
1059Bull.  Pol.  Ac.:  Tech.  67(6)  2019

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 67, No. 6, 2019
DOI: 10.24425/bpasts.2019.131566

Abstract. A comprehensive characterization of four selected fault distinguishability methods is presented herein. All considered methods are 
derived from structural residual approaches referring to model-based diagnostics. In particular, these methods are based on a binary diagnostic 
matrix, fault isolation system, sequences of symptoms, and their combinations. Fault distinguishability issues are discussed based on an exam-
ple of four pressure vessel system. Substantial benefits are shown in fault distinguishability figures obtained by utilising extended knowledge 
regarding fault-symptom relation. Finally, the values of three fault distinguishability metrics are calculated for each method. For the case study, 
the highest score is achieved using the multivalued fault isolation method combined with a diagnosis utilising information regarding the ante-
cedence of symptoms.

Key words: fault detection and isolation, fault distinguishability, diagnostics of industrial processes, metrics of distinguishability, antecedence 
of symptoms.

The comparison of fault distinguishability approaches – case study

J.M. KOŚCIELNY, M. BARTYŚ*, and K. ROSTEK
Warsaw University of Technology, św. A. Boboli 8, 02-525 Warsaw, Poland

The comparison of fault distinguishability approaches – case study

J.M. KOŚCIELNY, M. BARTYŚ∗ and K. ROSTEK
Warsaw University of Technology, św. A. Boboli 8, 02-525 Warsaw, Poland.

Abstract. A comprehensive characterization of four selected fault distinguishability methods is presented herein. All considered methods are
derived from structural residual approaches referring to model-based diagnostics. In particular, these methods are based on a binary diagnostic
matrix, fault isolation system, sequences of symptoms, and their combinations. Fault distinguishability issues are discussed based on an example
of four pressure vessel system. Substantial benefits are shown in fault distinguishability figures obtained by utilising extended knowledge regarding
fault-symptom relation. Finally, the values of three fault distinguishability metrics are calculated for each method. For the case study, the highest
score is achieved using the multivalued fault isolation method combined with a diagnosis utilising information regarding the antecedence of
symptoms.

Key words: fault detection and isolation, fault distinguishability, diagnostics of industrial processes, metrics of distinguishability, antecedence of
symptoms.

1. Introduction

Online diagnostics of industrial processes are effective for in-
creasing functional safety and reduce economic losses caused
by failures or faults. The early recognition of emerging faults has
caused process operators to undertake appropriate actions that
allow for a relatively rapid and successful recovery of the nomi-
nal behavioural state of processes. Hence, blockades and safety
measures foreseen and implemented in safety instrumented sys-
tems are, in fact, not activated; consequently, process shut-down
does not occur. Therefore, the diagnostics guarantee, among oth-
ers, significant savings in processing.

It is clear that the accurate isolation of faults allows appro-
priate solutions and repairing actions to be applied. The ac-
curacy of the diagnosis may be determined by adding up the
number of faults identified in each elementary block [2]. The
smaller the number of faults collected in the elementary block,
the more accurate is the diagnosis. The accuracy of the diagno-
sis depends on the grade of fault distinguishability achievable
in a given system. Fault distinguishability is understood as the
ability to recognise (distinguish) single faults. Typically, fault
distinguishability is based on the analysis of appropriately pro-
cessed results of diagnostic tests. Diagnostic tests deliver a set
of characteristic symptoms associated with the fault or a set of
faults.

The fault symptoms will be discussed broadly herein. They
can be either defined as a pattern of specific values (symptoms)
of diagnostic signals as well as that of specific sequences (orders)
of these signals [2]. Clearly, the faults are indistinguishable if all
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their symptoms are identical. Therefore, fault distinguishability
depends on the selection of symptoms.

The required fault distinguishability figures are strongly de-
manded. The fault distinguishability requirements may be speci-
fied, for example, by indicating the set of pairs of faults that must
be distinguished. Typically, process operators require the distin-
guishability of all single faults. However, it is noteworthy that
this is not mandatory. In practice, it is sufficient to distinguish
those faults, the effects of which are particularly threatening.
The other typical requirement is to distinguish faults that might
be used to trigger process safety insurance procedures. In this
case, faults for which these procedures refer do not need to be
distinguished.

The main aim of this paper is to present a case study in which
the different methods to the fault isolation are compared in terms
of fault distinguishability. The methods will be discussed based
on a binary diagnostic matrix, fault isolation system, sequences
of symptoms, and their combinations. Fault distinguishability
issues will be discussed based on an example of four pressure
vessel system. Moreover, the definition of a new metrics for the
assessment of fault distinguishability have been proposed for
comparative study.

The contribution of the paper comprises in: a) bringing to-
gether different fault distinguishability approaches; b) proposing
mixed fault distinguishability approaches; c) redefining fault dis-
tinguishability metrics; d) showing on example the advantages
of proposed approaches in respect to fault distinguishability
figures.

The paper is structured as follows: The importance of fault
distinguishability in industrial practice is discussed in the in-
troduction. A brief discussion of the methods for increasing
fault distinguishability is presented in Section 2. In Section 3,
a physical system for further study is described. The analysis
of the four fault distinguishability methods applied to the four
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pressure vessel setup is presented in Section 4. Finally, in Sec-
tion 5 the fault distinguishability metrics obtained for a system
are collected and discussed.

2. Methods for increasing distinguishability
of faults

Fault isolability has been typically defined in the context of
the adopted diagnostic method. It is often analysed based on
structural residuals (binary diagnostic matrix, incidence matrix,
structure matrix) derived from the linear equations of residuals
in the internal form [3–5]. The basic definitions have been for-
mulated by Gertler [4] in terms of the structures of residual sets
as well as by Isermann in the context of residual space [6]. The
definition of fault isolability was also provided in [7, 8].

Fault distinguishability is an important issue that affects the
design flow of diagnostic systems. Clearly, the indication of
distinguishable and indistinguishable faults is necessary to ver-
ify whether the demanded fault isolability requirements are
satisfied.

An appropriate selection of process variables is key in fault
detectability and distinguishability issues [9]. Typically, the
more process variables are available, the more process models
are to be built. It is noteworthy that the development of models
that are useful for diagnostics is not trivial. Furthermore, it is
a complex issue for complex, large-scale systems. The method
of generating the structures of all models by a given set of
measurements is discussed in [10]. In practice, heuristic ap-
proaches are also used. In this case, both the primary as well as
secondary residuals are obtained by combining (linking) neigh-
bouring partial models of the diagnosed system. Partial models
are designed for small portions of the diagnosed system. Gener-
ally, an increase in the number of models results in an increase
of fault distinguishability figures.

Furthermore, fault distinguishability can be increased by util-
ising multivalued residuals [9, 11–13]. Typically, the tri-valued
evaluation of residuals is exploited. In this case, the values of
diagnostic signals belong to the set v = {0,−1,+1}. The di-
agnostic signal value 0 means that the value of the residual is
within some specified and acceptable limit. Such value indicates
the nominal behavioural state of the system. Other values are
referred to as fault symptoms. The adoption of tri-valued resid-
uals is justified because some faults may cause an increase in
residual values above acceptable thresholds (+1), while other
faults reduce these values to below acceptable threshold val-
ues (−1). Therefore, at the least, the tri-valued evaluation of
residuals guarantees better fault distinguishability.

The multivalued evaluation of residuals requires the knowl-
edge of the relation of fault–diagnostic signals in the form of a
fault information system (FIS) [9, 11–13]. The fault symptoms
are understood as the interpreted values of diagnostic signals.
Because, in general, the diagnosed system is a dynamic system,
a lag typically occurs between the instant of fault origin and
the instant in which the corresponding symptom of this fault
appears. This lag depends on the dynamic properties of the di-
agnosed system. In other words, the same fault affects various

diagnostic tests in different time instants. The antecedence of di-
agnostic signals can deliver additional information that may be
useful in the diagnostics [9,11,14]. Additionally, it may be ben-
eficial for differentiating faults that are indistinguishable based
on the assessment of the residual values. To distinguish any pair
of faults, it is sufficient if the antecedence of symptoms for these
faults is different.

The computer science and artificial intelligence commu-
nity has developed numerous fault detection and isolation ap-
proaches belonging to the DX family of methods. In these ap-
proaches, consistency-based Reiter’s theory is utilised [15, 16].
Diagnoses are obtained from conflicts, where a conflict is a set
of these system components for which the assumption that all
of these components are healthy is inconsistent with observa-
tions. The final diagnoses are hitting sets of the conflict sets. The
substantial advantage of DX compared with FDI methodologies
is that additional measures are not required to isolate multiple
faults. Single and multiple faults are isolated in the same man-
ner. In the original approach proposed by Reiter, conflict sets
are calculated in the online mode. However, offline extensions
have been proposed in [17, 18].

Fault exoneration is frequently assumed in FDI methodologies
based on analytic redundancy relations (ARRs) [19]. Under this
assumption, if some ARRs are satisfied by observation, then all
observation-related components are considered as non-faulty. In
DX approaches, such an assumption does not exist. This paper
focuses on FDI approaches under the assumption of single faults
and fault exoneration.

3. Case study

3.1. Phenomenological process model. Fault distinguishabil-
ity approaches will be studied based on a plant comprising a
series of four interconnected gas buffer vessels. The four-vessels
system presented in this paper was inspired by the compressed
air and natural gas energy storage installations. Energy storage
systems are technologies that are currently used among others
for integration of renewable energies for large as well as small
scale systems [20, 21]. The energy storage systems make use
from installations consisting of batteries of vertical or horizon-
tal interconnected vessels. For the purposes of this paper, the
compressed air installation was simplified and idealized. The
schematics of the system for diagnosis is depicted in Fig. 1. It is
assumed that the phenomenological partial models of the plant
are known. Moreover, it is assumed that those models are not
affected by faults. The gas flow rate between any two tanks is

Fig. 1. Schematics of the four pressure vessel setup.

defined by the following formula:

q(i−1) = αiA(i−1)

√
ς(i−1)(p(i−1)− pi) (1)

where qi it the gas inflow rate into the ith vessel, i∈ {1..4}, αi the
flow rate coefficient in the pipe linking (i−1)th and ith vessels,
A(i−1) the cross section of a pipe connecting the (i−1)th and ith

vessels, and ςi the gas density by pressure pi in the ith vessel.

3.2. Qualitative model of a process affected by faults.
A causal graph of the process illustrating the relationship be-
tween process variables is shown in Fig. 2. A set of faults is
listed in Table 1; it contains a subset of components and instru-
ment faults. Utilising the set of measurements and faults, we
can develop a process graph GP [10]. The GP graph describes
cause-and-effect relations between process variables and explic-
itly reflects the effects of faults on process variables. The GP
graph is an extended version of the well-known signed directed
graph that is used to represent the cause-and-effect relationship
between variables or alarms in technological installations [23].
The GP graph of gas flow in a series of four interconnected
vessels is shown in Fig. 3.

Fig. 2. Causal graph of the process.

Table 1
List of considered faults in the four pressure vessels setup.

Fault Description

f1 Leakage of the vessel #1

f2 Leakage of the vessel #2

f3 Leakage of the vessel #3

f4 Leakage of the vessel #4

f5 Clogging of the q0 flow

f6 Clogging of the q1 flow

f7 Clogging of the q2 flow

f8 Clogging of the q3 flow

f9 Pressure sensor P0 fault

f10 Pressure sensor P1 fault

f11 Pressure sensor P4 fault

Fig. 3. GP graph of the process reflecting the effects of faults on the
values of process variables.

4. Fault distinguishability analysis

Fault distinguishability will be analysed by assuming the avail-
ability of three pressure measurements: P0, P1, and P4, which are
marked by black circles in the GP graph in Fig. 3. Let us further
assume that for the diagnostics, a set of four partial models (mi):

P̂′
1 = m1(P0); P̂′

4 = m2(P0);

P̂′′
4 = m3(P1); P̂′′

1 = m4(P0,P4)

will be built. The partial-models can be implemented be means
of different approaches. The only requirement is, that they
should reflect the non-linear behavior of the studied process in
terms of pressure and flow variation. Therefore, the analytical
models based on physical laws, neural, fuzzy, their combina-
tions, as well as additive models are usable. The corresponding
residuals are as follows:




r1 = P1 −m1(P0),

r2 = P4 −m2(P0),

r3 = P4 −m3(P1),

r4 = P1 −m4(P0,P4).

(2)

The sensitivity of residuals to the faults can be determined based
on either expert knowledge or reading directly from the GP
graph.




r1 = h1( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10),

r2 = h2( f1, f2, f3, f4, f5, f6, f7, f8, f9, f11),

r3 = h3( f2, f3, f4, f6, f7, f8, f10, f11)

, [2pt]r4 = h4( f1, f2, f3, f5, f6, f7, f8, f9, f10, f11).

(3)

The four different inference approaches for faults will be con-
sidered further in this study:
• Faults inferred by assuming the binary evaluation of resid-

uals. In this case, either the binary diagnostic matrix BDM
or rules arising from this matrix will be used for diagnostic
reasoning;

• Faults inferred by assuming tri-valued diagnostic signals. In
this case, either the FIS or rules arising from it will be used
for diagnostic reasoning;

• Faults inferred by assuming the binary evaluation of residu-
als and knowledge regarding the order of symptoms resulting
from the GP graph. The BDM matrix or rules arising from
this matrix and elementary sequences of symptoms will be
used for diagnostic reasoning;

• Faults inferred by assuming a tri-valued evaluation of residu-
als and knowledge regarding the order of symptoms resulting
from the GP graph. The FIS structure or rules arising from
this structure and elementary antecedence of symptoms will
be used for diagnostic reasoning.

All the above mentioned approaches involve different knowledge
depths regarding the relationship between faults and diagnostic
signals.
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4. Fault distinguishability analysis

Fault distinguishability will be analysed by assuming the avail-
ability of three pressure measurements: P0, P1, and P4, which are
marked by black circles in the GP graph in Fig. 3. Let us further
assume that for the diagnostics, a set of four partial models (mi):

P̂′
1 = m1(P0); P̂′

4 = m2(P0);

P̂′′
4 = m3(P1); P̂′′

1 = m4(P0,P4)

will be built. The partial-models can be implemented be means
of different approaches. The only requirement is, that they
should reflect the non-linear behavior of the studied process in
terms of pressure and flow variation. Therefore, the analytical
models based on physical laws, neural, fuzzy, their combina-
tions, as well as additive models are usable. The corresponding
residuals are as follows:




r1 = P1 −m1(P0),

r2 = P4 −m2(P0),

r3 = P4 −m3(P1),

r4 = P1 −m4(P0,P4).

(2)

The sensitivity of residuals to the faults can be determined based
on either expert knowledge or reading directly from the GP
graph.




r1 = h1( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10),

r2 = h2( f1, f2, f3, f4, f5, f6, f7, f8, f9, f11),
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(3)

The four different inference approaches for faults will be con-
sidered further in this study:
• Faults inferred by assuming the binary evaluation of resid-

uals. In this case, either the binary diagnostic matrix BDM
or rules arising from this matrix will be used for diagnostic
reasoning;

• Faults inferred by assuming tri-valued diagnostic signals. In
this case, either the FIS or rules arising from it will be used
for diagnostic reasoning;

• Faults inferred by assuming the binary evaluation of residu-
als and knowledge regarding the order of symptoms resulting
from the GP graph. The BDM matrix or rules arising from
this matrix and elementary sequences of symptoms will be
used for diagnostic reasoning;

• Faults inferred by assuming a tri-valued evaluation of residu-
als and knowledge regarding the order of symptoms resulting
from the GP graph. The FIS structure or rules arising from
this structure and elementary antecedence of symptoms will
be used for diagnostic reasoning.

All the above mentioned approaches involve different knowledge
depths regarding the relationship between faults and diagnostic
signals.
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4.1. Fault inference based on BDM. In this case, we assume
that the diagnosis is based on the binary evaluation of residuals
and knowledge regarding relation fault-symptoms.

BDM determines the relationship between the set of faults
F = { fk : k = 1,2, . . . , K} and the set of diagnostic signals S =
{s j : j = 1,2, . . . , J}. The fault signature is defined as a vector
of diagnostic signal values associated with each particular fault.
Clearly, each column vector of the BDM reflects the signature
of the sole fault. This correspondence can be rewritten in the
form of a useful rule as follows:

If (s1 = v1k)∧ . . .∧ (s j = v jk)∧ . . .∧ (sJ = vJk) then fk . (4)

In [2, 26], definitions of fault distinguishability and indistin-
guishability were formulated in the BDM. The faults fk, fm ∈ F
are indistinguishable in the BDM (remain in a relationship RN)
iff their signatures are equal:

fk RN fm ⇔∀s j∈S
[
v jk = v jm

]
. (5)

By contrast, the faults are distinguishable (remain in a relation-
ship RR) if their signatures are different.

fk RR fm ⇔∃s j∈S
[
v jk �= v jm

]
. (6)

The BDM of the studied case is presented in Table 2.For exam-
ple, according to (4), fault f1 is concluded from the following
rule:

if {(s1 = 1)∧ (s2 = 1)∧ (s3 = 0)}∧ (s4 = 1) then f1 (7)

Table 2
Binary diagnostic matrix of the four pressure vessel systems.

S/F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

s1 1 1 1 1 1 1 1 1 1 1 0

s2 1 1 1 1 1 1 1 1 1 0 1

s3 0 1 1 1 0 1 1 1 0 1 1

s4 1 1 1 0 1 1 1 1 1 1 1

Similarly, any row of BDM responds to a rule that indicates all
possible faults when any diagnostic signal s j = 1 occurs. For
example, the third row of the matrix shown in Table 2 can be
rewritten in the form of the following rule:

if (s3 = 1) then ( f2 ∨ f3 ∨ f4 ∨ f6 ∨ f7 ∨ f8 ∨ f10 ∨ f11) . (8)

The faults fk, fm ∈ F are indistinguishable in a given BDM iff
their signatures are equal [2, 24, 25]. Meanwhile, any pair of
faults fk, fm ∈ F is distinguishable if their signatures are differ-
ent. For the system being studied, we obtained two elementary
blocks (subsets) of indistinguishable faults. In this case, the only
three single faults were distinguishable.

{ f1, f5, f9}, { f2, f3, f6, f7, f8}, { f4}, { f10}, { f11}. (9)

4.2. Fault inference based on FIS. An FIS is a structure that
specifies the set of reference values of diagnostic signals asso-
ciated with particular faults. In this case, any diagnostic signal
is multivalued. The significant extensions of the FIS in relation
to the BDM are as follows:
• an individual set of values may be associated with each

diagnostic signal;
• the set Vj of values of jth diagnostic signal contains a finite

number of elements;
• any item (vk, j ⊂ Vj) in the FIS may be multivalued.

The FIS column constitutes the compound signature, in which
each pair of diagnostic signal-fault may be associated with more
than one value. A compound signature may be expressed alter-
natively in the form of the following rule:

If (s1 =V1k)∧ . . .∧(s j =Vjk)∧ . . .∧(sJ =VJk) then fk . (10)

In previous studies [11, 24, 26], unconditional and conditional
fault indistinguishability were defined in terms of the FIS. Some
of the definitions are provided below.

Faults fk, fm ∈ F are unconditionally indistinguishable (re-
main in a relationship RN) in the FIS with respect to diagnostic
signals s j ∈ {S} iff their signatures are identical:

fk RN fm ⇔∀s j∈S
[
Vjk =Vjm

]
. (11)

The faults fk, fm ∈F are conditionally indistinguishable (remain
in a relationship RWN) in the FIS with respect to diagnostic
signals s j ∈ {S} iff for each diagnostic signal, all subsets of its
values associated with the faults fk and fm are in part common
and are not unconditionally indistinguishable:

fk RWN fm ⇔∀s j∈S
[
Vjk ∩Vjm

]
�= /0 ∧ ∃s j∈S

[
Vjk �=Vjm

]
. (12)

Conditional fault indistinguishability implies that v j may exist,
by which both faults are indistinguishable.

∀s j∈S v j ∈
[
Vjk ∩Vjm

]
. (13)

However, other diagnostic signals exist, for which the same
faults remain distinguishable. Therefore, the following condition
applies:

∃s j∈S
[
v j ∈Vjk ∧ v j /∈ Vjm

]
∨
[
v j /∈Vjk ∧ v j ∈ Vjm

]
. (14)

The faults fk, fm ∈ F in the FIS are unconditionally distinguish-
able if a diagnostic signal exists, for which the subsets of values
associated with these faults are disjoint:

fk RR fm ⇔∃s j∈S
[
Vjk ∩Vjm

]
�= /0. (15)

The FIS developed for the four pressure vessels system under
the assumption of tri-valued residual values is presented in Ta-
ble 3. The content of the Table 3 has been determined based on
the analysis of Bernoulli’s equations as well as based on expert
knowledge. Clearly, the signs of fault symptoms depend on the
shape of residual equations. In considered study, they are deter-
mined by a set of equations (2) in the form of the differences

Table 3
Fault information system for the four pressure vessel system.

S/F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

s1 −1 −1 −1 −1 −1 −1 +1 +1 −1,+1 −1,+1 0

s2 −1 −1 −1 −1 −1 −1 −1 −1 −1,+1 0 −1,+1

s3 0 −1 −1 −1 0 −1 −1 −1 0 −1,+1 −1,+1

s4 −1 −1 −1 0 −1 −1 +1 +1 −1,+1 −1,+1 −1,+1

between process and modelled values. If the residuals will be
defined as differences between modelled and process values,
the sings of symptoms will be opposed. When considering the
expert knowledge, the reasoning regarding signs of fault symp-
toms is quite trivial. In this case, essential is the knowledge of
influence of the fault on process values. For example, a clog-
ging of flow q2 results in increase of pressure P1 and decrease
of pressure P4. This clarifies the signs of symptoms of fault f7
in Table 3.

From the FIS, analogously as in the case of the BDM, we can
derive rules regarding faults. For example, the rule correspond-
ing to fault f10 is as follows:

if {(s1 ∈ {−1,+1)})∧ (s2 = 0)∧ (s3 ∈ {−1,+1)})

∧(s4 ∈ {−1,+1)} then f10 .

For the first row of the FIS shown in Table 3, we can get two
alternative [26] rules:

if (s1 =−1) then ( f1 ∨ f2 ∨ f3 ∨ f4 ∨ f5 ∨ f6 ∨ f9 ∨ f10),

if (s1 =+1) then ( f7 ∨ f8 ∨ f9 ∨ f10).

If we transform the FIS into a BDM by substituting tri-valued
values by the bi-valued values, then we can obtain the following:

if (s1 = 1) then ( f1∨ f2∨ f3∨ f4∨ f5∨ f6∨ f7∨ f8∨ f9∨ f10).

Here, the cardinality of the set of faults indicated is greater
than that in the FIS case. Hence, the benefits of applying multi-
valued diagnostic signals are evident. When assessing fault in-
distinguishability in the FIS, the conditional distinguishability
and conditional indistinguishability of faults must be consid-
ered [2, 9, 12].

In the FIS case shown in Fig. 3, the unconditionally indistin-
guishable subsets of faults are as follows:

{ f1, f5}, { f2, f3, f6}, { f7, f8}, { f4}, { f10}, { f11}.

In addition, the fault { f9} is conditionally distinguishable.

4.3. Fault inference based on BDM combined with knowl-
edge of elementary sequences of symptoms (ESS). In this
case, we will study the fault distinguishability of the system de-
picted in Fig. 1 using the BDM shown in Table 2. Knowledge
regarding the order of fault symptoms can be obtained based

on expertise, experimentally or derived from a qualitative pro-
cess model. However, these models should exhibit a form of
causal graph that considers the effects of faults. Let any pair of
symptoms

〈
s j,sp

〉
be referred to as an elementary sequence and

further denoted as es j,p( fk) =
〈
s j,sp

〉
. The faults fk, fm ∈ F are

indistinguishable with respect to the order of the symptoms if the
corresponding sequences of their symptoms are identical [2,14].

fk RN fm ⇔∀s j ,sp∈S [es j,p( fk) = es j,p( fm)] . (16)

Therefore, two faults fk, fm ∈ F are distinguishable if the order
of any pair of their symptoms

〈
s j,sp

〉
is different [14, 35].

fk RR fm ⇔∃es j,p( fk) =
〈
s j,sp

〉
∧∃es j,p( fm) =

〈
sp,s j

〉
. (17)

Hence, to distinguish between any pair of faults, it is sufficient if
any elementary sequence of symptoms es j,p( fk) and es j,p( fm)
for those faults is different. Conditional distinguishability occurs
if the sequence of symptoms for one of the faults is fixed, e.g.,
es j,p( fk) =

〈
s j,sp

〉
. Meanwhile, for the second fault, any order

of the symptoms may appear: es j,p( fm) =
〈
s j,sp

〉
∪
〈
sp,s j

〉
. In

the case of sequence
〈
sp,s j

〉
, fault fm is indicated; meanwhile, in

the case of sequence
〈
s j,sp

〉
, faults fk and fm are not distinguish-

able. Knowledge regarding elementary sequences may increase
the distinguishability of faults that are indistinguishable based
on inference performed solely through the appropriate evalua-
tion of diagnostic signals. For example, from the BDM shown in
Table 2, we can obtain the following subsets of indistinguishable
faults: { f1, f5, f9},{ f2, f3, f6, f7, f8}, { f4}, { f10}, { f11}. Then,
we can analyse the order of symptoms of undistinguishable
faults in a subset { f2, f3, f6, f7, f8} based on the graph GP. The
order of symptoms depends on the length of the path starting
from the process variable that is used for residual computa-
tion and is affected by a fault. Clearly, this order depends on
the dynamic properties of the system, which are hidden behind
the arcs of the graph. To simplify our considerations, we will
assume that the volumes of all vessels as well as the lengths
and diameters of connecting pipelines are approximately equal.
Next, we analyse the paths of the faults that affected the mod-
elled process variables (see Fig. 3). The path of fault f6 that
affects process variable P1 (used for calculation of residual r1)
is short: f6 → q1 → p1 → P1. The same fault affects the vari-
able P4 (related to residual r2) by spreading through a much
longer path f6 → q1 → p2 → q2 → p3 → p4 → P4. Consid-
ering similar dynamics of pressure-flow and vice versa pro-
cesses, in the case of fault f6, the symptom s1 should precede
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Table 3
Fault information system for the four pressure vessel system.

S/F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

s1 −1 −1 −1 −1 −1 −1 +1 +1 −1,+1 −1,+1 0

s2 −1 −1 −1 −1 −1 −1 −1 −1 −1,+1 0 −1,+1

s3 0 −1 −1 −1 0 −1 −1 −1 0 −1,+1 −1,+1

s4 −1 −1 −1 0 −1 −1 +1 +1 −1,+1 −1,+1 −1,+1

between process and modelled values. If the residuals will be
defined as differences between modelled and process values,
the sings of symptoms will be opposed. When considering the
expert knowledge, the reasoning regarding signs of fault symp-
toms is quite trivial. In this case, essential is the knowledge of
influence of the fault on process values. For example, a clog-
ging of flow q2 results in increase of pressure P1 and decrease
of pressure P4. This clarifies the signs of symptoms of fault f7
in Table 3.

From the FIS, analogously as in the case of the BDM, we can
derive rules regarding faults. For example, the rule correspond-
ing to fault f10 is as follows:

if {(s1 ∈ {−1,+1)})∧ (s2 = 0)∧ (s3 ∈ {−1,+1)})

∧(s4 ∈ {−1,+1)} then f10 .

For the first row of the FIS shown in Table 3, we can get two
alternative [26] rules:

if (s1 =−1) then ( f1 ∨ f2 ∨ f3 ∨ f4 ∨ f5 ∨ f6 ∨ f9 ∨ f10),

if (s1 =+1) then ( f7 ∨ f8 ∨ f9 ∨ f10).

If we transform the FIS into a BDM by substituting tri-valued
values by the bi-valued values, then we can obtain the following:

if (s1 = 1) then ( f1∨ f2∨ f3∨ f4∨ f5∨ f6∨ f7∨ f8∨ f9∨ f10).

Here, the cardinality of the set of faults indicated is greater
than that in the FIS case. Hence, the benefits of applying multi-
valued diagnostic signals are evident. When assessing fault in-
distinguishability in the FIS, the conditional distinguishability
and conditional indistinguishability of faults must be consid-
ered [2, 9, 12].

In the FIS case shown in Fig. 3, the unconditionally indistin-
guishable subsets of faults are as follows:

{ f1, f5}, { f2, f3, f6}, { f7, f8}, { f4}, { f10}, { f11}.

In addition, the fault { f9} is conditionally distinguishable.

4.3. Fault inference based on BDM combined with knowl-
edge of elementary sequences of symptoms (ESS). In this
case, we will study the fault distinguishability of the system de-
picted in Fig. 1 using the BDM shown in Table 2. Knowledge
regarding the order of fault symptoms can be obtained based

on expertise, experimentally or derived from a qualitative pro-
cess model. However, these models should exhibit a form of
causal graph that considers the effects of faults. Let any pair of
symptoms

〈
s j,sp

〉
be referred to as an elementary sequence and

further denoted as es j,p( fk) =
〈
s j,sp

〉
. The faults fk, fm ∈ F are

indistinguishable with respect to the order of the symptoms if the
corresponding sequences of their symptoms are identical [2,14].

fk RN fm ⇔∀s j ,sp∈S [es j,p( fk) = es j,p( fm)] . (16)

Therefore, two faults fk, fm ∈ F are distinguishable if the order
of any pair of their symptoms

〈
s j,sp

〉
is different [14, 35].

fk RR fm ⇔∃es j,p( fk) =
〈
s j,sp

〉
∧∃es j,p( fm) =

〈
sp,s j

〉
. (17)

Hence, to distinguish between any pair of faults, it is sufficient if
any elementary sequence of symptoms es j,p( fk) and es j,p( fm)
for those faults is different. Conditional distinguishability occurs
if the sequence of symptoms for one of the faults is fixed, e.g.,
es j,p( fk) =

〈
s j,sp

〉
. Meanwhile, for the second fault, any order

of the symptoms may appear: es j,p( fm) =
〈
s j,sp

〉
∪
〈
sp,s j

〉
. In

the case of sequence
〈
sp,s j

〉
, fault fm is indicated; meanwhile, in

the case of sequence
〈
s j,sp

〉
, faults fk and fm are not distinguish-

able. Knowledge regarding elementary sequences may increase
the distinguishability of faults that are indistinguishable based
on inference performed solely through the appropriate evalua-
tion of diagnostic signals. For example, from the BDM shown in
Table 2, we can obtain the following subsets of indistinguishable
faults: { f1, f5, f9},{ f2, f3, f6, f7, f8}, { f4}, { f10}, { f11}. Then,
we can analyse the order of symptoms of undistinguishable
faults in a subset { f2, f3, f6, f7, f8} based on the graph GP. The
order of symptoms depends on the length of the path starting
from the process variable that is used for residual computa-
tion and is affected by a fault. Clearly, this order depends on
the dynamic properties of the system, which are hidden behind
the arcs of the graph. To simplify our considerations, we will
assume that the volumes of all vessels as well as the lengths
and diameters of connecting pipelines are approximately equal.
Next, we analyse the paths of the faults that affected the mod-
elled process variables (see Fig. 3). The path of fault f6 that
affects process variable P1 (used for calculation of residual r1)
is short: f6 → q1 → p1 → P1. The same fault affects the vari-
able P4 (related to residual r2) by spreading through a much
longer path f6 → q1 → p2 → q2 → p3 → p4 → P4. Consid-
ering similar dynamics of pressure-flow and vice versa pro-
cesses, in the case of fault f6, the symptom s1 should precede
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the symptom s2. Similar dependency occurs in the case of fault
f2, for which the paths are as follows: f2 → p2 → q1 → p1 → P1,
f2 → p2 → q2 → p3 → q3 → p4 → P4. However, the cases of
faults f3 and f8 are different. The path from the fault f8 to
the process variable P1 (associated with the residual r1) is rela-
tively long: f8 → q3 → p3 → q2 → p2 → q1 → p1 → P1. This
implies a long formation time of the symptom of this fault.
Meanwhile, the path from the fault f8 to the variable P4 (related
to residual r2) is short: f8 → q3 → p4 → P4. The same applies
in the case of fault f3: f3 → p3 → q2 → p2 → q1 → p1 → P1,
f3 → p3 → q3 → p4 → P4. Therefore, in the case of faults f8
and f3, the symptom s2 precedes the symptom s1. As such, the
following elementary sequences are legitimate:





es1,2( f2) = 〈s1,s2〉 ,
es1,2( f6) = 〈s1,s2〉 ,
es1,2( f3) = 〈s2,s1〉 ,
es1,2( f8) = 〈s2,s1〉 .

(18)

This provides the distinguishability of pairs of faults { f2, f6}
and { f3, f8}. The following two sequences are expected for the
fault f7. {

es1,2( f7) = 〈s1,s2〉 ,
es1,2( f7) = 〈s2,s1〉 .

(19)

Therefore, a conditional indistinguishability of the fault f7 oc-
curs with respect to pairs of faults { f2, f6} and { f3, f8}. For
the sequence 〈s1,s2〉, the fault can be inferred in the subset
{ f2, f6, f7}; meanwhile, for the sequence 〈s2,s1〉, we can infer
that one of the faults from subset { f3, f7, f8} has occurred.

The sequences of symptoms s1 and s3 are identical to those
of s1 and s2, respectively. Therefore, these sequences do not
contribute to fault distinguishability. Similarly, a detailed anal-
ysis of other sequences shows that other sequences that enables
faults to be distinguished in the subset { f1, f5, f9} do not exist.

4.4. Fault inference based on FIS combined with knowledge
of elementary sequences of symptoms. In this section, we
will analyse the fault distinguishability in the diagnostic sys-
tem designed for the four pressure vessels setup as shown in
Fig. 1, using the FIS structure shown in Table 3 and knowledge
regarding elementary sequences of symptoms. The fault distin-
guishability obtained solely based on the FIS was described
in Section 4.2. In the current subsection, the elementary se-
quences presented in the previous section will be considered.
In this case, the increase in fault distinguishability is caused
by both the multivalued evaluation of residuals and utilising
knowledge regarding elementary sequences.

The faults fk, fm ∈ F are indistinguishable [2] in the FIS and
by the sequence of symptoms if the signatures and sequences of
these faults are equal:

fkRN fm ⇔
[
∀s j∈S Vj,k =Vj,m

]
∧

[
∀s j ,sp∈S es j,p( fk) = es j,p( fm)

]
.

(20)

The faults fk, fm ∈ F are unconditionally distinguishable in the
FIS and by the sequence of symptoms, if one diagnostic signal
exists at the least, for which the subsets of values correspond-
ing to these faults are disjoint or distinguishable elementary
sequences of symptoms exist.

fk RR fm ⇔
[
∃s j∈S Vj,k ∩Vj,m = /0

]
∨

{[
∃ es j,p( fk) =

〈
s j,sp

〉]
∧
[
∃ es j,p( fm) =

〈
sp,s j

〉]}
.

(21)

In the remaining cases, the faults are unconditionally indistin-
guishable [2].

Without providing details, we obtain the following uncon-
ditionally distinguishable subsets of faults: { f1, f5}, { f2, f6},
{ f3}, { f4}, { f10}, { f11}. The conditional distinguishable are
faults { f7} and { f8} as well as { f9} and { f1, f5}.

4.5. Qualitative comparison of fault distinguishability ap-
proaches. Definitely, the lowest fault distinguishability pro-
vides BDM. Inference with BDM leads to identification of
a class of subsets of indistinguishable faults which are mu-
tually unconditionally distinguishable. In considered study
we obtain 5 subsets of unconditionally distinguishable faults:
{ f1, f5, f9},{ f2, f3, f6, f7, f8},{ f4},{ f10},{ f11}. The fault dis-
tinguishability obtainable from the BDM will be confronted
further with other approaches based on the FIS, and fu-
sion of BDM and ESS as well as FIS and ESS. The distin-
guishability of faults obtained for the same process by means
of combined BMD and FIS approaches yields better results
compared to these achieved for BDM itself. In this case,
the subsets of faults { f2, f3, f6, f7, f8} and { f7, f8} are dis-
tinguishable. In addition, fault { f9} is conditionally distin-
guishable from the faults { f1, f5}. This valuable result may
be explained by exploiting of additional diagnostically useful
knowledge injected by application of tri-valued assessment of
residuals.

The use of combined BDM and ESS approaches allows for
getting yet better results. This results in unconditional distin-
guishability of subsets { f2, f6} and { f3, f8} and in addition in
conditional distinguishability of fault { f10} from pairs of indis-
tinguishable faults { f2, f6} and { f3, f8}.

The best fault distinguishability was observed in case
of fusion of FIS and ESS. In the FIS solely, the faults
{ f2, f3, f6}, { f7, f8} are indistinguishable. By fusion of FIS
and ESS we got unconditional distinguishability of subsets
{ f2, f6}, { f3} and conditional distinguishability of faults { f7}
and { f8}.

Given above remarks concerned a qualitative comparison of
fault distinguishability obtainable for the studied process by
means of four fault isolation approaches. However, it is advis-
able to introduce some measures which allow to quantify fault
distinguishability. This allows for carrying out the ranking of
the fault isolation methods what should be appreciated by im-
plementation of diagnostic systems.

the symptom s2. Similar dependency occurs in the case of fault
f2, for which the paths are as follows: f2 → p2 → q1 → p1 → P1,
f2 → p2 → q2 → p3 → q3 → p4 → P4. However, the cases of
faults f3 and f8 are different. The path from the fault f8 to
the process variable P1 (associated with the residual r1) is rela-
tively long: f8 → q3 → p3 → q2 → p2 → q1 → p1 → P1. This
implies a long formation time of the symptom of this fault.
Meanwhile, the path from the fault f8 to the variable P4 (related
to residual r2) is short: f8 → q3 → p4 → P4. The same applies
in the case of fault f3: f3 → p3 → q2 → p2 → q1 → p1 → P1,
f3 → p3 → q3 → p4 → P4. Therefore, in the case of faults f8
and f3, the symptom s2 precedes the symptom s1. As such, the
following elementary sequences are legitimate:





es1,2( f2) = 〈s1,s2〉 ,
es1,2( f6) = 〈s1,s2〉 ,
es1,2( f3) = 〈s2,s1〉 ,
es1,2( f8) = 〈s2,s1〉 .

(18)

This provides the distinguishability of pairs of faults { f2, f6}
and { f3, f8}. The following two sequences are expected for the
fault f7. {

es1,2( f7) = 〈s1,s2〉 ,
es1,2( f7) = 〈s2,s1〉 .

(19)

Therefore, a conditional indistinguishability of the fault f7 oc-
curs with respect to pairs of faults { f2, f6} and { f3, f8}. For
the sequence 〈s1,s2〉, the fault can be inferred in the subset
{ f2, f6, f7}; meanwhile, for the sequence 〈s2,s1〉, we can infer
that one of the faults from subset { f3, f7, f8} has occurred.

The sequences of symptoms s1 and s3 are identical to those
of s1 and s2, respectively. Therefore, these sequences do not
contribute to fault distinguishability. Similarly, a detailed anal-
ysis of other sequences shows that other sequences that enables
faults to be distinguished in the subset { f1, f5, f9} do not exist.

4.4. Fault inference based on FIS combined with knowledge
of elementary sequences of symptoms. In this section, we
will analyse the fault distinguishability in the diagnostic sys-
tem designed for the four pressure vessels setup as shown in
Fig. 1, using the FIS structure shown in Table 3 and knowledge
regarding elementary sequences of symptoms. The fault distin-
guishability obtained solely based on the FIS was described
in Section 4.2. In the current subsection, the elementary se-
quences presented in the previous section will be considered.
In this case, the increase in fault distinguishability is caused
by both the multivalued evaluation of residuals and utilising
knowledge regarding elementary sequences.

The faults fk, fm ∈ F are indistinguishable [2] in the FIS and
by the sequence of symptoms if the signatures and sequences of
these faults are equal:

fkRN fm ⇔
[
∀s j∈S Vj,k =Vj,m

]
∧

[
∀s j ,sp∈S es j,p( fk) = es j,p( fm)

]
.

(20)

The faults fk, fm ∈ F are unconditionally distinguishable in the
FIS and by the sequence of symptoms, if one diagnostic signal
exists at the least, for which the subsets of values correspond-
ing to these faults are disjoint or distinguishable elementary
sequences of symptoms exist.

fk RR fm ⇔
[
∃s j∈S Vj,k ∩Vj,m = /0

]
∨

{[
∃ es j,p( fk) =

〈
s j,sp

〉]
∧
[
∃ es j,p( fm) =

〈
sp,s j

〉]}
.

(21)

In the remaining cases, the faults are unconditionally indistin-
guishable [2].

Without providing details, we obtain the following uncon-
ditionally distinguishable subsets of faults: { f1, f5}, { f2, f6},
{ f3}, { f4}, { f10}, { f11}. The conditional distinguishable are
faults { f7} and { f8} as well as { f9} and { f1, f5}.

4.5. Qualitative comparison of fault distinguishability ap-
proaches. Definitely, the lowest fault distinguishability pro-
vides BDM. Inference with BDM leads to identification of
a class of subsets of indistinguishable faults which are mu-
tually unconditionally distinguishable. In considered study
we obtain 5 subsets of unconditionally distinguishable faults:
{ f1, f5, f9},{ f2, f3, f6, f7, f8},{ f4},{ f10},{ f11}. The fault dis-
tinguishability obtainable from the BDM will be confronted
further with other approaches based on the FIS, and fu-
sion of BDM and ESS as well as FIS and ESS. The distin-
guishability of faults obtained for the same process by means
of combined BMD and FIS approaches yields better results
compared to these achieved for BDM itself. In this case,
the subsets of faults { f2, f3, f6, f7, f8} and { f7, f8} are dis-
tinguishable. In addition, fault { f9} is conditionally distin-
guishable from the faults { f1, f5}. This valuable result may
be explained by exploiting of additional diagnostically useful
knowledge injected by application of tri-valued assessment of
residuals.

The use of combined BDM and ESS approaches allows for
getting yet better results. This results in unconditional distin-
guishability of subsets { f2, f6} and { f3, f8} and in addition in
conditional distinguishability of fault { f10} from pairs of indis-
tinguishable faults { f2, f6} and { f3, f8}.

The best fault distinguishability was observed in case
of fusion of FIS and ESS. In the FIS solely, the faults
{ f2, f3, f6}, { f7, f8} are indistinguishable. By fusion of FIS
and ESS we got unconditional distinguishability of subsets
{ f2, f6}, { f3} and conditional distinguishability of faults { f7}
and { f8}.

Given above remarks concerned a qualitative comparison of
fault distinguishability obtainable for the studied process by
means of four fault isolation approaches. However, it is advis-
able to introduce some measures which allow to quantify fault
distinguishability. This allows for carrying out the ranking of
the fault isolation methods what should be appreciated by im-
plementation of diagnostic systems.

the symptom s2. Similar dependency occurs in the case of fault
f2, for which the paths are as follows: f2 → p2 → q1 → p1 → P1,
f2 → p2 → q2 → p3 → q3 → p4 → P4. However, the cases of
faults f3 and f8 are different. The path from the fault f8 to
the process variable P1 (associated with the residual r1) is rela-
tively long: f8 → q3 → p3 → q2 → p2 → q1 → p1 → P1. This
implies a long formation time of the symptom of this fault.
Meanwhile, the path from the fault f8 to the variable P4 (related
to residual r2) is short: f8 → q3 → p4 → P4. The same applies
in the case of fault f3: f3 → p3 → q2 → p2 → q1 → p1 → P1,
f3 → p3 → q3 → p4 → P4. Therefore, in the case of faults f8
and f3, the symptom s2 precedes the symptom s1. As such, the
following elementary sequences are legitimate:





es1,2( f2) = 〈s1,s2〉 ,
es1,2( f6) = 〈s1,s2〉 ,
es1,2( f3) = 〈s2,s1〉 ,
es1,2( f8) = 〈s2,s1〉 .

(18)

This provides the distinguishability of pairs of faults { f2, f6}
and { f3, f8}. The following two sequences are expected for the
fault f7. {

es1,2( f7) = 〈s1,s2〉 ,
es1,2( f7) = 〈s2,s1〉 .

(19)

Therefore, a conditional indistinguishability of the fault f7 oc-
curs with respect to pairs of faults { f2, f6} and { f3, f8}. For
the sequence 〈s1,s2〉, the fault can be inferred in the subset
{ f2, f6, f7}; meanwhile, for the sequence 〈s2,s1〉, we can infer
that one of the faults from subset { f3, f7, f8} has occurred.

The sequences of symptoms s1 and s3 are identical to those
of s1 and s2, respectively. Therefore, these sequences do not
contribute to fault distinguishability. Similarly, a detailed anal-
ysis of other sequences shows that other sequences that enables
faults to be distinguished in the subset { f1, f5, f9} do not exist.

4.4. Fault inference based on FIS combined with knowledge
of elementary sequences of symptoms. In this section, we
will analyse the fault distinguishability in the diagnostic sys-
tem designed for the four pressure vessels setup as shown in
Fig. 1, using the FIS structure shown in Table 3 and knowledge
regarding elementary sequences of symptoms. The fault distin-
guishability obtained solely based on the FIS was described
in Section 4.2. In the current subsection, the elementary se-
quences presented in the previous section will be considered.
In this case, the increase in fault distinguishability is caused
by both the multivalued evaluation of residuals and utilising
knowledge regarding elementary sequences.

The faults fk, fm ∈ F are indistinguishable [2] in the FIS and
by the sequence of symptoms if the signatures and sequences of
these faults are equal:

fkRN fm ⇔
[
∀s j∈S Vj,k =Vj,m

]
∧

[
∀s j ,sp∈S es j,p( fk) = es j,p( fm)

]
.

(20)

The faults fk, fm ∈ F are unconditionally distinguishable in the
FIS and by the sequence of symptoms, if one diagnostic signal
exists at the least, for which the subsets of values correspond-
ing to these faults are disjoint or distinguishable elementary
sequences of symptoms exist.

fk RR fm ⇔
[
∃s j∈S Vj,k ∩Vj,m = /0

]
∨

{[
∃ es j,p( fk) =

〈
s j,sp

〉]
∧
[
∃ es j,p( fm) =

〈
sp,s j

〉]}
.

(21)

In the remaining cases, the faults are unconditionally indistin-
guishable [2].

Without providing details, we obtain the following uncon-
ditionally distinguishable subsets of faults: { f1, f5}, { f2, f6},
{ f3}, { f4}, { f10}, { f11}. The conditional distinguishable are
faults { f7} and { f8} as well as { f9} and { f1, f5}.

4.5. Qualitative comparison of fault distinguishability ap-
proaches. Definitely, the lowest fault distinguishability pro-
vides BDM. Inference with BDM leads to identification of
a class of subsets of indistinguishable faults which are mu-
tually unconditionally distinguishable. In considered study
we obtain 5 subsets of unconditionally distinguishable faults:
{ f1, f5, f9},{ f2, f3, f6, f7, f8},{ f4},{ f10},{ f11}. The fault dis-
tinguishability obtainable from the BDM will be confronted
further with other approaches based on the FIS, and fu-
sion of BDM and ESS as well as FIS and ESS. The distin-
guishability of faults obtained for the same process by means
of combined BMD and FIS approaches yields better results
compared to these achieved for BDM itself. In this case,
the subsets of faults { f2, f3, f6, f7, f8} and { f7, f8} are dis-
tinguishable. In addition, fault { f9} is conditionally distin-
guishable from the faults { f1, f5}. This valuable result may
be explained by exploiting of additional diagnostically useful
knowledge injected by application of tri-valued assessment of
residuals.

The use of combined BDM and ESS approaches allows for
getting yet better results. This results in unconditional distin-
guishability of subsets { f2, f6} and { f3, f8} and in addition in
conditional distinguishability of fault { f10} from pairs of indis-
tinguishable faults { f2, f6} and { f3, f8}.

The best fault distinguishability was observed in case
of fusion of FIS and ESS. In the FIS solely, the faults
{ f2, f3, f6}, { f7, f8} are indistinguishable. By fusion of FIS
and ESS we got unconditional distinguishability of subsets
{ f2, f6}, { f3} and conditional distinguishability of faults { f7}
and { f8}.

Given above remarks concerned a qualitative comparison of
fault distinguishability obtainable for the studied process by
means of four fault isolation approaches. However, it is advis-
able to introduce some measures which allow to quantify fault
distinguishability. This allows for carrying out the ranking of
the fault isolation methods what should be appreciated by im-
plementation of diagnostic systems.
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5. Metrics of fault distinguishability

Problems in the quantitative assessment of fault distinguisha-
bility in a given diagnostic system has been discussed widely
[2, 9, 13, 25, 27–31], in which numerous definitions of fault dis-
tinguishability metrics have been defined. Three of them were
adopted in this study to illustrate the trends of evolution of
the metric values depending on the selection of fault isolation
method. In order to copy with multivalued diagnostic signals
and sequences of symptoms, the redefinition of metrics (31) is
proposed together with a proposition of transformation of the
structure of residual sets into a multivalued fault isolation sys-
tem. This makes allowance for generalization of all incidence
matrix based approaches to fault distinguishability. The calcu-
lated values of the selected fault distinguishability metrics are
presented in Table 5. Below, we briefly introduce the definitions
of these metrics.

5.1. Theoretical mean diagnosis accuracy. The theoretical
mean diagnosis accuracy dacc was introduced in [31]. It origi-
nates from the statement that a diagnosis can be interpreted as
a superset of elementary diagnoses. An elementary diagnosis is
understood as a set of faults that are indistinguishable. In addi-
tion, the set of all undetectable faults together with a fault free
behavioural state of the diagnosed system constitutes a single
elementary diagnosis d1. According to [31]:

dacc =
1
N

N

∑
i=1

1
Li

(22)

where N is the number of elementary diagnoses, Li the number
of faults in the ith elementary diagnosis.

In this study, all faults are detectable; therefore, L1 = 1. Ad-
ditionally, (22) is extremely easy to calculate. However, it is
noteworthy that dacc is not the best selection when searching
for the optimal sensor placement in diagnostics [27, 32–34] be-
cause it does not reflect the sensitivity to the strength of fault
isolation.

5.2. Normalised mean distinguishability index. The inde-
pendent diversification of fault signatures regardless of whether
they are isolated unidirectionally or bidirectionally is necessary
in fault isolability based on structural residuals. The measure
(22) does not imply whether the structure of the residual sets
is weakly or strongly isolated. Therefore, in general, it is over-
valued. To obtain metrics that will better reflect the isolabil-
ity features of the structures of residual sets, the normalised
mean distinguishability index dN was introduced in [25]. We
will briefly describe it below.

The dN index is based on the definition of a single fault di-
versity matrix M[m : n]. Each column of the matrix M contains
binary valued numbers expressing the distinguishability of each
pair of single faults regardless of their unidirectional or bidirec-
tional characterisation. It has been proposed that the measure of
diversity of signatures will be an algebraic sum of all nonzero
entries in each column of matrix M. Let us denote this num-

ber as di,k.

di,k =
m

∑
j=1

m j,i,k (23)

where m j,i,k = v j,i⊗v j,k is the entry of matrix M; v j,i is the entry
of the alternative fault signature of fault fi.

Next, we create diversity vector D:

D[1 : c] =
[
d1,2,d1,3, ..,d1,n,d2,3,d2,4, ..,d(n−1),n

]
(24)

and isolability vector I:

J [i1, i2, .. , in−1] , (25)

where

ii =
n−1

∑
k=i+1

di,k . (26)

To determine the minimal number of differences between
signatures of each pair of faults 〈 fi, fk〉 for which k > i, we
create (n−1) sets di referred to as sets of distinctiveness of the
i-th fault.

di = {di,(i+1), .. ,di,n}; i = [1..(n−1)] (27)

The mean value of the isolability metric of single faults d is as
follows:

d=
1

(n−1)

n−1

∑
i=1

ii (28)

where (n−1) is the number of elements of the isolability vec-
tor I.

By substituting ii in (26) and di,k in (23), we obtain

d=
1

(n−1)

n−1

∑
i=1

n−1

∑
k=i+1

m

∑
j=1

m j,i,k =
1
I

I

∑
i=1

m

∑
j=1

m j,i (29)

where I =

(
n
2

)
Finally, the normalised mean isolability index

of single fault metric dN can be defined as

dN =
1
m
d . (30)

Therefore, the metric dN is calculated based on adding up the
minimal number of differences between signatures for any pair
of faults. This metric should be regarded as one that reflects the
worst case isolation result in a given isolating structure. This is a
highly important feature, particularly for applications that place
importance on functional safety issues.

5.3. Normalised isolability metrics. The normalised isolabil-
ity metrics proposed in [27] aspires to be a universal measure
for the assessment of isolability of the FDI based on structural
residual approaches regardless diagnostic signal type. Therefore,

5. Metrics of fault distinguishability

Problems in the quantitative assessment of fault distinguisha-
bility in a given diagnostic system has been discussed widely
[2, 9, 13, 25, 27–31], in which numerous definitions of fault dis-
tinguishability metrics have been defined. Three of them were
adopted in this study to illustrate the trends of evolution of
the metric values depending on the selection of fault isolation
method. In order to copy with multivalued diagnostic signals
and sequences of symptoms, the redefinition of metrics (31) is
proposed together with a proposition of transformation of the
structure of residual sets into a multivalued fault isolation sys-
tem. This makes allowance for generalization of all incidence
matrix based approaches to fault distinguishability. The calcu-
lated values of the selected fault distinguishability metrics are
presented in Table 5. Below, we briefly introduce the definitions
of these metrics.

5.1. Theoretical mean diagnosis accuracy. The theoretical
mean diagnosis accuracy dacc was introduced in [31]. It origi-
nates from the statement that a diagnosis can be interpreted as
a superset of elementary diagnoses. An elementary diagnosis is
understood as a set of faults that are indistinguishable. In addi-
tion, the set of all undetectable faults together with a fault free
behavioural state of the diagnosed system constitutes a single
elementary diagnosis d1. According to [31]:

dacc =
1
N

N

∑
i=1

1
Li

(22)

where N is the number of elementary diagnoses, Li the number
of faults in the ith elementary diagnosis.

In this study, all faults are detectable; therefore, L1 = 1. Ad-
ditionally, (22) is extremely easy to calculate. However, it is
noteworthy that dacc is not the best selection when searching
for the optimal sensor placement in diagnostics [27, 32–34] be-
cause it does not reflect the sensitivity to the strength of fault
isolation.

5.2. Normalised mean distinguishability index. The inde-
pendent diversification of fault signatures regardless of whether
they are isolated unidirectionally or bidirectionally is necessary
in fault isolability based on structural residuals. The measure
(22) does not imply whether the structure of the residual sets
is weakly or strongly isolated. Therefore, in general, it is over-
valued. To obtain metrics that will better reflect the isolabil-
ity features of the structures of residual sets, the normalised
mean distinguishability index dN was introduced in [25]. We
will briefly describe it below.

The dN index is based on the definition of a single fault di-
versity matrix M[m : n]. Each column of the matrix M contains
binary valued numbers expressing the distinguishability of each
pair of single faults regardless of their unidirectional or bidirec-
tional characterisation. It has been proposed that the measure of
diversity of signatures will be an algebraic sum of all nonzero
entries in each column of matrix M. Let us denote this num-

ber as di,k.

di,k =
m

∑
j=1

m j,i,k (23)

where m j,i,k = v j,i⊗v j,k is the entry of matrix M; v j,i is the entry
of the alternative fault signature of fault fi.

Next, we create diversity vector D:

D[1 : c] =
[
d1,2,d1,3, ..,d1,n,d2,3,d2,4, ..,d(n−1),n

]
(24)

and isolability vector I:

J [i1, i2, .. , in−1] , (25)

where

ii =
n−1

∑
k=i+1

di,k . (26)

To determine the minimal number of differences between
signatures of each pair of faults 〈 fi, fk〉 for which k > i, we
create (n−1) sets di referred to as sets of distinctiveness of the
i-th fault.

di = {di,(i+1), .. ,di,n}; i = [1..(n−1)] (27)

The mean value of the isolability metric of single faults d is as
follows:

d=
1

(n−1)

n−1

∑
i=1

ii (28)

where (n−1) is the number of elements of the isolability vec-
tor I.

By substituting ii in (26) and di,k in (23), we obtain

d=
1
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∑
i=1

n−1

∑
k=i+1
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∑
j=1

m j,i,k =
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I
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where I =

(
n
2
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Finally, the normalised mean isolability index

of single fault metric dN can be defined as

dN =
1
m
d . (30)

Therefore, the metric dN is calculated based on adding up the
minimal number of differences between signatures for any pair
of faults. This metric should be regarded as one that reflects the
worst case isolation result in a given isolating structure. This is a
highly important feature, particularly for applications that place
importance on functional safety issues.

5.3. Normalised isolability metrics. The normalised isolabil-
ity metrics proposed in [27] aspires to be a universal measure
for the assessment of isolability of the FDI based on structural
residual approaches regardless diagnostic signal type. Therefore,

5. Metrics of fault distinguishability

Problems in the quantitative assessment of fault distinguisha-
bility in a given diagnostic system has been discussed widely
[2, 9, 13, 25, 27–31], in which numerous definitions of fault dis-
tinguishability metrics have been defined. Three of them were
adopted in this study to illustrate the trends of evolution of
the metric values depending on the selection of fault isolation
method. In order to copy with multivalued diagnostic signals
and sequences of symptoms, the redefinition of metrics (31) is
proposed together with a proposition of transformation of the
structure of residual sets into a multivalued fault isolation sys-
tem. This makes allowance for generalization of all incidence
matrix based approaches to fault distinguishability. The calcu-
lated values of the selected fault distinguishability metrics are
presented in Table 5. Below, we briefly introduce the definitions
of these metrics.

5.1. Theoretical mean diagnosis accuracy. The theoretical
mean diagnosis accuracy dacc was introduced in [31]. It origi-
nates from the statement that a diagnosis can be interpreted as
a superset of elementary diagnoses. An elementary diagnosis is
understood as a set of faults that are indistinguishable. In addi-
tion, the set of all undetectable faults together with a fault free
behavioural state of the diagnosed system constitutes a single
elementary diagnosis d1. According to [31]:

dacc =
1
N

N

∑
i=1

1
Li

(22)

where N is the number of elementary diagnoses, Li the number
of faults in the ith elementary diagnosis.

In this study, all faults are detectable; therefore, L1 = 1. Ad-
ditionally, (22) is extremely easy to calculate. However, it is
noteworthy that dacc is not the best selection when searching
for the optimal sensor placement in diagnostics [27, 32–34] be-
cause it does not reflect the sensitivity to the strength of fault
isolation.

5.2. Normalised mean distinguishability index. The inde-
pendent diversification of fault signatures regardless of whether
they are isolated unidirectionally or bidirectionally is necessary
in fault isolability based on structural residuals. The measure
(22) does not imply whether the structure of the residual sets
is weakly or strongly isolated. Therefore, in general, it is over-
valued. To obtain metrics that will better reflect the isolabil-
ity features of the structures of residual sets, the normalised
mean distinguishability index dN was introduced in [25]. We
will briefly describe it below.

The dN index is based on the definition of a single fault di-
versity matrix M[m : n]. Each column of the matrix M contains
binary valued numbers expressing the distinguishability of each
pair of single faults regardless of their unidirectional or bidirec-
tional characterisation. It has been proposed that the measure of
diversity of signatures will be an algebraic sum of all nonzero
entries in each column of matrix M. Let us denote this num-

ber as di,k.

di,k =
m

∑
j=1

m j,i,k (23)

where m j,i,k = v j,i⊗v j,k is the entry of matrix M; v j,i is the entry
of the alternative fault signature of fault fi.

Next, we create diversity vector D:

D[1 : c] =
[
d1,2,d1,3, ..,d1,n,d2,3,d2,4, ..,d(n−1),n

]
(24)

and isolability vector I:

J [i1, i2, .. , in−1] , (25)

where

ii =
n−1

∑
k=i+1

di,k . (26)

To determine the minimal number of differences between
signatures of each pair of faults 〈 fi, fk〉 for which k > i, we
create (n−1) sets di referred to as sets of distinctiveness of the
i-th fault.

di = {di,(i+1), .. ,di,n}; i = [1..(n−1)] (27)

The mean value of the isolability metric of single faults d is as
follows:

d=
1

(n−1)

n−1

∑
i=1

ii (28)

where (n−1) is the number of elements of the isolability vec-
tor I.

By substituting ii in (26) and di,k in (23), we obtain

d=
1

(n−1)

n−1

∑
i=1

n−1

∑
k=i+1
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∑
j=1

m j,i,k =
1
I
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where I =
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n
2
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Finally, the normalised mean isolability index

of single fault metric dN can be defined as

dN =
1
m
d . (30)

Therefore, the metric dN is calculated based on adding up the
minimal number of differences between signatures for any pair
of faults. This metric should be regarded as one that reflects the
worst case isolation result in a given isolating structure. This is a
highly important feature, particularly for applications that place
importance on functional safety issues.

5.3. Normalised isolability metrics. The normalised isolabil-
ity metrics proposed in [27] aspires to be a universal measure
for the assessment of isolability of the FDI based on structural
residual approaches regardless diagnostic signal type. Therefore,

5. Metrics of fault distinguishability

Problems in the quantitative assessment of fault distinguisha-
bility in a given diagnostic system has been discussed widely
[2, 9, 13, 25, 27–31], in which numerous definitions of fault dis-
tinguishability metrics have been defined. Three of them were
adopted in this study to illustrate the trends of evolution of
the metric values depending on the selection of fault isolation
method. In order to copy with multivalued diagnostic signals
and sequences of symptoms, the redefinition of metrics (31) is
proposed together with a proposition of transformation of the
structure of residual sets into a multivalued fault isolation sys-
tem. This makes allowance for generalization of all incidence
matrix based approaches to fault distinguishability. The calcu-
lated values of the selected fault distinguishability metrics are
presented in Table 5. Below, we briefly introduce the definitions
of these metrics.

5.1. Theoretical mean diagnosis accuracy. The theoretical
mean diagnosis accuracy dacc was introduced in [31]. It origi-
nates from the statement that a diagnosis can be interpreted as
a superset of elementary diagnoses. An elementary diagnosis is
understood as a set of faults that are indistinguishable. In addi-
tion, the set of all undetectable faults together with a fault free
behavioural state of the diagnosed system constitutes a single
elementary diagnosis d1. According to [31]:

dacc =
1
N

N

∑
i=1

1
Li

(22)

where N is the number of elementary diagnoses, Li the number
of faults in the ith elementary diagnosis.

In this study, all faults are detectable; therefore, L1 = 1. Ad-
ditionally, (22) is extremely easy to calculate. However, it is
noteworthy that dacc is not the best selection when searching
for the optimal sensor placement in diagnostics [27, 32–34] be-
cause it does not reflect the sensitivity to the strength of fault
isolation.

5.2. Normalised mean distinguishability index. The inde-
pendent diversification of fault signatures regardless of whether
they are isolated unidirectionally or bidirectionally is necessary
in fault isolability based on structural residuals. The measure
(22) does not imply whether the structure of the residual sets
is weakly or strongly isolated. Therefore, in general, it is over-
valued. To obtain metrics that will better reflect the isolabil-
ity features of the structures of residual sets, the normalised
mean distinguishability index dN was introduced in [25]. We
will briefly describe it below.

The dN index is based on the definition of a single fault di-
versity matrix M[m : n]. Each column of the matrix M contains
binary valued numbers expressing the distinguishability of each
pair of single faults regardless of their unidirectional or bidirec-
tional characterisation. It has been proposed that the measure of
diversity of signatures will be an algebraic sum of all nonzero
entries in each column of matrix M. Let us denote this num-

ber as di,k.

di,k =
m

∑
j=1

m j,i,k (23)

where m j,i,k = v j,i⊗v j,k is the entry of matrix M; v j,i is the entry
of the alternative fault signature of fault fi.

Next, we create diversity vector D:

D[1 : c] =
[
d1,2,d1,3, ..,d1,n,d2,3,d2,4, ..,d(n−1),n

]
(24)

and isolability vector I:

J [i1, i2, .. , in−1] , (25)

where

ii =
n−1

∑
k=i+1

di,k . (26)

To determine the minimal number of differences between
signatures of each pair of faults 〈 fi, fk〉 for which k > i, we
create (n−1) sets di referred to as sets of distinctiveness of the
i-th fault.

di = {di,(i+1), .. ,di,n}; i = [1..(n−1)] (27)

The mean value of the isolability metric of single faults d is as
follows:

d=
1

(n−1)

n−1

∑
i=1

ii (28)

where (n−1) is the number of elements of the isolability vec-
tor I.

By substituting ii in (26) and di,k in (23), we obtain

d=
1

(n−1)

n−1

∑
i=1

n−1

∑
k=i+1
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∑
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m j,i,k =
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∑
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where I =
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n
2
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Finally, the normalised mean isolability index

of single fault metric dN can be defined as

dN =
1
m
d . (30)

Therefore, the metric dN is calculated based on adding up the
minimal number of differences between signatures for any pair
of faults. This metric should be regarded as one that reflects the
worst case isolation result in a given isolating structure. This is a
highly important feature, particularly for applications that place
importance on functional safety issues.

5.3. Normalised isolability metrics. The normalised isolabil-
ity metrics proposed in [27] aspires to be a universal measure
for the assessment of isolability of the FDI based on structural
residual approaches regardless diagnostic signal type. Therefore,

5. Metrics of fault distinguishability

Problems in the quantitative assessment of fault distinguisha-
bility in a given diagnostic system has been discussed widely
[2, 9, 13, 25, 27–31], in which numerous definitions of fault dis-
tinguishability metrics have been defined. Three of them were
adopted in this study to illustrate the trends of evolution of
the metric values depending on the selection of fault isolation
method. In order to copy with multivalued diagnostic signals
and sequences of symptoms, the redefinition of metrics (31) is
proposed together with a proposition of transformation of the
structure of residual sets into a multivalued fault isolation sys-
tem. This makes allowance for generalization of all incidence
matrix based approaches to fault distinguishability. The calcu-
lated values of the selected fault distinguishability metrics are
presented in Table 5. Below, we briefly introduce the definitions
of these metrics.

5.1. Theoretical mean diagnosis accuracy. The theoretical
mean diagnosis accuracy dacc was introduced in [31]. It origi-
nates from the statement that a diagnosis can be interpreted as
a superset of elementary diagnoses. An elementary diagnosis is
understood as a set of faults that are indistinguishable. In addi-
tion, the set of all undetectable faults together with a fault free
behavioural state of the diagnosed system constitutes a single
elementary diagnosis d1. According to [31]:

dacc =
1
N

N

∑
i=1

1
Li

(22)

where N is the number of elementary diagnoses, Li the number
of faults in the ith elementary diagnosis.

In this study, all faults are detectable; therefore, L1 = 1. Ad-
ditionally, (22) is extremely easy to calculate. However, it is
noteworthy that dacc is not the best selection when searching
for the optimal sensor placement in diagnostics [27, 32–34] be-
cause it does not reflect the sensitivity to the strength of fault
isolation.

5.2. Normalised mean distinguishability index. The inde-
pendent diversification of fault signatures regardless of whether
they are isolated unidirectionally or bidirectionally is necessary
in fault isolability based on structural residuals. The measure
(22) does not imply whether the structure of the residual sets
is weakly or strongly isolated. Therefore, in general, it is over-
valued. To obtain metrics that will better reflect the isolabil-
ity features of the structures of residual sets, the normalised
mean distinguishability index dN was introduced in [25]. We
will briefly describe it below.

The dN index is based on the definition of a single fault di-
versity matrix M[m : n]. Each column of the matrix M contains
binary valued numbers expressing the distinguishability of each
pair of single faults regardless of their unidirectional or bidirec-
tional characterisation. It has been proposed that the measure of
diversity of signatures will be an algebraic sum of all nonzero
entries in each column of matrix M. Let us denote this num-

ber as di,k.

di,k =
m

∑
j=1

m j,i,k (23)

where m j,i,k = v j,i⊗v j,k is the entry of matrix M; v j,i is the entry
of the alternative fault signature of fault fi.

Next, we create diversity vector D:

D[1 : c] =
[
d1,2,d1,3, ..,d1,n,d2,3,d2,4, ..,d(n−1),n

]
(24)

and isolability vector I:

J [i1, i2, .. , in−1] , (25)

where

ii =
n−1

∑
k=i+1

di,k . (26)

To determine the minimal number of differences between
signatures of each pair of faults 〈 fi, fk〉 for which k > i, we
create (n−1) sets di referred to as sets of distinctiveness of the
i-th fault.

di = {di,(i+1), .. ,di,n}; i = [1..(n−1)] (27)

The mean value of the isolability metric of single faults d is as
follows:

d=
1

(n−1)

n−1

∑
i=1

ii (28)

where (n−1) is the number of elements of the isolability vec-
tor I.

By substituting ii in (26) and di,k in (23), we obtain

d=
1

(n−1)

n−1

∑
i=1

n−1

∑
k=i+1

m

∑
j=1

m j,i,k =
1
I

I
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i=1

m

∑
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m j,i (29)

where I =

(
n
2

)
Finally, the normalised mean isolability index

of single fault metric dN can be defined as

dN =
1
m
d . (30)

Therefore, the metric dN is calculated based on adding up the
minimal number of differences between signatures for any pair
of faults. This metric should be regarded as one that reflects the
worst case isolation result in a given isolating structure. This is a
highly important feature, particularly for applications that place
importance on functional safety issues.

5.3. Normalised isolability metrics. The normalised isolabil-
ity metrics proposed in [27] aspires to be a universal measure
for the assessment of isolability of the FDI based on structural
residual approaches regardless diagnostic signal type. Therefore,

5.	 Metrics of fault distinguishability

Problems in the quantitative assessment of fault distinguishability 
in a given diagnostic system has been discussed widely [2, 9, 13, 
25, 27–31], in which numerous definitions of fault distinguish-
ability metrics have been defined. Three of them were adopted in 
this study to illustrate the trends of evolution of the metric values 
depending on the selection of fault isolation method. In order 
to copy with multivalued diagnostic signals and sequences of 
symptoms, the redefinition of metrics (31) is proposed together 
with a proposition of transformation of the structure of residual 
sets into a multivalued fault isolation system. This makes allow-
ance for generalization of all incidence matrix based approaches 
to fault distinguishability. The calculated values of the selected 
fault distinguishability metrics are presented in Table 5. Below, 
we briefly introduce the definitions of these metrics.
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it is applicable for assessment of isolability of binary, multival-
ued, fuzzy, and continuous diagnostic signals. In addition, it
is useful for the assessment of fault isolability when informa-
tion regarding the sequences of symptoms is known. Owing to
its inherent flexibility, it is particularly applicable for obtaining
the optimal sensor placement in diagnostic systems [27, 32], in
which different fault isolation approaches are used.

Normalised isolability metrics [27] is based on a trivial state-
ment, i.e. isolability can be characterised by the normalised
mean value of all events in which fault fi excludes fault fk, for
all ordered pairs of faults 〈 fi, fk〉 and for all alternative [26]
signatures of fault fi related to the maximal theoretical num-
ber of all exclusions. In fact, this definition corresponds to the
normalised mean isolability index dN with the exception that
metrics (30) is calculated for k > i, and the normalised isolabil-
ity metrics are calculated for all k �= i. According to [27], the
normalised isolability metrics for binary diagnostic matrices is
calculated according to the following formula:

ψ =
1

K · (K −1)

K

∑
(i=1)

K

∑
(k−1, i�= k)

D( fi, fk) (31)

where K is the number of faults, D( fi, fk) = 1 if the appearance
of all symptoms of fault fi excludes the fault fk; if this is not
true, then D( fi, fk) = 0. It is noteworthy that formula (31) al-
lows one to distinguish between unidirectional strong and weak
fault isolabilities. If {(D( fi, fk) = 1)∨ (D( fk, fi) = 1)} = 1,
then faults fi and fk are weakly isolable. If {(D( fi, fk) =
1)∧ (D( fk, fi) = 1} = 1, then faults fi and fk are unidirec-
tionally strongly isolable. Therefore, the measure (31) has a
property that distinguishes weak and strong isolabilities.

In the case of multivalued diagnostic signals, the conditional
isolability should be considered. To solve this problem, D( fi, fk)
assumes any value from the range [0; 1] and we propose that
D( fi, fk) will be calculated as follows:

D( fi, fk) =
|{φ( fi) : φ( fi) ∈ Φ( fi)∧ φ( fi) �= φ( fk)}|

|Φ( fi)|
(32)

where φ( fi) is any alternative signature of the fault fi, and Φ( fi)
is the set of all alternative signatures of fault fi.

As shown, (32) takes exclusively values 0 or 1 for the binary
evaluated diagnostic values. This is because the cardinalities of
all sets of alternative signatures in this case are equal to 1.

When utilising knowledge regarding the antecedence of
symptoms, we assume that each sequence provides potentially
useful information regarding fault isolation. Therefore, this in-
formation could deliver valuable and supplementary diagnostic
signals to existing diagnostic systems. While the sequences are
associated with faults, it is clear that they can be easily in-
corporated in the two-dimensional structure of residual sets.
Subsequently, the fault isolability metric ψ can be calculated
immediately from (31) and (32). In general, it is convenient to
transform the structure of residual sets into a multivalued FIS
by additional diagnostic signals and according to the following
rules:

• add a new row (virtual diagnostic signal) in the FIS structure
for each unique elementary sequence es j,p;

• assign values of this diagnostic signal to each fault as fol-
lows:

◦ {0} if both symptoms in the elementary sequence are
not relevant to this particular fault,

◦ {−1,+1} if both symptoms are sensitive to this par-
ticular fault but their order is any or not known,

◦ {−1} or {+1} if both symptoms are sensitive to a given
fault and the order of symptoms is fixed. In this case,
values of {−1} or {+1} must be applied consequently
to each fault in the entire FIS;

◦ {−1} or {+1} if only one symptom is sensitive to a
given fault and this symptom precedes in the elemen-
tary sequence. This distinction enables the interpreta-
tion of fault isolability properties with and without the
exoneration assumption.

An example of the procedure above is illustrated in Table 4. It is
noteworthy that three indistinguishable faults { f1, f2, f3} could
be weakly { f1},{ f2} distinguishable if additional knowledge
regarding the sequence of symptoms are used in the diagnostic
system.

Table 4
Illustration of transformation of knowledge regarding sequences of

symptoms.

S/F f1 f2 f3 f4

s1 +1 +1 +1 +1

s2 +1 +1 +1

s3 〈s1,s2〉 〈s2,s1〉 1 0

⇒

S/F f1 f2 f3 f4

s1 +1 +1 +1 +1

s2 +1 +1 +1

s3 +1 −1 −1,+1 +1

6. Summary

The main aim of this study was to emphasise the role and ef-
fect of the selected fault isolation approaches in the context of
obtaining fault distinguishability metrics. This study focused on
fault isolation methods that were suitable for implementation
in automatised diagnostic systems intended for industrial appli-
cations. Therefore, the availability of the partial models of the
system was assumed instead of that of the global one. In addition,
it was assumed that knowledge regarding the fault–symptom re-
lation was mainly based on expertise. Fault distinguishability
was analysed for four different cases where the degree of knowl-
edge regarding the relationship between the faults and values of
diagnostic signals were different:

• inference based on the BDM;
• inference based on the FIS;
• inference based on the BDM and additional knowledge re-

garding the sequences of symptoms resulting from the GP
graph;

• inference based on the FIS and additional knowledge re-
garding the sequence of symptoms resulting from the GP
graph.

Table 5 summarises the calculated values of different fault dis-
tinguishability metrics presented in Section 5:
• the normalised mean theoretical diagnosis accuracy dacc;
• the normalised mean distinguishability index dN

• the normalised isolability metrics ψ .

Table 5
List of calculated fault distinguishability metrics.

No Approach dacc dN ψ

1 BDM 0.71 0.24 0.49

2 BDMS 0.711)..0.762) 0.331)..0.432) 0.551)..0.582)

3 FIS 0.761)..0.792) 0.341)..0.642) 0.651)..0.792)

4 FISS 0.861)..0.902) 0.371)..0.712) 0.691)..0.932)

1) unconditional fault distinguishability,
2) maximal value of conditional fault distinguishability.

As can be seen from Table 5, the values of fault distinguisha-
bility metrics differ significantly even for the same incidence
matrix. This might be confusing. It is rather expected that fault
distinguishability should not depend on distinguishability met-
rics applied. However, this results from the fact that all metrics
characterized in Section 4 are differently sensitive to properties
of diagnostic system such as e.g. unconditional and conditional
distinguishability or weak and strong distinguishability of faults.

From the other hand, it is also easy to see from Table 5 that all
metrics display the same trends and this is not contradictory with
the rule: the better fault distinguishability, the higher is value of
distinguishability metrics. This allows for recommendation the
usage consequently of the one chosen distinguishability metrics
for evaluating and tracking fault distinguishability property of
diagnostic system particularly in its development phase.

The values of all distinguishability metrics discussed in this
paper are bounded in the range [0..1]. It follows from the fact,
that all of them are constructed in such a manner that con-
verge to value of one in case of unconditional distinguishability
of all faults. This make allowance for applying them for ex-
ample for solving optimal sensor placement in order to achieve
maximal fault distinguishability in a system with budgetary con-
straints [27, 32].

As shown in Table 5, information regarding the sequences of
symptoms may be highly useful for the enhancement of fault dis-
tinguishability. Multivalued residual evaluation enabled faults
that were indistinguishable in bivalued evaluations of residu-
als to be distinguished. An additional increase in fault distin-
guishability could be obtained using information regarding the
antecedence of symptoms.

The presented methods for increasing fault distinguishability
indicated the directions for the development of diagnostic sys-
tems. This study demonstrate that it is profitable to apply direct
measurements of faults. This is because, currently, only a few
faults could be measured directly as indirect fault isolation are
more common. The dominant effect on fault distinguishability
has a set of available measurements. In fact, it determines the
set of possible diagnostic tests. Hence, the more process vari-
ables are measured, the more models can be built that will be
advantageous for the generation of residuals, thus increasing of
fault distinguishability.
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of diagnostic system such as e.g. unconditional and conditional
distinguishability or weak and strong distinguishability of faults.
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distinguishability metrics. This allows for recommendation the
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for evaluating and tracking fault distinguishability property of
diagnostic system particularly in its development phase.

The values of all distinguishability metrics discussed in this
paper are bounded in the range [0..1]. It follows from the fact,
that all of them are constructed in such a manner that con-
verge to value of one in case of unconditional distinguishability
of all faults. This make allowance for applying them for ex-
ample for solving optimal sensor placement in order to achieve
maximal fault distinguishability in a system with budgetary con-
straints [27, 32].

As shown in Table 5, information regarding the sequences of
symptoms may be highly useful for the enhancement of fault dis-
tinguishability. Multivalued residual evaluation enabled faults
that were indistinguishable in bivalued evaluations of residu-
als to be distinguished. An additional increase in fault distin-
guishability could be obtained using information regarding the
antecedence of symptoms.

The presented methods for increasing fault distinguishability
indicated the directions for the development of diagnostic sys-
tems. This study demonstrate that it is profitable to apply direct
measurements of faults. This is because, currently, only a few
faults could be measured directly as indirect fault isolation are
more common. The dominant effect on fault distinguishability
has a set of available measurements. In fact, it determines the
set of possible diagnostic tests. Hence, the more process vari-
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