)

and the adjoining differential equation:

ṗ =−
(

A1 +
∂ (A2(x)x)

∂x

)T

p−Q x, (16)

where:
∂ (A2(x)x)

∂x = A2(x)+
∂A2(x)

∂x x . (17)

Substituting p = (K1 +K2(x))x into (16), the state-space non-
linear equation can be written as:

ẋ =
(
A1 −BR−1BT K1

)
x+

(
A2(x)−BR−1BT K2(x)

)
x. (18)

The first bracket of equation (18) is state-independent and the
second one is state-dependent, thus there is a possibility to lin-
earize it and solve the state-dependent gain matrix K2(x):

K2(x) =
[
BR−1BT ]+A2(x). (19)

Matrix BR−1BT is singular, thus the state-dependent gain ma-
trix K2(x)may be computed only by means of the pseudoinverse
operation. To perform the operation, a Moore-Penrose pseudoin-
verse is applied. The Moore-Penrose pseudoinverse is defined
for such matrix and is unique [2].

(x ̇ )

(x ̇ ) x ̇ x ̇ x ̇

x ̇
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Employing the state-space modelling technique, the linear ac-
tuator model can be described by the nonlinear equation system
as follows:

d
dt




x1

x2
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
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x3
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x3 +
1
L

u




(5)

where Fcm = Fc +(Fm −Fc)e−α |ẋ(t)| and the state vector con-
tains three quantities: position, speed and current:

x =
[

x1 x2 x3

]T
=
[

x ẋ i
]T

. (6)

3. Control problem solution

The method in its classic form is well described in [1, 10].
Interested readers can follow the state-dependent Riccati equa-
tion (SDRE) approach in the context of the nonlinear regulator
problem [8–10].

The finite-time control problem consists of finding optimal
control that minimizes the following objective function in finite
time t f [6]:

J(u) = 1
2

xT (t f )S x(t f )+
1
2

t f∫

0

(
xT Q x+uT R u

)
dt, (7)

subject to nonlinear dynamics for affine systems:

ẋ = F(x)+B u. (8)

Nonlinear dynamics (2) can be rewritten in the form of the
state-dependent coefficient (SDC) [12]:

ẋ = A(x)x+B u (9)

where S and Q are symmetric, positive semi-definite weighting
matrices for states while R is the symmetric, positive definite
weighting matrix for control inputs. The vector F(x) is piecewise
continuous over time and smooth in respect of their arguments
which satisfy the Lipschitz condition.

If the pair {A(x), B} constitutes stabilizable parameterization
of the nonlinear system (9), then to check controllability of the
affine system, this pair should be controllable in the linear sense.

Otherwise, checking controllability of that pair does not need
the state or control input information [16]. It can be simply
checked by a controllability matrix:

M(x) =
[

B A(x)B . . . An−1(x)B
]
. (10)

The system is controllable if the controllability matrix has full
rank.

In the proposed case, the fast controller is formulated as in
the classic SDRE form (7)–(8), but SDC parametrized form of
(8) uses a separated form of matrix A(x):

ẋ = (A1 +A2(x))x+B u. (11)

As in the previous case, to check controllability of the affine
system (11), the pair {A1 +A2(x), B} should be controllable.
This means that the controllability matrix:

M(x) =
[

B A1B . . . An−1
1 B

]
(12)

should have full rank.
Using the Hamiltonian theory:

H =
1
2
(
xT Qx+uT Ru+pT ((A1 +A2(x))x+Bu)

)
, (13)

and considering the necessary optimality condition
∂H
∂u = 0

with p = (K1 +K2(x))x, results in the following control law:

u =−R−1BT (K1 +K2(x))x. (14)

The control law (14) includes two feedback compensators. The
first is constant and the second is state-dependent.

Employing the optimality condition, the nonlinear system is
described by the following state-space equation:

ẋ = (A1 +A2(x))x−BR−1BT p (15)

and the adjoining differential equation:

ṗ =−
(

A1 +
∂ (A2(x)x)

∂x

)T

p−Q x, (16)

where:
∂ (A2(x)x)

∂x = A2(x)+
∂A2(x)

∂x x . (17)

Substituting p = (K1 +K2(x))x into (16), the state-space non-
linear equation can be written as:

ẋ =
(
A1 −BR−1BT K1

)
x+

(
A2(x)−BR−1BT K2(x)

)
x. (18)

The first bracket of equation (18) is state-independent and the
second one is state-dependent, thus there is a possibility to lin-
earize it and solve the state-dependent gain matrix K2(x):

K2(x) =
[
BR−1BT ]+A2(x). (19)

Matrix BR−1BT is singular, thus the state-dependent gain ma-
trix K2(x)may be computed only by means of the pseudoinverse
operation. To perform the operation, a Moore-Penrose pseudoin-
verse is applied. The Moore-Penrose pseudoinverse is defined
for such matrix and is unique [2].
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Using differential equation (16) with p = (K1 +K2(x))x, the
nonlinear differential optimal control equation (NDOCE) takes
the form below:

AT
1 K1 +K1A1 −K1BR−1BT K1 +Q+ K̇1 + K̇2(x)+

+

(
∂A2(x)

∂x x
)T

K2(x)+
(

∂A2(x)
∂x x

)T

K1+

+ AT
2 (x)K1 +K1A2(x)+AT

1 K2(x)+K2(x)A1+

+ AT
2 (x)K2(x)+K2(x)A2(x)+

+ K2(x)BR−1BT K1 −K1BR−1BT K2(x)+

+ K2(x)BR−1BT K2(x) = 0.

(20)

Based on linearization (18)–(19), it can be assumed that matrix
K1 solves (20), considering its part called the differential Riccati
equation (DRE) [13–15]

K̇1 +AT
1 K1 +K1A1 −K1BR−1BT K1 +Q = 0 (21)

with the rest treated as the optimality condition:

K̇2(x)+
(

∂A2(x)
∂x x

)T

K2(x)+
(

∂A2(x)
∂x x

)T

K1+

+ AT
2 (x)K1 +K1A2(x)+AT

1 K2(x)+K2(x)A1+

− K2(x)BR−1BT K1 −K1BR−1BT K2(x)+

+ K2(x)BR−1BT K2(x) = 0

(22)

for K2(x) obtained from (19).
It can be seen from the above that compensator separation

represented by K(x) = K1 +K2(x) on the linear and nonlinear
part makes it possible to solve the differential Riccati equation
(DRE) for K1:

K̇1 +AT
1 K1 +K1A1 −K1BR−1BT K1 +Q = 0 (23)

and K2(x):
K2(x) =

[
BR−1BT ]+A2(x) (24)

employing the Moore-Penrose pseudoinverse [2].
Equation (23) is state-independent and needs to be solved

only once the control process is completed with final condition
K1(t f ) = S−

[
BR−1BT ]+A2

(
x(t f )

)
. So, in comparison to the

classic SDRE approach, the computational effort is strongly
reduced. Consequently, control law implementation becomes
much easier in the real control system.

4. Stability proof

Asymptotic stability of the closed-loop system (18) implies that
it is possible to control the states from the initial values to the
final ones. However, the global stability property is difficult to

prove [1, 4, 7, 17–20]. The controlled system with the SDRE
compensator-based feedback is locally asymptotically stable.

The system (11) is such that (A1 + A2(x))x and
∂ (A1x+A2(x)x)

∂x are continuous in x for all ‖x‖ < r, where
r > 0 is the largest radius in some nonempty neighborhood of
the original x = 0. Assuming that the system is stabilizable
at equilibrium point x = 0, it is possible to define matrix K1
so that all eigenvalues of matrix

(
A1 −BR−1BT K1

)
which de-

scribes the linear part of the closed-loop system, have negative
real parts. For all eigenvalues of the matrix there exists any
β > 0, such that Re

(
A1 −BR−1BT K1

)
<−β .

Having the system:

ẋ =
(
A1 −BR−1BT K1

)
x+

(
A2(x)−BR−1BT K2(x)

)
x. (25)

Let:
g(x) = A2(x)−BR−1BT K2(x) (26)

and h(x) = g(x)x, and then the system is:

ẋ =
(
A1 −BR−1BT K1

)
x+h(x). (27)

From (19) it becomes obvious that:

h(x)≈ 0, because lim
‖x‖→0

‖h(x)‖
‖x‖ = 0. (28)

By the assumptions of (A1+A2(x))x,
∂ (A1x+A2(x)x)

∂x and by
continuity, the solution (27) exists in the time interval t ∈ [0, t f ]
and takes the following form:

x(t) = e(A1−BR−1BT K1)tx(0). (29)

Taking the norm of the above solution:

‖x(t)‖ ≤
∥∥∥e(A1−BR−1BT K1)t

∥∥∥ ‖x(0)‖ , (30)

hence ‖g(x)‖→ 0 as ‖x‖→ 0 and h(x) satisfies condition (30).
From theoretical results on almost linear systems it is known
that if the eigenvalues of

(
A1 −BR−1BT K1

)
have negative real

parts, h(x) can be very small but continuous around the origin,
and if condition (30) holds, then x = 0 is asymptotically stable.

When providing the proof, let us consider solution (29) and let
µ > 0 be given. Then there exist a δ ∈ (0,r) such that ‖h(x)‖ ≤
µ ‖x‖ whenever ‖x‖ ≤ δ , and consequently the solution to (29)
can be expressed as:

x(t) = e(A1−BR−1BT K1)tx(0)+

+

t∫

0

e(A1−BR−1BT K1)(t−s)h(x(s))ds. (31)

Taking the norm of both sides:

‖x(t)‖
∥∥∥e(A1−BR−1BT K1)t

∥∥∥‖x(0)‖

+

t∫

0

∥∥∥e(A1−BR−1BT K1)(t−s)
∥∥∥ ‖x(s)‖ ds, (32)

there exists a positive constant G such that:
∥∥∥e(A1−BR−1BT K1)t

∥∥∥≤ Ge−β t (33)

which implies:

‖x(t)‖ ≤ Ge−β t ‖x(0)‖+µG
t∫

0

e−β (t−s) ‖x(s)‖ ds. (34)

Invoking Grönwall’s inequality and multiplying by eβ t

‖x(t)‖ ≤ G‖x(0)‖e−(β−µG)t , (35)

since β −µG > 0, then x = 0 is indeed asymptotically stable.

5. Linear actuator control

The linear actuator model is applied to check the described
finite-time SDRE control. Governing equations that describe
actuator dynamics are given by (5).

At first, the linear actuator step response behavior (open-loop
system) is considered when constant pin voltage u = −24 V
is applied with stroke initial position x1 = 0.1 m. The actuator
model parameters are presented in Table 1.

Table 1
Actuator model parameters.

Parameter Value [quantity]

M 0.25 [kg]

k f 0.02 [kgm/s2A]

Fc 0.005 [kg/s]

Fm 0.01 [kg/s]

α 2

β 1.4 [kg/s]

R 9.75 [Ω]

L 2.4 [mH]

ke 0.75 [Vs/m]

Simulations are compared to measurement.
Next, the proposed SDRE method is applied to control the

electric linear actuator for three finite times: t f = 2 s, t f = 2.5 s
and t f = 3 s. As mentioned in the introduction, the time is very

important, because the actuator controls the spreading angle of
the spreading device. The angle must sometimes be changed
rapidly to avoid approaching vehicles or other objects during
spreading action.

The problem consists in finding state dynamics and SDRE
control. In association with actuator dynamics (5), the quadratic
cost functional weighting matrices in (7) are chosen as S =


0.1 0 10
0 0 0

10 0 0


, Q = diag(0, β , R) and R = 1/R with initial

conditions for stroke position x = 0.1m and motor current i =
2.5 A, while on the other hand x0 =

[
0.1 0 2.5

]T .
Fig. 4–6 show open-loop voltage control applied to the linear

actuator and step responses used in order to verify the model
and confirm that the nonlinear model is useful for checking and
formulating a new SDRE control method.

Fig. 4. Simulated and measured step response of stroke position.

Fig. 5. Simulated step response of stroke speed.

Fig. 6. Simulated step response of actuator current.
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Taking the norm of both sides:

‖x(t)‖
∥∥∥e(A1−BR−1BT K1)t

∥∥∥‖x(0)‖

+

t∫

0

∥∥∥e(A1−BR−1BT K1)(t−s)
∥∥∥ ‖x(s)‖ ds, (32)

there exists a positive constant G such that:
∥∥∥e(A1−BR−1BT K1)t

∥∥∥≤ Ge−β t (33)

which implies:

‖x(t)‖ ≤ Ge−β t ‖x(0)‖+µG
t∫

0

e−β (t−s) ‖x(s)‖ ds. (34)

Invoking Grönwall’s inequality and multiplying by eβ t

‖x(t)‖ ≤ G‖x(0)‖e−(β−µG)t , (35)

since β −µG > 0, then x = 0 is indeed asymptotically stable.

5. Linear actuator control

The linear actuator model is applied to check the described
finite-time SDRE control. Governing equations that describe
actuator dynamics are given by (5).

At first, the linear actuator step response behavior (open-loop
system) is considered when constant pin voltage u = −24 V
is applied with stroke initial position x1 = 0.1 m. The actuator
model parameters are presented in Table 1.

Table 1
Actuator model parameters.

Parameter Value [quantity]

M 0.25 [kg]

k f 0.02 [kgm/s2A]

Fc 0.005 [kg/s]

Fm 0.01 [kg/s]

α 2

β 1.4 [kg/s]

R 9.75 [Ω]

L 2.4 [mH]

ke 0.75 [Vs/m]

Simulations are compared to measurement.
Next, the proposed SDRE method is applied to control the

electric linear actuator for three finite times: t f = 2 s, t f = 2.5 s
and t f = 3 s. As mentioned in the introduction, the time is very

important, because the actuator controls the spreading angle of
the spreading device. The angle must sometimes be changed
rapidly to avoid approaching vehicles or other objects during
spreading action.

The problem consists in finding state dynamics and SDRE
control. In association with actuator dynamics (5), the quadratic
cost functional weighting matrices in (7) are chosen as S =


0.1 0 10
0 0 0

10 0 0


, Q = diag(0, β , R) and R = 1/R with initial

conditions for stroke position x = 0.1m and motor current i =
2.5 A, while on the other hand x0 =

[
0.1 0 2.5

]T .
Fig. 4–6 show open-loop voltage control applied to the linear

actuator and step responses used in order to verify the model
and confirm that the nonlinear model is useful for checking and
formulating a new SDRE control method.

Fig. 4. Simulated and measured step response of stroke position.

Fig. 5. Simulated step response of stroke speed.

Fig. 6. Simulated step response of actuator current.
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Fig. 7–10 show that for the assumed initial condition, the
actuation system can be positioned from initial to final posi-
tion in the prescribed time. Moreover, the stroke positioning is
organized performing soft-start and soft-end tasks (Fig. 7).

Fig. 7. Stroke positions.

Fig. 8. Stroke speeds.

Fig. 9. SDRE controls.

Fig. 10. Actuator currents.

Control time reduction is related to increasing the amplitude
of the applied actuator voltage and current. Also, the advantage
of the presented method is that the electric actuator can be
controlled minimizing energy delivered and energy lost in the
spreading control system.

Control of the width of the spreading pattern in a finite-time
set-up has a huge practical impact. As mentioned in the intro-
duction section, this function is important when the spreading
pattern width must be changed rapidly to avoid approaching ve-
hicles or other objects during spreading action, because some-
times fractions of seconds are important when cars or other
vehicles move at high speed.

6. Conclusions

The finite time control problem for the linear actuator as a plant
of high-performance and optimal drive system for spreading de-
vices systems with a nonlinear feedback compensator is formu-
lated and solved herein. The method for computation of subop-
timal control input minimizes energy delivered to the spreading
control system and energy lost, performing the soft-start and
soft-end task. The effectiveness of the technique presented is
demonstrated on a numerical example where optimal voltage
control is found for different final times.
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