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MATHEMATICAL MODEL OF A PIPELAY SPREAD

The paper presents the mathematical model of a pipelay spread. In the model,
elasto-plastic deflections of the pipe, its large deformations and contact problems
are considered. The modification of the rigid finite element method (REFM) is used
to discretise the pipe. The problem is analyzed in two stages. First, the quasi-static
problem is considered. The tip of the pipe is pulled from the reel to the tensioner.
Then, dynamic analysis (during ordinary work) of the pipelay spread is carried out.
Some results of numerical calculations are presented.

1. Introduction

Advancing exploration of seas and oceans use laying pipes (for oil and
gas), telecommunications cables etc. on sea bottoms. The conditions for such
operations are very difficult due to high waves. Usually, special purpose
vessels equipped with a reel on which the pipe (or cable) is reeled, and
suitable laying devices are used. The first to use a buoyant drum for laying
steel pipes were the Allies in 1944, during the invasion on France. Fig.
1 shows a contemporary buoyant drum used by the Dutch in constructing
anti-storm dams. For some time, past reels have also been installed on ships,
however, different techniques of laying pipes are used. Fig. 2 shows a solution
applied by Hyundai and Fig. 3 by Natural Pipelay Limited.

The subject of the paper is a mathematical model of a pipelay spread
presented in Fig. 4. The pipelay spread comprises a main reel and a lay
ramp. It can handle both rigid and flexible pipes to up 18”. The ramp has
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a tensioner, whose role is to straighten and forward the pipe unreeled from
the reel. The diameter of the reel is about 25 m and up to several kilometers
of a pipe (depending on its diameter) may be reeled on it. In spite of the
reel’s large radius, reeling pipes of greater diameters requires their plastic
deformation. After the ship has set off to the sea, the end of the pipe is
put into the tensioner. The tensioner straightens and forwards the pipe at
a velocity equal to that of the ship. To ensure a stable motion of the reel
(weighing up to 2500 T), there are fences on its circumference connected with
servomotors that ensure a moment balancing forces in the tensioner. A ship
equipped with a pipelay spread of this type can lay up to twenty kilometers
of the pipe a day. Application of such devices in real conditions shows that,
when waves are huge and the ship swings vigorously, large dynamic forces
emerge in the circuit, and they cause accelerations and decelerations in the
rotational motion of the reel, which disturb the operation of the device. It
may be dangerous for service and may lead to damage or breach of the pipe.

Fig. 1. Buoyant drum used on the Oosterscheldt Project

Fig. 2. Hyundai pipelay spread
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Fig. 3. Natural Pipelay Limited pipelay spread

Fig. 4. Pipelay spread with a lay ramp and a tensioner

The problems concerning laid or towed cables have been considered
in [Srivastava S.K., Ganapathy C., 1998], [Croll J.G.A., 2000], [Feng, Z.
Allen, R., 2004], however, these publications describe phenomena in the
cable already leaving the pipelay spread. The authors have not found any
papers concerning the analysis of the pipelay spread.

In the paper, a simplified model of the device is presented which allows
for a preliminary analysis of phenomena occurring when it operates in the
conditions of high waves on the sea.
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2. Analysis of the problem

For the analysis, the following assumptions are made:
• Only planar models are considered. This assumption not only simplifies

the problem, but it also follows on the experience, which shows that most
important disturbances of the reel motion are caused by a pitch angle
when the sea is weaving.

• The tensioner is treated as a non-deformable rigid body.
• Elasto-plastic deflections of the pipe are considered. It is an important

property of the system which influences the pipe laying process.
• Large deformations of the pipe should be also taken into account. This

leads to a nonlinear problem.
• Flexibility of the pipe is considered by means of the modification of the

rigid finite element method (RFEM) [Wittbrodt E. et al., 2006]. That
is a method of discretisation, which gives good results of calculations
and requires relatively short calculation time. The idea of the method
is to discretise flexible links into rigid elements (ref ) containing iner-
tial features of bodies; these rigid elements are connected by massless
and non-dimensional spring-plastic elements (spe). In this method, large
deformations and plasticity of the pipe can be taken into considerations.
The problem is analyzed in two stages. First, the quasi-static problem is

considered. The pipe is moved from the initial position presented in Fig. 5a,
when the pipe is totally coiled on the reel, to the position from Fig. 5b, when
its tip is put into the tensioner and tighten by the tensioner force Tmax.

Fig. 5. Initial and final positions of pipe elements for the quasi-static problem a) initial position
b) final position

In the initial position, all spring-plastic elements (spe) are assumed to be
deformed. Then, the pipe tip E is moved to the final position. It is assumed
that point E moves along a tangential to the given trajectory, until it achieves
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point TN (tensioner). When pipe tip E is in the tensioner, the pipe is tensioned
up to maximal (or nominal) force Tmax.

Fig. 6. Dynamic phase of pipe-reel motion

Then, dynamic analysis is carried out. Having solved the quasi-static
task, we are able to define initial conditions for dynamic problem (Fig. 6).
In this case, the pipe tip moves with constant velocity V in the tensioner,
while the vessel motion is caused by sea waves. The waves are defined by
harmonic functions xD (t) , yD (t) , ϕD (t).

3. Quasi-static analysis of the tensioner-pipe-reel system

In this section, the following problems are discussed:
• transportation of the pipe from the reel to the tensioner,
• increase of the tension force from the value calculated in the previous

task up to nominal (maximal) value,
• quasi-static analysis.

Fig. 7. Model of the pipe laying system

Fig. 7 presents a scheme of the vessel with the reel and the tensioner and
pipe divided into rigid finite elements (rfes), numbered from n to 0.
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3.1. Moving the pipe from reel to the tensioner – TASK1

In this task, the tip of the pipe is moved according to a specific trajectory,
which depends on the system geometry (reel effective diameter, tensioner
angle and shape of its head etc.). We assume that initial part of this trajectory
is a straight line. Reel angle ϕR changes from to a final value ϕTend , with step
∆ϕT . Constant force SE , tangential to the assumed trajectory (Fig. 8), act at
point E (tip of the pipe). When friction is omitted, the reaction NE normal
to the trajectory should be taken into account.
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Fig. 8. Designations used for TASK1

Below, the static equilibrium of the pipe’s finite elements are discussed.
Equilibrium of the rfe i (i = 1, ..., n − 1)

The system of forces and torques acting on the rfe i is presented in Fig. 9.

Fig. 9. System of forces and moments acting on rfe i
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The equations of static equilibrium are formulated as follows:

∑
Pix = FX

i+1 − FX
i + Ni sin ϕi − Ti cosϕi = 0,∑

Piy = FY
i+1 − FY

i − mig − Ni cosϕi − Ti sin ϕi = 0,∑
Mi = Mi+1 − Mi + FX

i · ∆yi − FY
i · ∆xi − mig

∆xi

2
− Ni (li − x̂i) = 0,

(1)

where:
∆xi = li · cosϕi, ∆yi = li · sin ϕi,
Ni, Ti are the reel or the tensioner head’s reactions acting on rfe i.
Equilibrium of rfe 0 and rfe n

The system of forces acting on rfe 0 and ref n is presented in Fig. 10a
and 10b, respectively. The following notations are used: NE – force normal to
the trajectory at point 〈x0, y0〉, SE – assumed force tangential to the trajectory,
ψ – angle denoted as in Fig. 10a, Su, Nu – components of constraint force,
Mu – constraint moment. For these refs, equations of static equilibrium are
similar to (1).

Fig. 10. System of forces and moments acting on: a) rfe 0 b) ref n

Using these equations, we can calculate joint forces Fi
x, Fi

y for i = 1, ..., n,
and later torques (moments) Mi = Mi(Fi

x, Fi
y).

Torques Mi must be equal to moments caused by deformations of spring-
plastic elements spe 1 ÷ n:

Msp
i = Msp

i

(
ϕi−1, ϕi, ∆ϕ

0
i

)
(2)

where ∆ϕ0
i is an initial angle of plastic deformation ϕi−1 − ϕi.

Thus, the following system of n algebraic nonlinear equations is obtained:

Msp
i − Mi = 0, i = 1, 2, ..., n (3)

Angles ϕ0, ..., ϕn−1 and normal reaction NE at the tip of the pipe are un-
known variables. The number of unknowns is n+1, while formulae (3) form
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only n equations. An additional equation can be formulated by taking into
account the constraint equation. According to the assumption that point E
(the tip of pipe) moves tangentially to the given trajectory, the following
equation can be written:

yE = fT (xE) (4)

where fT is a function that describes the trajectory of point E.
In the case when point E moves as in Fig. 8, the equation (4) takes the

form:

yE = xEtgα0 + b0. (5)

Having defined following vector of unknowns:

X =
[
ϕ0, ϕ1, ..., ϕn−1, NE

]T (6)

one can write equations (3) and (4) as:

f (X) = 0 (7)

Equations (7) form a system of n+1 nonlinear algebraic equations with n+1
unknown coordinates of vector X defined in (6). One of the most numerically
effective methods, which can be applied in order to solve such a system, is
the Newton method [Ralson A., 1971].

3.2. Contact forces

Up to now we have assumed that contact forces Ni, Ti between the
pipe and the reel or tensioner head are known. The both cases are similar
in description, so the general problem, in which forces between some rigid
finite element and the reel (the tensioner) are defined, is presented in Fig. 11.

Fig. 11. Model of contact forces Nj , T j between rfe j and the reel (the tensioner)
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In the case when RFE method is applied to discretise the pipe, a specific
way in which rfe deflect the reel (the tensioner) has to be taken into account.
Let us consider the general case of a ring with radius r and radial flexibility.
Its center is denoted by (xC , yC) as in Fig. 12. The rfe j lies on the axis
defined by the equation:

y = ajx + bj, (8)

where aj =
y j − y j+1

x j − x j+1
, bj = y j − ajx j.

r ( )
CC yxC ,

( )HH yxH ,

1+jA

jA

jj bxay +=

jj yx ,

11, ++ jj yx
rfe jth

Fig. 12. Flexible ring and rfe j

The coordinates of point H can be calculated according to the following
formulae:

xH =
aj

(
bH

j − bj

)
1 + a2

j

, (9.1)

yH = aj · xH + bj. (9.2)

The distance CH has an influence on contact phenomenon:

CH =
∣∣∣CH

∣∣∣ . (10)

If CH > r, there is no contact between the ring and rfe j. If CH < r,
the contact is possible.
We define the following:

d j =
∣∣∣CAj

∣∣∣ , (11.1)

d j+1 =
∣∣∣CAj+1

∣∣∣ . (11.2)
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If d j > r and d j+1 > r and H < AjAj+1, then there is no contact between the
ring and rfe j.
The contact occurs when:

CH < r, (12)

and when one of the following conditions is fulfilled:

d j > r and d j+1 > r and H ∈ AjAj+1, (13.1)

or

d j > r and d j+1 < r, (13.2)

or

d j < r and d j+1 > r, (13.3)

or

d j < r and d j+1 < r, (13.4)

Fig. 13. Case when dj > r and dj+1 > r

If the position of point A (Fig. 13) that belongs to AjAj+1 is defined by
x′ in the local coordinate system x′Hy′H , then the elementary contact force
caused by radial ring deflection dF can be calculated as:

dF = dx′ · c (∆) ·
 sin ϕ

cosϕ

 (14)
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where ϕ = arctg
(

x′

CH

)
, ∆ = r −

√
x′2 + CH2 – is the ring deflection.

Let us assume that x′1 and x′2 are the beginning and the end of deflection,
respectively. We can then calculate the forces caused by them:

Fx′ =

x′2∫
x′1

c (∆) sin ϕdx′ (15.1)

Fy′ =

x′2∫
x′1

c (∆) cosϕdx′ (15.2)

x′F =
1

Fy′

x′2∫
x′1

c (∆) x′ cosϕdx′ (15.3)

where:
Fx′ , Fy′ are reaction forces,
x′F is the position of the reaction force in the local coordinate system (x′H , y

′
H).

Values x′1, x′2 for cases (13.1) – (13.4) must be defined, and then equations
(15) can be calculated.

Here we discuss only the case described by Eq. (13.1). The other cases
can be considered in the same way. The following can be obtained (Fig. 13):

x′1 = −
√

r2 − CH2, (16.1)

x′2 = +
√

r2 − CH2, (16.2)

F = Fy′, (16.3)

Fx′ = 0, (16.4)

x′F = 0. (16.5)

Equation (16.5) implies that

x j =
∣∣∣AjH

∣∣∣ , (17)

where x j is the distance from point Aj to the reaction.
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Integrals (15) are calculated using the Gauss formulae of the third order
[Legras J., 1974].

3.3. Stiffness characteristics

When linear characteristic of the contact force is applied, the gradient
of force Fi is not continuous, and one may encounter some numerical prob-
lems with solution of equations (7). Thus, it is assumed that the stiffness
characteristic of the ring is defined in Fig. 14.

a

i

a

i Fk =∆⋅

iF

i∆
a

i∆

linear

characteristic

suggested

characteristic

Fig. 14. Assumed characteristic of radial stiffness of ring

1−+= mm BxAxy

Fig. 15. Examples of ring stiffness characteristics

The function describing force Fi according to Fig. 14 can be defined as
follows:
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Fi =


0

A · ∆m
i + B · ∆m−1

i

k · ∆i

when
∆i < 0

0 < ∆i < ∆
a
i

∆a
i < ∆i

(18)

where:
m > 2,
∆a

i , k – assumed constants.
Some examples of such characteristics are presented in Fig. 15. In further
calculations, m = 3 is assumed.

3.4. The parameters of spring-plastic elements

One of the most important parameters used in the model are those con-
cerning material elastoplastic properties. For the problem analyzed, it is nec-
essary to take into account plasticity and plastic deformations of the pipe.
When the pipe moves from the reel to the tensioner, its shape is determined
by the system of forces and by actual permanent plastic deformation. The
assumed elastoplastic characteristic of the pipe is presented in Fig. 16.

Fig. 16. Elasto-plastic characteristic of material a) assumed shape of the characteristic
b) smooth function between elastic and plastic phases

It is assumed, that the stiffness coefficient is greater than 0 in the plastic
phase of the characteristic:

k(i)
pl = κ · k(i)

s , (19)

where:
κ – coefficient (eg. κ = 0.05 ÷ 0.1),

k(i)
s =

E · Jp

li
– elastic stiffness of the spe i,
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E – Young’s modulus,
Jp – moment of inertia of the pipe’s cross-section,
li – length of element i.
The actual deformation of spe i is described as follow:

∆ϕi = ϕi−1 − ϕi − ∆ϕ0
i , (20)

where ∆ϕ0
i – initial deformation (with zero bending torque).

Third order functions have been used for smoothing of elastoplastic phase
in order to improve the stability of calculations. In Fig. 16, the following
notations are used: Mp – bending moment corresponding to yield point,
ME = αMp – maximum elastic torque in the linear range of elastic phase,

∆ =
Mp − Ms

ks
, β = ε · ∆ – length of the third order transmission phase.

Parameters α and ε are selected by the user. We assumed that α = 0.9 and
ε = 3.

3.5. The nominal tension force – TASK2

The second task provides the method that allows us to obtain a nominal
tension force (force that is applied to the pipe in the tensioner). The result
of the TASK1 forms the initial configuration for TASK2.

pipe not loaded –

result of TASK1

tensioned pipe –

the goal of TASK2

Fixed reel

NT

Fig. 17. The goal of TASK2

The problem to be solved is:
Starting from TN = T0 increase the tension force TN = TN + ∆TN until
TN = TNnom . Additionally, the angle of rotation of ref 0 should agree with
tensioner arm angle when tension force TN = TNnon .
Fig. 18 shows forces acting on rfe 0 in the tensioner. The angle of the
tensioner arm is denoted as ϕT .
Let us denote:

ϕ′0 = ϕ0 − π. (21)
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Fig. 18. System of forces acting on ref 0

Kinematic input function ϕ′0 = f (TN ) presented in Fig. 19 has been used
in order to ensure that the angle ϕ0 of ref 0 will be ϕ0 = ϕT + π when
TN = TNnom.

Fig. 19. Kinamatic input function of angle ϕ0

When we calculate ∆ϕ0 = ϕT − ϕ0′
0 , the angle ϕ′0 is defined by the following

function:

f (x) =
ϕT − ϕ′0

T0 − TNnom
x − TNnom

ϕT − ϕ′0
T0 − TNnom

, (22)

where:
x = T0 + ∆F , x ∈ 〈T0,TNnom〉,
∆F – step of tension force increasing.
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The moment MT , which can be calculated from additional constraint equation
(because the angle ϕ0 is known), have to be applied to the element 0.

3.6. Quasi-static analysis

Quasi-static analysis is carried out when dynamic forces are neglected
during the analysis of motion of the system.

For the analysis, it is assumed that the reel rotates with an angular ve-
locity determined by the linear velocity of the pipe tip in the tensioner as
follows:

ω = ϕ̇reel =
VT

Rreel
(23)

where:
ϕreel – rotation angle of the reel,
Rreel – radius of the reel.
This means that velocities of ref 0 and refs which are in contact with the
reel are known. System of equations of static equilibrium is similar to (7),
but the vector of unknowns is defined as:

X =
[
ϕ0, ϕ1, ..., ϕn−1, NE , Spipe

]T
(24)

and two additional constraint equations are formulated.
The forces acting on the reel can be obtained as the result of the analysis,.

Therefore, the force in the tensioner is calculated in order to define the force
Spipe – acting on the reel (from the pipe side). Then, the hydraulic friction
force SH , related to constant velocities of the reel and the pipe (Fig. 20), is
also calculated. As a consequence, force SE = TN can be considered as a new
unknown value, which is determined when the equations of the quasi-static
problem are solved.

4. Quasi-dynamic model

In this model, only dynamic equation of reel rotational motion is con-
sidered (Fig. 20) without the equations of pipe elements (refs). The equation
of the reel motion is integrated when the shape of the pipe and forces act-
ing on the reel are calculated in the quasi-static analysis performed in each
integration step of the reel dynamic equation. This allows us to simulate the
motion of the pipe.
The equation of motion of the reel can be written in the following form:

Ireel (ϕ̈reel + ϕ̈D) =
(
Spipe − SH

)
Rreel (25)
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where:
Ireel – moment of inertia of the reel,
ϕD – angle of rotation of the vessel (pitch angle).

Fig. 20. System of forces acting on reel

The Runge-Kutta method of fourth order with a fixed step size is used to
solve equation (25). Force Spipe is calculated during nonlinear static sub-
analysis, which is performed at every integration step of (25). Additionally,
the analysis of each sub-analysis requires the number of sub-steps to be
carried out where the position and deformation of the pipe are calculated.
The models and algorithms used in the static analysis are derived above. The
algorithm applied is presented in Fig. 21.

Fig. 21. Loop quasi-dynamic analysis
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This model allows us to simulate dynamics of the reel caused by:
• force SE acting on the pipe tip,
• wavy motion of the vessel ϕD,
• hydraulic force SH (different input functions can be modelled).

5. Numerical calculations. Conclusions

Calculations have been carried out for the following parameters: pipe
size 12”, reel effective radius Rreel = 12.212 m, reel moment of inertia Ireel
= 2.66e8 kg∗m2. The sea conditions corresponding to waves are described
by the following function:

ϕD = A cos
2π
T

t (26)

and parameters are given in Table 1.

Table 1.
Parameters of sea waves

S1 A = 0 calm sea

S2 A = 4.4◦, T = 6.9 [sec] waves with amplitude of 3 [m]

S3 A = 11.4◦, T = 9 [sec] waves with amplitude of 8 [m]

Time courses of the reel angular velocity and acceleration, as well as
time courses of forces SE = TN and Spipe are presented in Fig. 22, 23
and 24.

Fig. 22. Results of calculations – S1
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Fig. 24. Results of calculations – S3

Ratchet

Fig. 25. Ratchet

It can be seen that when the sea is calm reel angular velocity and accel-
eration, as well as forces, are almost constant. For wavy sea these courses are
quite different. The velocity of the reel is not constant and, moreover, it may
drop to 0. The reel is designed in such a way that there is no possibility of
backward movement. This is due to a special ratchet mechanism (Fig. 25). It
should be mentioned that the maximum dynamic forces SE and Spipe exceed
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the nominal tension values up to 5 times. Furthermore, higher forces are
obtained for smaller waves with higher frequency.

These results are consistent with engineering experience. Our present
research is concerned with the problem – how to control the motion of the
reel so that the force Spipe is almost constant, regardless of sea conditions.

Manuscript received by Editorial Board, August 01, 2006;
final version, December 04, 2006.
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Matematyczny model urządzenia do układania rur na dnie morza

S t r e s z c z e n i e

W pracy przedstawiono matematyczny model urządzenia do układania rur na dnie morza.
W modelu uwzględniono sprężysto-plastyczne odkształcenie rury, jej duże odkształcenia oraz
zjawiska kontaktowe. Do dyskretyzacji rury zastosowano zmodyfikowaną metodę sztywnych ele-
mentów skończonych. Analizę przeprowadzono w dwóch etapach. Najpierw rozważano zagadnienie
quasi-statyczne przemieszczenia końca rury z bębna do napinacza. Następnie wykonano analizę
dynamiczną pracy urządzenia w trakcie jego normalnej pracy. Zaprezentowano wybrane wyniki
obliczeń numerycznych.


