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Abstract The objective of present work is to predict the thermal per-
formance of wire screen porous bed solar air heater using artificial neu-
ral network (ANN) technique. This paper also describes the experimental
study of porous bed solar air heaters (SAH). Analysis has been performed
for two types of porous bed solar air heaters: unidirectional flow and cross
flow. The actual experimental data for thermal efficiency of these solar
air heaters have been used for developing ANN model and trained with
Levenberg-Marquardt (LM) learning algorithm. For an optimal topology
the number of neurons in hidden layer is found thirteen (LM-13).The actual
experimental values of thermal efficiency of porous bed solar air heaters
have been compared with the ANN predicted values. The value of coeffi-
cient of determination of proposed network is found as 0.9994 and 0.9964 for
unidirectional flow and cross flow types of collector respectively at LM-13.
For unidirectional flow SAH, the values of root mean square error, mean
absolute error and mean relative percentage error are found to be 0.16359,
0.104235 and 0.24676 respectively, whereas, for cross flow SAH, these val-
ues are 0.27693, 0.03428, and 0.36213 respectively. It is concluded that the
ANN can be used as an appropriate method for the prediction of thermal
performance of porous bed solar air heaters.
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Nomenclature
Ac – area of collector surface, m2

ai – input data

bj – bias
Cp – specific heat, J/kgK
COV – coefficient of variance
G – solar irradiance, W/m2

M – input parameters
ṁf – mass flow rate of air, kg/s
MRE – mean relative error
MSE – mean square error

MAE – mean absolute error
N – output parameters
Q̇c – rate of incident energy on the collector area, W
Q̇u – rate of useful energy gained by air, W
RMSE – root mean square error

R – correlation coefficient
R2 – coefficient of multiple determination
SSE – sum square error
T – temperature, K

T n – number of training data sets
wij – weights
XA – actual value
YP – predicted value

Greek symbols

ηth – thermal efficiency of collector

Subscripts

a – ambient air
fi – inlet air
fo – outlet air
fm – mean air

Abbreviations

ANN – artificial neural networks
LM – Levenberg-Marquardt
MLP – multilayered perceptron
SAH – solar air heater

1 Introduction

A solar air heater (SAH) is a special type of heat exchanger which ab-
sorbs solar radiations and transfers the absorbed thermal energy to the
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flowing fluid (air). The heated air is used for space heating in commercial
and residential buildings, particularly in colder regions (like northern and
north – eastern regions of India) in winter where a significant amount of
energy is required for heating. In addition to this it is used for crop drying,
timber seasoning and various low temperature heating applications. The
thermal efficiency of a solar air heater is usually low because of the low
heat transfer coefficient between the heat transfer surface and the flowing
air which results in higher heat losses to atmosphere [1,2]. In the past,
artificial roughness on absorber plate of solar air heater [3–6] or packing
porous materials as absorber in the SAHs ducts [7–14] have been employed
to enhance its thermal efficiency. Packed bed solar air heater is one of the
type of solar air heaters, in which incident solar radiations penetrate to
a greater depth and are absorbed gradually depending on the density of
packing material. Porous absorber has high heat transfer surface area den-
sity and hence high heat transfer rate resulting in an increase in thermal
efficiency of the solar air heater.

A variety of designs of packed bed solar air heaters, such as slit- and-
expanded aluminum foil matrix, wire screen matrices [7–9], glass beads
[10], etc. have been suggested. By the use of screen matrix as a packing
material the thermal efficiency of solar air heater can be enhanced [9]. In
this design, solar radiation is absorbed in depth which results in relatively
low temperature of absorber at top surface of the packing, which decreases
the heat losses from the absorber to ambient air and hence, increases the
thermal efficiency of the solar air heaters. The thermal performance en-
hancement of packed bed solar air heater depends on types of geometrical
and thermophysical characteristics of packed bed materials [10–14].

The experimental study as well as the analytical study followed by the
computational techniques, require a lot of time to arrive at an accurate
result of a physical problem. The use of artificial neural networks (ANN),
on the other hand, saves time and also provides key information patterns in
a multidimensional information domain and, therefore, this technique has
been becoming increasingly popular in science and engineering, especially
in mechanical engineering applications in recent years. Many researchers
have used ANN in the past; Kalogirou used ANN technique for perfor-
mance prediction of renewable energy systems [15]. Kalogirou and Bojic
applied ANN tool for prediction of energy consumption of passive solar
building systems [16]. Yang et al. [17] have applied ANN technique to
predict the optimal start time for heating system in building. Facao et
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al. [18] used ANN for simulation of hybrid solar collectors. Ertunc and
Hosoz applied ANN technique for analysis of a refrigeration system with
an evaporative condenser [19]. Kalogirou used ANN technique for predict-
ing the flat plate collector performance parameters [20]. Yilmaz and Atik
used ANN for modeling of a cooling system with variable cooling capacity
[21]. Sozen et al. applied ANN for determination of efficiency of flat-plate
solar collectors [22]. Kurt et al. [23] have used artificial neural network
technique for estimating thermal performance parameters of hot box type
solar cooker. Yuhong and Wenxin used ANN to predict the frictional fac-
tor of open channel flow [24]. Caner et al. [25] and Benli [26] applied
ANN model for investigation on thermal performance calculation of two
types of solar air collectors. Dikmen et al. [27] structured artificial neural
networks and adaptive neuro fuzzy inference system (ANFIS) models to
predict the performance of evacuated tube solar collectors. Kalogirou et
al. [28] implemented ANN tool for performance prediction of large solar
systems. Ghritlahre and Prasad developed ANN model to estimate the
performance of unidirectional flow solar air heater using optimal training
function [29]. May et al. [31,32] studied the concept leading to selection of
input variables for ANN model. Ghritlahre and Prasad [33–39] used ANN
technique to predict the performances of various types of solar air heaters.

Though performance analysis of various types of solar air heaters are
available in the above literature, however, very limited studies on appli-
cation of artificial neural network for thermal performance prediction of
porous bed solar air heaters are available in the literature. The optimal
number of neurons in hidden layer have been selected randomly in the
previous work, but in the present study the multilayer perceptron (MLP)
model has been trained with optimal number of neurons in hidden layer
[16] to find the best results, which are the novelties of this research work.

In view of the above, ANN model has been developed to predict the
thermal performance of porous bed solar air heaters by using measured
experimental data and the calculated values of performance parameters.
Total 192 experimental data sample have been used. The 96 sample data,
each for unidirectional flow and cross flow types porous bed solar air heaters
have been taken and divided into three groups as training (80% data), val-
idation (10% data) and testing (10% data). This multilayer perceptron
neural model has been structured with a single hidden layer using seven
parameters in input layer and one output parameter in output layer. Pro-
posed MLP model has been trained with Levenberg-Marquardt (LM) learn-
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ing algorithm to predict the thermal performances of porous bed solar air
heaters. Predicted and measured values of thermal efficiencies have been
compared. Comparisons of errors are evaluated via statistical error analysis
according to model types and sample groups.

2 Material and method

2.1 Experimental study

Figure 1 shows schematic diagram of experimental system with two different
flow configurations: unidirectional flow and cross flow. In unidirectional
flow the directions of incident solar radiation and the flowing air in the
porous bed are same whereas, in cross flow type these are perpendicular
to each other. The detailed specifications of the porous absorbers used for
the study have been given in Tab. 1. The exposed area of each of the solar
collector test sections is 1.22 m×0.45 m. The absorber plates have been
made of 24 gauge mild steel (MS) sheet painted with black board paint. A
3 mm thick glass sheet, as cover, has been used at top of each test section
and bottom and sides are insulated with 6 cm thick glass wool supported
by a 0.05 m plywood sheet. Each test section is connected with a wooden
rectangular duct of 1.50 m×0.45 m×0.05 m size with bell-mouth entry for
straightening the air flow to the test sections. Two types of wire screen
matrices of the specifications as given in Tab. 1 have been considered in
the present study.

The collectors have been tested as per ASHRAE 93-97 standards [1,2].
The experiments were conducted under clear sky condition at Roorkee (In-
dia) between 10:30 to 14:00 hours. A 2.5 kW centrifugal blower was used
to induce air to the test sections. Six different mass flow rates of air in
the range of 0.0100–0.0225 kg/s were considered for the collectors during
the test. The intensity of incident solar radiation was measured by means
of a pyranometer, connected to a digital microvoltmeter for direct display.
Copper-constantan thermocouples (28 SWG) were used to measure the air
temperatures of inlet and outlet of the test sections and the ambient tem-
perature. The measurement of air flow rate through the test section has
been accomplished by using orifice meters. Tests were conducted with two
types of screen absorbers A and B, as given in Tab. 1. Total 192 data
sample were taken from the experiments.
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Figure 1: Schematic diagram of experimental setup [9]: a – entry section (flow
straighterners), b – test section, c – exit section, d – galvanized iron (GI)
pipe, e – pipe flange, f – control valve, g – U-tube manometer, h – centrifugal
blower, i – orifice plate.

Table 1: Specification of the absorbers (screen matrices) [9].

Parameter
Absorber

Type A (Model I) Type B (Model II)

Mesh no.(m−1) 0.045 × 0.045 0.04×0.04

Wire diameter, bare (m) 0.464×10−3 0.556×10−3

Wire diameter, painted (m) 0.480×10−3 0.582×10−3

Screen thickness (m) 0.90×10−3 1.15×10−3

Mesh pitch (m) 2.22×10−3 2.50×10−3

Porosity 0.925 0.915

2.2 Performance evaluation of solar air heater

The performance of solar collector for heating air is represented by the
term thermal efficiency which is defined as the ratio of solar energy gain to
incident solar radiation on the collector exposed area [3,25,26].
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Collector thermal efficiency is

ηth =
Q̇u

Q̇c
, (1)

where Q̇u is the useful heat gain of the rate of heat transfer to working
fluid (air) in the solar collector, and Q̇c is the rate of solar energy incident
on the collector surface. The solar energy incident on the collector surface
can be written as

Q̇c = GAc , (2)

where G is the rate of incidence of solar radiations per unit area of the
collector surface, and Ac is the collector area. The solar energy, absorbed
by the absorber is transferred to the flowing air which is the useful energy
gain by flowing air and is given as

Q̇u = ṁf Cp∆Tf = ṁf Cp(Tfo − Tfi) , (3)

where Cp is the specific heat, ṁf is the mass flow rate of air, Tfo and
Tfl are the inlet and outlet temperature of air, respectively. Thus, the
efficiency of solar collector for heating air is written as [1,2,29]

ηth =
ṁf Cp(Tfo − Tfi)

GAc
. (4)

2.3 Artificial neural network

Artificial neural network (ANN) is a complex information processing sys-
tem, which is structured from interconnected segmental processing ele-
ments, called neurons. These neurons find the input information from other
sources and perform generally a nonlinear operation on the result and then
give final results as output. ANN works in two ways, first learning and then
storing the knowledge in interconnects called weights. The basic structure
of artificial neurons is represented in Fig. 2. ANN is a simulation tool in
Matlab [40] which can be used to estimate the values on the basis of in-
put parameters, optimum topology and training processes. In feed forward
networks, each product of input elements and weights are fed to summing
junctions and is summed with bias of neurons as follows [30,33]:

X =
n
∑

i=1

wijai + bj , (5)
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Figure 2: Basic structure of artificial neuron.

where n is the number of input signals. Then this sum X passes through
transfer function F which generates an output

F (X) = uj = F

[

n
∑

i=1

wijai + bj

]

. (6)

The most used transfer functions in hidden layer are tansig and logsig.
The nonlinear activation function which is widely used, is called as sigmoid
function whose output lies between 0 and 1, and is given as

F (X) =
1

1 + e−X
. (7)

When negative values are found at input or output layer then the tansig
transfer function is used, which is given as

F (X) =
1 − e−2X

1 + e−2X
. (8)

The performance of different training processes is evaluated by mean square
error (MSE), coefficient of variance (COV) and coefficient of determination
(R2), and these factors are formulated as:
mean square error

MSE =
1
n

n
∑

i=1

(XA,i − YP,i)
2 , (9)
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coefficient of variance

COV =
RMSE

1
n

∑n
i=1 YP,i

×100 , (10)

coefficient of determination

R2 = 1 −

∑n
i=1(XA,i − YP,i)2

∑n
i=1 Y 2

P,i

, (11)

where XA and YP are actual and predicted value, respectively, and n is the
numbers of data.

3 Results and discussion

In the present work, two different types of solar air heater have been used
for evaluation of their thermal performance. These SAHs are unidirectional
flow and cross flow types. The porous absorber of two different specifica-
tions A and B, as given Tab. 1, have been used in the SAHs [9]. The
experiments have been conducted for various mass flow rates from 0.0100
to 0.0225 kg/s.

The thermal efficiency of both types of porous bed SAH was calculated
from the experimental data. Figure 3 shows the variation of thermal ef-
ficiency with time. From this graph, we find that thermal efficiency first
increases with time and after 12:30 hours, at which the solar irradiance is
approximately maximum, it starts decreasing for both types of SAHs. The
maximum efficiency is found 50.58% for unidirectional flow and 48.95%
cross flow SAH. In addition to this, it is found that the thermal efficiency
of type B absorber is higher than type A for both of the SAHs. This is
due to the high transfer rate from the porous absorber to the air, owing to
the lower porosity of this absorber.

The variation of mass flow rate of air with thermal efficiency of both
SAHs for Type –A absorber, has been shown in Fig. 4. This figure shows
that the maximum thermal efficiency is 55.1% and 50.93% for both unidi-
rectional and cross flow type porous bed SAH respectively for air mass flow
rate of 0.0225 kg/s. At this particular mass flow rate unidirectional flow
SAH has 7.45% higher efficiency as compared to cross flow type SAH. On
the other hand, at lower mass flow rate the unidirectional flow has 9.40%
higher efficiency than cross flow type SAH. Unidirectional flow porous bed
solar air heater is more efficient than the cross flow type solar air heater.
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Figure 3: Variation of thermal efficiency with time (for ṁ = 0.0100 kg/s.)

Figure 4: Variation of thermal efficiency with mass flow rate of porous bed SAHs for type
A absorber.

3.1 Analysis of the experimental data using artificial neural
network

In the presented work, first the number of data sets which affects the per-
formance of the system has been selected. The three layers network: the
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input variables of input layer, hidden layer and output variable of output
layer are shown in Fig. 5. Five input variables in input layer are, inlet
temperature of air, Tfi, air mean temperature, Tfm, ambient temperature
Ta, solar irradiance, G, and mass flow rate of air, ṁf , that affect the ther-
mal performance of porous bed solar air heaters. The values of these five
variables are taken from experimental studies. Total seven input variables
including type of absorber and the time of measuring experimental data
have been selected (Fig. 5) in the input layer [31,32]. The output variable
is thermal efficiency, ηth, of porous bed solar air heater, which is used in
output layer. Range of variables in input and output layers for unidirec-
tional flow and cross flow porous bed solar air heaters for ANN model have
been given in Tab. 2.

Table 2: Range of input and output parameters for proposed ANN model.

Parameters
Range

Unidirectional flow SAH Cross flow SAH

Input

Mass flow rate of air, mf (kg/sec) 0.0100–0.0225 0.0100–0.0225

Ambient air temp., Ta (◦C) 28.20–34.80 28.20–34.80

Inlet temp. of air, Tfi (◦C) 29.00–37.33 29.00–37.33

Mean temp. of air , Tfm (◦C) 33.84–49.03 33.44–47.99

Solar irradiance, G (W/m2) 682.75–963.35 682.75–963.35

Output

Thermal efficiency (ηth) 42.37–64.17 38.72–59.30

Before developing the ANN model, the input/output sample data must be
normalized between -1 and 1 for accuracy of prediction. The normalized
value, Ynorm, for each raw input/output data set, Yi, was calculated as

Ynorm =
Yi − Ymin

Ymax − Ymin
(Highvalue − Lowvalue) + Lowvalue , (12)

where the high value and low value is 1 and -1, respectively.
In this study, the experimental data recorded for 12 days for both unidi-

rectional flow and cross flow porous bed solar air heaters have been taken.
Out of total 192 data, obtained from experiments, 96 data are for unidi-
rectional flow and remaining 96 data for cross flow collector. In both flow
types first 48 data is for the absorber type A and remaining 48 is for the
absorber type B. Out of 192 data 96 and 96 samples are used separately
for ANN modeling.
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Figure 5: The structure of proposed ANN model.

The aim of the work is to predict the thermal performance of the porous bed
solar air heater using ANN model. The computer program was performed
by using Matlab 7.10.0 (2010a) [40] neural network tool (neural network
fitting tool), in which 76 samples data are used for training, 10 samples
data are used for cross validation and 10 samples are used for testing.

The trial and error method is adopted to select number of neurons in
the hidden layer. However, some thumb rules are available in the literature
for selection of number of neurons in hidden layer. One of them reported
by Kalogirou and Bojic [16] to calculate the optimal number of neurons is

H =
M + N

2
+
√

Tn , (13)

where M and N are input and output parameters respectively, and Tn is a
number of training data sets.

Using formula (13), the number of neurons is obtained as 13, so on
the basis of trial and error, 10–15 number of neurons have been selected
in hidden layer to predict the output result accurately. For optimal result
of hidden layer we use different number of hidden neurons in the network.
Statistical training results such as mean square error (MSE), R2 and COV
are shown in Tab. 3.
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Table 3: The training results of different hidden neurons in LM learning algorithm.

Number of neurons MSE COV R2

Unidirectional flow

LM-10 0.53167 1.40968 0.96808

LM-11 0.48088 1.33410 0.98024

LM-12 0.32362 1.10030 0.99166

LM-13 0.08130 0.55180 0.99524

LM-14 0.15206 0.75504 0.99126

LM-15 0.57269 1.46612 0.96441

Cross flow

LM-10 0.06404 0.52754 0.99606

LM-11 0.05965 0.50980 0.99639

LM-12 0.05414 0.48549 0.99673

LM-13 0.04684 0.45241 0.99715

LM-14 0.07044 0.55404 0.99569

LM-15 0.19812 0.92899 0.98841

From Tab. 3, Levenberg-Marquardt (LM) algorithm with 13 neurons in
hidden layer is found to be the most optimal network for both types of so-
lar air heaters because maximum R2 and minimum MSE and COV values
were obtained. In this study the number of neurons in the hidden layer has
been chosen thirteen (LM-13) for both types of solar air heaters of ANN
model. Due to the hyperbolic nature of nf-tool tan-sigmoid function is used
for hidden layer and linear transfer function is used for the output layer.

In neural network, we use LM back propagation function. This function
is a network training function that updates weight and bias values accord-
ing to LM optimization method.

The parameters used in trainlm training process are shown below:

Training algorithm: Levenberg-Marquardt (trainLM)
Performance Index: mean square error (MSE)
Maximum number of epoch for training: 1000
Performance goal: 0
Maximum validation failure: 6
Minimum gradient error: 1.00×10−10

µ initial: 0.001
Maximum µ: 1.00×10+10

Decreasing factor µ: 0.1
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Increasing factor µ: 10
Maximum time: Inf

(a)

Figure 6: (a). For the legend see next page.

Regression analysis plot of training, validation and testing are all shown
in Fig. 6 for both types of collector. From Fig. 6(a), it is found that
the values of R of unidirectional flow collector in training time, validation,
testing and all time are 0.99979, 0.99959, 0.99885, and 0.99971, respectively.
Similarly from Fig. 6(b), for cross flow type the values of R in training;
validation testing and all period are 0.99915, 0.99697, 0.99606, and 0.99819,
respectively. Based on these results, it is concluded that MLP structure
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(b)

Figure 6: Regression analysis plot of solar air heaters with training, validation, testing
and all data for LM-13: (a) – unidirectional flow, (b) – cross flow.

of ANN can be used for solar collectors very well to predict its thermal
performance.

The comparison between actual (experimental) data and predicted (ANN)
data of thermal efficiency for unidirectional porous bed solar air heater with
respect to time and mass flow rate has been shown in Fig. 7(a) for type A
and in 7(b) for type B of screen -absorbers. For the cross flow type, it has
been shown in Fig. 8(a) and 8(b), respectively.

For selected MLP with LM-13, ANN predicted thermal performance of
porous bed solar air heater were evaluated by using the sum of squared
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(a)

(b)

Figure 7: Comparison between experimental and ANN predicted thermal efficiency of
unidirectional flow porous bed solar air heater for LM-13: (a) type A, (b) type
B.
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(a)

(b)

Figure 8: Comparison between experimental and ANN predicted thermal efficiency of
cross flow porous bed solar air heater for LM-13: (a) type A, (b) type B.
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Figure 9: Individual error of unidirectional flow type collector.

Figure 10: Individual error of cross flow type collector.
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error (SSE), root mean square error (RMSE),coefficient of multiple deter-
mination (R2), mean relative error (MRE), coefficient of variance (COV)
and mean absolute error (MAE). The performance prediction through the
neural network is calculated by different types of errors [20,21] between the
predicted and the actual data obtained from experiments as per the follow-
ing expression:
mean absolute error

MAE =
1
n

n
∑

i=1

(XA,i − YP,i) , (14)

sum of square error

SSE =
n
∑

i=1

(XA,i − YP,i)
2 , (15)

root mean square error

RMSE =

√

√

√

√

1
n

n
∑

i=1

(XA,i − YP,i)2 , (16)

mean relative percent error

MRE =
1
n

n
∑

i=1

100×

(

|XA,i − YP,i|

XA,i

)

. (17)

The absolute error is the absolute value of the deviation between actual
values and estimated values (predicted values), which means individual er-
ror. The individual errors are shown as a bar chart in Figs. 9 and 10 of
unidirectional and cross flow type porous bed solar air heaters, respectively.
It is seen that most of errors in unidirectional type collector are between
±0.2, and in case of cross flow type collector the most of errors are between
±0.25. The mean absolute error, computed by using Eq. (14), for unidi-
rectional flow of the proposed MLP is found as 0.10423. In case of cross
flow it is found as 0.03428.

Here the MLP network represents nonlinear relationship between its in-
puts and outputs; it is trained to minimize a pre-specified error function.
This training procedure essentially aims at obtaining an optimal set of net-
work connection weights that minimizes a pre-specified error function. The
widely utilized error function is known as root mean square error (RMSE)
and RMSE minimization techniques is known as error back propagation
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(EBP) algorithm. Root mean square error is calculated using Eq. (16).
Using this equation RMSE value of the proposed unidirectional and cross
flow networks is found as 0.16359 and 0.27693, respectively.

In statistical language R2 is called the coefficient of determination,
which indicates the reliability of model. Higher value of R2 indicates more
reliability of the model. The coefficient of determination is calculated using
Eq. (11). The value of proposed network is found as 0.9994 and 0.9964 for
both types of collector respectively. R2 ranges between 0 and 1. A very
good fit yields R2 value of 1 or closer to 1, whereas a poor fit results to a
value near 0. Mean relative errors are calculated using Eq. (17) and the
MRE for both types of collector is 0.24676 and 0.36213, respectively.

Sum of squared error is calculated using Eq. (15). The SSE for pro-
posed network for unidirectional and cross flow types collector is found as
1.35131 and 3.91871, respectively. In addition, coefficient of variance is cal-
culated by Eq. (10), for both types and there values are obtained as 0.30515
and 0.56011, respectively. The histogram of the error of unidirectional and
cross flow type collectors are shown in Figs. 11 and 12, respectively. It is
seen that in unidirectional flow collector over 24% and 17% of the errors
are accumulated for absorbers type A and type B across the values 0.05
to 0.075 and 0.16 to 0.2, respectively, and in case of cross flow collector
over 22% and 17% of the errors are accumulated for type A and type B
between -0.35 to -0.20 and -0.20 to -0.1, respectively. The comparison of
error analysis results have been shown in Tabs. 4 and 5 for two different
types of porous absorber, i.e., type A and type B for LM-13 respectively.
It has been found that the value of R2 is closer to unity and remaining
error values are very low which gives the satisfactory and accurate results
of the selected ANN model.

Table 4: Performance of ANN model prediction of unidirectional flow collector.

SSE RMSE MRE (%) MAE COV R2

Type A 0.76616 0.12633 0.18742 0.07385 0.24664 0.9995

Type B 1.93645 0.20085 0.30610 0.13462 0.36366 0.9991

Mean 1.35131 0.16359 0.24676 0.104235 0.30515 0.9994

The comparisons of present results with obtained by Caner et al. [25] ANN
model are shown in Tab. 6. From Tab. 6, it can be said that results obtained
by present model predicts optimal are accurate than Caner model.
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Figure 11: Histogram of errors of unidirectional flow collector.

Figure 12: Histogram of errors of cross flow collector.
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Table 5: Performance of ANN model prediction of cross flow collector.

SSE RMSE MRE (%) MAE COV R2

Type A 2.04890 0.20660 0.32542 0.01057 0.43040 0.9989

Type B 5.78852 0.34726 0.39885 0.05799 0.68982 0.9939

Mean 3.91871 0.27693 0.36213 0.03428 0.56011 0.9964

Table 6: The comparisons of previous and present work.

Literature
Statistical Results

Type R2 MAE MRE

Caner et al. [25] A 0.9984 0.9204 2.5549

B 0.9994 1.0554 3.5793

Present work A 0.9994 0.1042 0.2467

B 0.9964 0.0342 0.3621

4 Conclusions

In present work, the effectiveness of unidirectional flow and cross flow types
porous bed solar air heaters (SAHs) have been experimentally determined
and compared. The Artificial Neural Networks (ANN) technique has also
been applied to predict the effectiveness of these two SAHs. The analysis
has been carried out for mass flow rates from 0.0100 kg/s to 0.0225 kg/s.
The ANN structure has been constructed with MLP model, using seven
parameters in input layer and one parameter in output layer. The experi-
mental results have been compared with those of ANN predicted values. On
basis of the experimetal results and ANN predicted results, the following
conclusions have been drawn:

1. The effectiveness for unidrectional flow porous bed SAH is 55.1% and
that of cross flow type is 50.93% for type B absorber at air mass flow
rate of 0.0225 kg/s.

2. The effectiveness of unidirectional flow SAH at mass flow rate of
0.0225 kg/s is 7.45% higher, whereas at mass flow rate of 0.0100 kg/s
it is 9.40% higher than the cross flow type SAH for type A absorber.
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Thus unirectional flow porous bed SAH is more effective than cross
flow type.

3. For most optimal topology the number of neurons in hidden layer are
found to be thirteen (LM-13) for both types of solar air heaters.

4. For predicted effectiveness, R2 values in Levenberg-Marquardt (LM)
algorithms are found to be 0.9994 and 0.9964 for unidirectional flow
and cross flow solar air heaters respectively which are close to unity
and are acceptable.

5. The values of root mean square error, mean relative error and coef-
ficient of variance for unidirectional flow are 0.16359, 0.24676, and
0.30515, respectively, where as, for cross flow type these are 0.27693,
0.36213 and 0.56011 respectively which are lower as desired.

6. The result of the ANN model is accurate and satisfactory with the
experimental data.

7. A larger database inputs used as training sets of data in neural net-
work model may further improve the predictions. The ANN model
developed can predict fast and accurate results of thermal efficiency
of porous bed solar air heater. ANN technique can be used in several
engineering applications as it provides better, quick and more real-
istic results without the need of conducting series of tests for a long
time.

Received 28 November 2017
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