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Abstract. Calibration is necessary for dual manipulator to complete operational tasks. This paper proposes an effective robot-robot and hand-
eye calibration method based on virtual constraints. Firstly, a rotational error model and a translational error model are established based on 
the relationships between the transformation matrices of the dual manipulator calibration system. Then a poses-alignment method is designed 
to make the poses of the two robots satisfy the constructed virtual constraints. At the aligned positions, the joint angles of the two robots are 
saved and used to calculate the values of the variables in the error models. Finally, the robot-robot and hand-eye rotational errors are estimated 
by an iterative algorithm. These errors are then used to calculate translational errors based on the SVD (singular value decomposition) method. 
To show the feasibility and effectiveness of the proposed method, experiments of robot-robot and hand-eye calibration for dual manipulators 
are performed. The experiment results demonstrate that the accuracy of the dual manipulator system is improved greatly.
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robot-world calibration problem. The latter is well known as 
the “AX = YB” problem [6, 7], where A (sensor-world) and B 
(robot base-end-effector) are the transformations measured from 
sensors, and X (hand-sensor), Y (robot-world) are the unknown 
transformations to be calibrated. To solve this equation, the 
values of A and B are used as inputs of the calculation algo-
rithm based on quaternions [8], dual-quaternions [9], Kronecker 
product [10] or polynomial optimization [11]. Extended from 
these formulations, Wu [12] formulated the hand-eye, robot-ro-
bot and tool-flange calibrations for dual manipulators as the 
“AXB = YCZ” problem, and Ma [13] formulated the multi-ro-
bots calibration problem using equation “AXB = YCZ”, too. 
In these two equations, A (base-end-effector of robot 1), B 
(eye-tool), C (base-end-effector of robot 2) are the time-vary-
ing transformations measured from sensors, and X (hand-eye), 
Y (robot-robot) and Z (tool-flange) are the unknown static 
transformations to be calibrated. By solving the established for-
mulation, the unknown transformation matrix X, Y and Z can 
be calibrated simultaneously.

The accurate values of the robot poses which are measured 
within the sensor frame are usually needed to solve the formu-
lations above. At the earliest age of research, high precision 
devices or sensors, such as laser trackers, were used to measure 
the poses of the robots. These apparatuses are expensive and 
must be operated by professional personnel. As an alternative, 
a camera [6, 14–15] is a low-cost device which has been widely 
used as the sensor to calibrate robot systems. However, the cal-
ibration results are usually affected by the camera measurement 
results, which can’t be neglected.

Simple apparatus and elaborate tools [16, 17] like plates and 
tips were all used as a low-cost solution to the calibration prob-
lem. By making the two robots form a closed kinematic chain, 
the parameters are estimated only using the joint angles, and 
there is no need to measure the robots’ poses. Gan [16] carried 
out base frame calibration for multi-robots through a series of 

1.	 Introduction

Compared with the single robot, multi-robots demonstrate 
more evident superiority in most application tasks [1–3]. Dual 
manipulator system is efficient, small volume and capable of 
performing multiple complex tasks. At the same time, when per-
forming operational tasks, the dual manipulator system should 
be accurate enough to guarantee safety. Otherwise, even small 
errors could induce large interaction forces, which could dam-
age the workpiece or the robots. Therefore, the calibration for 
dual manipulator system is vitally necessary, a fact which hasn’t 
gained enough concern nowadays.

Most of all, the robot-robot transformation matrix should 
be calibrated to ensure that the robots perform cooperating 
tasks. For the dual robot system with a camera, the calibration 
problem is extended to include robot-robot calibration, hand-
eye calibration, tool-flange calibration and robot kinematics 
calibration. A lot of research has been done on the kinematics 
calibration of a single robot [4, 5] while calibration of the dual 
robot system has received little attention. The dual manipula-
tor calibration problem is challenging both theoretically and 
practically. In fact, direct measurement is unavailable because 
the origin of the robot base frame is inaccessible. Many studies 
have addressed the problem as an isolated one, where the robot-
world (or sensor-world) calibration is performed separately for 
each robot. This repeated process generates measurement errors 
and has a negative effect on the calibration results.

A suitable calibration error model is crucial for applying 
the robot calibration procedure. The dual manipulator sys-
tem calibration problem is similar with the hand-sensor and 
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“handclasp” operations. The base-base rotational matrix was 
estimated firstly and then used to calculate the translational 
vector. Hirsh [19] proposed an iterative approach to calibrat-
ing hand-eye and base-world transformations simultaneously. 
Rotational errors were estimated recursively and then used to 
estimate translational errors. Wu [20] proposed a closed-form 
solution and an iterative solution to the hand-eye calibration 
problem to find the robot base frame.

In this paper, a novel calibration method for dual manip-
ulators based on virtual constraints is proposed. It is cheap, 
accurate and easy-to-perform. The optical axis of the camera 
serves as the virtual constraint. The robot-robot and hand-eye 
transformations are calibrated using only a camera and a com-
mon calibration target. The experiments demonstrate that the 
accuracy of the dual manipulator system is improved greatly.

The novelties and advantages of the proposed method are 
as follows: (1) a novel rotational error model and translational 
error model are established, respectively, based on the virtual 
line constraint. The actual poses of the robot in the camera frame 
are not needed in our error model, which avoids the negative 
influences of inaccurate positioning of the camera. (2) During 
the calibration poses selection process, two constraints are 
designed to restrict the calibration poses of the robots. (3) In the 
data measurement process, an automatic feature point alignment 
algorithm is designed. (4) An iterative estimation algorithm is 
designed to estimate rotational errors and the SVD method is 
used to estimate translational errors.

The rest of the paper is organized as follows: Section 2 
introduces the main idea and scheme of the proposed calibration 
method. Section 3 formulates the calibration problem and estab-
lishes a rotational error model and a translational error model. 
The calibration poses selection and data measurement processes 
are described in Section 4. Section 5 presents the error estima-
tion algorithms and the validation method. The experiments 
and results are illustrated in Section 6. Finally, discussion and 
conclusion are offered in Section 7 and 8, respectively.

2.	 Calibration methodology

The kinematic parameters and tool-flange transformation matrix 
of the dual manipulator system have been calibrated in our 
previous work [21]. This paper addresses calibration of the 
base-base homogeneous transformation of two cooperative 
manipulators. Meanwhile, the hand-eye relative position and 
the optical axis vector of the camera in the hand frame are 
calibrated simultaneously.

The calibration devices used in this paper refer to a camera 
and a calibration target. The calibration technique is performed 
on the two robots. One of the robots is equipped with a camera 
mounted in eye-in-hand configuration, and is referred to herein-
after as the “active robot”. The other one has a calibration target 
attached to its end effector, and is referred to hereinafter as the 
“passive robot”. The frames of the dual manipulator calibration 
system are shown in Fig. 1. The tool center point (TCP) on the 
calibration target serves as a feature point, and it is supposed 
to be visible for the camera.

The calibration method proposed in this paper is based on 
virtual constraints which are constructed by the optical axis 
of the camera. In the calibration procedure, virtual constraints 
are constructed by controlling the active robot to assume dif-
ferent poses. At each pose of the active robot, the feature point 
attached to the passive robot is controlled to satisfy the virtual 
constraint at several positions. On the one hand, the optical axis 
vector μk in the base frame of the passive robot can be estimated 
using the actual positions of the feature point, which is related 
to TF

P and TT
F. On the other hand, the reconstructed optical axis 

vector μ′k in the base frame of the passive robot can be calcu-
lated by the Z-axis of the camera, which is related to TA

P, TH
A 

and TE
H. Because of the errors in TA

P and TE
H, the reconstructed 

optical axis vector μ′k mismatches with μk. The errors between 
μk and μ′k are used to estimate the errors of TA

P and TE
H through 

an iterative algorithm.
The calibration procedure of the dual manipulator system, 

including robot-robot and hand-eye calibration, is divided into 
three steps: 1) error model establishment, 2) data measurement, 
and 3) error estimation. The scheme of the calibration procedure 
is shown in Fig. 2. The details of these three steps are illustrated 
in the following sections.

3.	 Calibration error model

In this part, a rotational calibration error model and a trans-
lational calibration error model are established, respectively, 
based on the relationship of the dual robot calibration system. 
Rotational errors refer to the errors of base-base rotational 
matrix and the Z-axis vector of the camera in the hand frame. 
Translational errors refer to the errors of base-base translational 
vector and hand-eye translational vector.

3.1. Rotational error model. According to the rotation rela-
tionship of the dual manipulator system, the Z-axis direction 

Fig. 1. Relative frames and transformation of the dual manipulator 
system
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vector of the camera in the base coordinates of the active robot 
AzE can be formulated as follows:

	

3 

3. Calibration error model 

In this part, a rotational calibration error model and a 
translational calibration error model are established 
respectively based on the relationship of the dual-robots 
calibration system. The rotational errors refer to the errors 
of base-base rotational matrix and the Z-axis vector of the 
camera in the hand frame. The translational errors refer to 
the errors of base-base translational vector and hand-eye 
translational vector. 
 

3.1Rotational error model.According to the rotation 
relationship of the dual-manipulators system, the Z-axis 
direction vector of the camera in the base coordinates of 
the active robot A

Ez  can be formulated as: 
A A P A H

E P E H E z R z R z .                          (1) 
P

Ez  can be estimated from the actual positions of the 
feature point, and A

HR  can be calculated by the kinematics 
of the active robot. The base-base rotation matrix A

PR  and 
the vector H

Ez  are unknown. By applying the errors of 
A
PR  and H

Ez , (1) could be reformulated as:  

( ) ( )A A P A H H
P P E H E E    R R z R z z ,                   (2) 

which could also be written as:  
A P A H A H A P
P E H E H E P E    R z R z R z R z .                 (3) 

By using the error model (3), it is possible to devise 
an iterative algorithm to estimate A

PR  and H
E z . 

3.2 Translational error model. According to the position 
relationships of the dual-manipulators system, the 
translational vectors in the base coordinates of the passive 
robot could form a transformation loop. It is formulated as: 

P H P A P P P T P F P P
E H A E T F    p p p p p p ,                 (4) 

which could also be written as:  
P A H H P A A P P P T P F F P P
A H E A H A E F T F    R R p R p p p R p p . (5) 

Considering errors in P P
Ap  and H H

Ep , (5) can be 
written as the error formulation: 

+ +P A H H P A H H P A A P P P P
A H E A H E A H A A
P T P F F P P

E F T F

   

  

R R p R R p R p p p
p R p p

.    (6) 

Note that P T
Ep denotes the vector from the origin of 

the camera frame to the feature point and it is 
immeasurable in the current method. It has to be 
eliminated from the error model. The optical axis vector 

kμ  can be estimated using the actual positions of the 
feature point. Define operator [ ]kμ  as: 
 k k  μ N μ N , where N is a 3 1  constant vector. 

Noticing that   P T
k E μ p 0 , we get: 

 
 

( + + )

( )

P A H H P A H H P A A P P P P
k A H E A H E A H A A

P F F P P
k F T F

    

  

μ R R p R R p R p p p

μ R p p
.  

(7) 
By further derivation, we have: 

 
 

( )

( )

P A H H P P
k A H E A

P F F P P P A H H P A A P P
k F T F A H E A H A

   

     

μ R R p p

μ R p p R R p R p p
.  

(8) 
Define ( , ) [ ]T T Tcol K L K L , ( , ) [ ]row K L K L , 

where K and L are the compatibly dimensional matrices 
(or vectors). Then (8) can be expressed as: 

( , ) ( , )( , ]i k P P H H i k
T A E Tcol   J p p ρ ,                   (9) 

 ( , ) ( , )( , )i k P A i k
T k A Hrow J μ I R R ,                        (10) 

 ( , ) ( , ) ( , )

( , ) ( , )

(

)

i k P i k F F P P i k
T k F T F

P A i k H H P A A i k P P
A H E A H A

  

  

ρ μ R p p

R R p R p p
.       (11) 

( , )i k
TJ  is called as the translational error Jacobian 

matrix at the kth virtual constraint and the ith position of 
the feature point, and the corresponding ( , )i k

Tρ is called as 
the translational error matrix. For all of the positions of 
the feature point, we have: 

( , )P P H H
T A E Tcol   J p p ρ .                     (12) 
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PzE can be estimated from the actual positions of the fea-
ture point, and RH

A can be calculated by the kinematics of the 
active robot. The base-base rotation matrix RP

A and vector HzE 
are unknown. By applying the errors of RP

A and HzE, (1) could 
be reformulated as:
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By using the error model (3), it is possible to devise an 
iterative algorithm to estimate ∆RP

A and ∆HzE.

3.2. Translational error model. According to the position 
relationships of the dual manipulator system, the translational 
vectors in the base coordinates of the passive robot could form 
a transformation loop. It is formulated as:
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Note that P T
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Define col(K, L) = 
£
KTLT

¤T, row(K, L) = 
£
K L
¤
, where K 

and L are the compatibly dimensional matrices (or vectors). 
Then (8) can be re-expressed as:
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Note that P T
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 k k  μ N μ N , where N is a 3 1  constant vector. 

Noticing that   P T
k E μ p 0 , we get: 

 
 

( + + )

( )

P A H H P A H H P A A P P P P
k A H E A H E A H A A

P F F P P
k F T F

    

  

μ R R p R R p R p p p

μ R p p
.  

(7) 
By further derivation, we have: 

 
 

( )

( )

P A H H P P
k A H E A

P F F P P P A H H P A A P P
k F T F A H E A H A

   

     

μ R R p p

μ R p p R R p R p p
.  

(8) 
Define ( , ) [ ]T T Tcol K L K L , ( , ) [ ]row K L K L , 

where K and L are the compatibly dimensional matrices 
(or vectors). Then (8) can be expressed as: 

( , ) ( , )( , ]i k P P H H i k
T A E Tcol   J p p ρ ,                   (9) 

 ( , ) ( , )( , )i k P A i k
T k A Hrow J μ I R R ,                        (10) 

 ( , ) ( , ) ( , )

( , ) ( , )

(

)

i k P i k F F P P i k
T k F T F

P A i k H H P A A i k P P
A H E A H A

  

  

ρ μ R p p

R R p R p p
.       (11) 

( , )i k
TJ  is called as the translational error Jacobian 

matrix at the kth virtual constraint and the ith position of 
the feature point, and the corresponding ( , )i k

Tρ is called as 
the translational error matrix. For all of the positions of 
the feature point, we have: 
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JT
(i, k) is referred to as the translational error’s Jacobian 

matrix at the kth virtual constraint and the i th position of the 
feature point, and the corresponding ρT

(i, k) is referred to as the 
translational error’s matrix. For all of the positions of the fea-
ture point, we have:
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JT is the rank deficient since the error which is co-linear to 
the optical axis has no influence on ρT. By performing singular 
value decomposition (SVD) of JT, it is possible to extract the 
error components.

4.	 Data measurement

4.1. Calibration poses selection. Prior to the poses alignment 
process, both robots should assume the calibration poses. The 
calibration poses selection is crucial to ensure calibration poses’ 
feasibility. In the robot kinematics calibration method, calibra-
tion poses optimization is vital to enhance calibration accu-
racy and kinematic parameters observability [22]. However, 
calibration poses selection for dual manipulator calibration has 
received less attention so far. In this Section, the process of the 
calibration poses selection is presented.

The generated calibration poses of the passive robot (blue 
circle), corresponding to a calibration pose of the active robot, 
are shown in Fig. 3. At the calibration poses configurations of 
the two robots, the calibration target should be in the view of 
the camera and the feature point should be near the optical axis. 
Due to the parameters error of the dual robot system, the actual 
positions (red circle) of the feature point are not on the optical 
axis exactly once the robots assume the generated calibration 
poses.

Define the distance constraint as:

	 C2 : Lmin ∙ Lv ∙ Lmax� (14)

where Lv is the distance between the camera and the calibration 
target plate, Lmin ensures the whole calibration target’s visibility 
in the camera view, and Lmax is related to the camera parameters.

The selection process of the robots calibration poses can be 
divided into four steps:
Step 1. Active robot pose selection.
Step 1. � The pose of the active robot is generated randomly in 

the whole workspace as long as the optical axis pointing 
to the workspace of the passive robot. Then the position 
Pc

(k) of the camera and the optical axis vector μk in the 
active robot base frame become known.

Step 2. Passive robot positions selection.
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TJ  is rank deficient since the error which is co-linear 
to the optical axis has no influence on Tρ . By performing 
singular value decomposition (SVD) of TJ , it is possible 
to extract the error components. 

4. Data Measurement 

4.1 Calibration poses selection. Before the poses 
alignment process, both robots should reach the 
calibration poses. The calibration poses selection is 
crucial to ensure the calibration poses feasible. In the 
robot kinematics calibration method, the calibration poses 
optimization is vital to enhance the calibration accuracy 
and the kinematic parameters observability [22]. However, 
calibration poses selection for dual-manipulators 
calibration was given less attention.  In this Section, the 
process of the calibration poses selection is presented. 

The generated calibration poses of the passive robot 
(blue circle) corresponding to a calibration pose of the 
active robot are shown in Fig. 3. At the calibration poses 
configurations of the two robots, the calibration target 
should be in the view of the camera and the feature point 
should be near the optical axis. Due to the parameters 
error of the dual-robots system, the actual positions (red 
circle) of the feature point are not on the optical axis 
strictly when the robots reached to the generated 
calibration poses. 

The feature point should always be visible during the 
measurement process. The visibility of the feature point 
depends on the angle and distance between the camera 
and the calibration target. Two constraints are constructed 
to make the calibration poses feasible, i.e. angle constraint 
and distance constraint. 

Define the angle constraint as: 
1 min max: vC                               (13) 

where v  is the angle between the optical axis and the 
calibration target plate, min  and max  are constant values 
that are determined by experiments. 

Define the distance constraint as: 
2 min max: vC L L L                            (14) 

wher vL  is the distance between the camera and the 
calibration target plate, minL ensure the whole calibration 
target visible in the camera view, and maxL is related to the 
camera parameters. 

The selection process of the robots calibration poses 
can be divided into four steps: 
Step 1) Active robot pose selection.  

The pose of the active robot is generated randomly in 
the whole workspace as long as the optical axis pointing 
to the workspace of the passive robot. Then the position
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Then the position ( , )P i k
eP  in the passive robot base 

frame is: 
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where P

AT  is the nominal value of the robots base-base 
transformation matrix. 
Step 3) Passive robot orientations selection. 

The orientations of the passive robot are selected 
randomly as long as v satisfying the constructed angle 
constraint. Then the poses of the passive robot are 
determined. 
Step 4) Repeat Step 1) – 3) to generate different poses 
until the number of the calibration poses of the two robots 
is sufficient. At least three virtual constraints should be 
constructed to estimate unknown parameters. 

4.2 Data Measurement. In order to make the 
positions of the feature point satisfy the optical axis 
constraint and obtain the values of the variables in the 
error model, a measurement procedure based on the visual 
control method is performed. Firstly, both robots are 
controlled to reach the generated calibration poses in 
sequence. Then a simplified version of the image-based 
visual control method is used to make the feature point 
move to the optical axis automatically from the generated 
calibration poses. The details of poses alignment based on 
visual control method are omitted in this paper. Please 
refer to our previous work [21] for details. 

During the poses alignment process, the feature point 
is supposed to align to the optical axis when the pixel 
differences between them is less than max max( , )u v  .The 
poses alignment error ce can be calculated based on the 
relationship between the image coordinates and the 
camera coordinates. The coordinates 1max 1max( , )x y  in the 
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Step 2. �where Lstep = (Lmax ¡ Lmin)/m is the distance between 
two adjacent positions of the feature point, and m ¸ 3 
is the total number of positions of the feature point at 
each optical axis.
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(i, k) in the passive robot base 

frame is:
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Step 2. �where T–A
P is the nominal value of the robot’s base-base 

transformation matrix.
Step 3. Passive robot orientations selection.
Step 3. �The orientations of the passive robot are selected ran-

domly as long as αv satisfies the constructed angle 
constraint. Then the poses of the passive robot are 
determined.

Step 4. �Repeat Step 1‒3 to generate different poses until the 
number of the calibration poses of the two robots is 
sufficient. At least three virtual constraints should be 
constructed to estimate unknown parameters.

4.2. Data measurement. In order to make the positions of the 
feature point satisfy the optical axis constraint, and to obtain the 
values of the variables in the error model, a measurement pro-
cedure based on the visual control method is performed. Firstly, 
both robots are controlled to reach the generated calibration 
poses in sequence. Then a simplified version of the image-based 
visual control method is used to make the feature point move 
to the optical axis automatically from the generated calibration 
poses. Details of poses alignment based on the visual control 
method are omitted in this paper. Please refer to our previous 
work [21] for details.

During the poses alignment process, the feature point is 
supposed to align with the optical axis when the pixel difference 
between them drop below (∆umax, ∆vmax). The poses alignment 
error ec can be calculated based on the relationship between the 

Fig. 3. Generated calibration poses of the passive robot corresponding 
to a calibration pose of the active robot

The feature point should always be visible during the mea-
surement process. The visibility of the feature point depends 
on the angle and distance between the camera and the cali-
bration target. Two constraints are constructed to make the 
calibration poses feasible, i.e. angle constraint and distance 
constraint.

Define the angle constraint as:

	 C1 : αmin ∙ αv ∙ αmax� (13)

where αv is the angle between the optical axis and the calibra-
tion target plate while αmin and αmax are the constant values 
that are determined by the experiments.
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image coordinates and the camera coordinates. The coordinates 
(x1max, y1max) in the camera frame, which corresponds to the 
(∆umax, ∆vmax) pixel, are:
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camera frame which is corresponding to max max( , )u v 
pixel are: 

max 1
1max
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k

v zy
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  

sin( ) ( ) (1 cos( )) ( ) ( )v vI S S S     R v v v ,    (19) 

0
( ) 0

0

z y

z x

y x

v v
S v v

v v

 
   
  

v ,                       (20) 

where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 

   R R R R R .                          (21) 
Combining (19) and (21), the error term R is given 

by: 
(sin( ) ( ) (1 cos( )) ( ) ( ))v vS S S    R R v v v .   (22) 

If the rotation angle v  is very small, 
(1 cos( )) sin( )v v   . The term 
(1 cos( )) ( ) ( ))v S S v v in (22) is negligible because it is 
quite small compared with R. Then the approximate 
value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 

A
PR is corrected using the iterative estimation results of 

A
PR  and H

C z . The principle of the estimation method 
in this paper is to calculate H

C z  based on the rotational 
error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H

E H P E H Et  z R R z R z  .   (24) 
Step 3) Calculate and normalize the average value 

( 1)H
E t z  from all of ( ) ( )H k
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

� (17)

where kx and ky are the amplification coefficients which can be 
estimated by means of camera calibration, and z1 is the distance 
between the feature point and the camera.

The maximum detection error ecmax is:
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can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
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HT  are calculated 
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 
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PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
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Step 2) Calculate H
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

.� (18)

It can be assumed that the poses alignment error has little 
influence on the dual manipulator calibration result when ecmax 
is smaller than the repeatability error of the robot.

5.	 Estimation algorithm

Once the feature point is aligned with the optical axis, the joint 
angles of each robot are saved. By using the saved angles, the 
actual poses TF

P and TH
A are calculated based on the calibrated 

kinematics of the two robots. The tool-flange transformation 
matrix TT

F is calculated while the calibration target is regarded 
as the last joint of the passive robot. By using the values of 
TT

F and TF
P, the optical axis vector μk can be estimated from 

the actual positions of the feature point. These values are used 
to estimate the unknown parameters in the dual manipulator 
system.

There are two types of errors to be estimated: 1) rotational 
errors ∆RP

A and ∆HzC and 2) translational errors ∆PpA
P and 

∆HpE
H. Rotational errors are estimated recursively and then 

used to calculate translational errors. The estimation procedure 
for each type of errors is detailed below. Then the verification 
method is presented.

5.1. Estimation of rotational errors. In general, solving the 
rotational error is more challenging because of the nonlinear 
and normalization natures of the rotation matrix. An error in 
the rotation matrix R can be modeled as a small rotation δR. 
By using Rodrigues’ formula [23], we arrive at:
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 
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the calibration target is regarded as the last joint of the 
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TT  and P
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optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
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rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
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solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 
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(1 cos( )) ( ) ( ))v S S v v in (22) is negligible because it is 
quite small compared with R. Then the approximate 
value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 

A
PR is corrected using the iterative estimation results of 

A
PR  and H

C z . The principle of the estimation method 
in this paper is to calculate H

C z  based on the rotational 
error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H

E H P E H Et  z R R z R z  .   (24) 
Step 3) Calculate and normalize the average value 

( 1)H
E t z  from all of ( ) ( )H k
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

,� (19)
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  

sin( ) ( ) (1 cos( )) ( ) ( )v vI S S S     R v v v ,    (19) 
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 

   R R R R R .                          (21) 
Combining (19) and (21), the error term R is given 

by: 
(sin( ) ( ) (1 cos( )) ( ) ( ))v vS S S    R R v v v .   (22) 

If the rotation angle v  is very small, 
(1 cos( )) sin( )v v   . The term 
(1 cos( )) ( ) ( ))v S S v v in (22) is negligible because it is 
quite small compared with R. Then the approximate 
value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 

A
PR is corrected using the iterative estimation results of 

A
PR  and H

C z . The principle of the estimation method 
in this paper is to calculate H

C z  based on the rotational 
error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H

E H P E H Et  z R R z R z  .   (24) 
Step 3) Calculate and normalize the average value 

( 1)H
E t z  from all of ( ) ( )H k

E t z : 
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

,� (20)

where δR is an orthonormal matrix, v = 
£
vx, vy, vz

¤
 is the rota-

tion axis, and θv is the rotation angle.

Considering a small error of the rotation matrix, the rela-
tionship between the real value R and nominal value R– can be 
expressed as:
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  

sin( ) ( ) (1 cos( )) ( ) ( )v vI S S S     R v v v ,    (19) 
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 

   R R R R R .                          (21) 
Combining (19) and (21), the error term R is given 

by: 
(sin( ) ( ) (1 cos( )) ( ) ( ))v vS S S    R R v v v .   (22) 

If the rotation angle v  is very small, 
(1 cos( )) sin( )v v   . The term 
(1 cos( )) ( ) ( ))v S S v v in (22) is negligible because it is 
quite small compared with R. Then the approximate 
value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 

A
PR is corrected using the iterative estimation results of 

A
PR  and H

C z . The principle of the estimation method 
in this paper is to calculate H

C z  based on the rotational 
error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H

E H P E H Et  z R R z R z  .   (24) 
Step 3) Calculate and normalize the average value 

( 1)H
E t z  from all of ( ) ( )H k

E t z : 
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

.� (21)

Combining (19) and (21), the error term ∆R is obtained 
from:

	

5 

camera frame which is corresponding to max max( , )u v 
pixel are: 

max 1
1max

max 1
1max

x

y

u zx
k

v zy
k

  
   


                        (17) 

where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  

sin( ) ( ) (1 cos( )) ( ) ( )v vI S S S     R v v v ,    (19) 
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 

   R R R R R .                          (21) 
Combining (19) and (21), the error term R is given 

by: 
(sin( ) ( ) (1 cos( )) ( ) ( ))v vS S S    R R v v v .   (22) 

If the rotation angle v  is very small, 
(1 cos( )) sin( )v v   . The term 
(1 cos( )) ( ) ( ))v S S v v in (22) is negligible because it is 
quite small compared with R. Then the approximate 
value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 

A
PR is corrected using the iterative estimation results of 

A
PR  and H

C z . The principle of the estimation method 
in this paper is to calculate H

C z  based on the rotational 
error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H

E H P E H Et  z R R z R z  .   (24) 
Step 3) Calculate and normalize the average value 
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

.� (22)

If the rotation angle θv is very small, i.e. (1 ¡ cos(θv)) << 
<< sin(θv), the term (1 ¡ cos(θv))S(v)S(v) in (22) is negligi-
ble because it is quite small compared with ∆R. Then the ap-
proximate value is obtained:

	

5 

camera frame which is corresponding to max max( , )u v 
pixel are: 

max 1
1max

max 1
1max

x

y

u zx
k

v zy
k

  
   


                        (17) 

where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 

   R R R R R .                          (21) 
Combining (19) and (21), the error term R is given 

by: 
(sin( ) ( ) (1 cos( )) ( ) ( ))v vS S S    R R v v v .   (22) 

If the rotation angle v  is very small, 
(1 cos( )) sin( )v v   . The term 
(1 cos( )) ( ) ( ))v S S v v in (22) is negligible because it is 
quite small compared with R. Then the approximate 
value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 

A
PR is corrected using the iterative estimation results of 

A
PR  and H

C z . The principle of the estimation method 
in this paper is to calculate H

C z  based on the rotational 
error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

.� (23)

It should be noted that the approximation in (23) holds only 
for small rotation angle θv.

The estimation method is inspired by the work presented 
in [19]. RP

A is corrected using the iterative estimation results of 
∆RP

A and ∆HzC. The principle of the estimation method in this 
paper is to calculate ∆HzC based on the rotational error model 
(3) by assuming firstly that ∆RP

A is equal to 03£3. Then the 
updated ∆HzC is reused to form a regression matrix to calculate 
∆RP

A. When this process is repeated, the estimated errors from 
different measure results will converge to a reasonable value.

To construct the detailed algorithm, let n be the total num-
ber of the virtual constraints. Symbol ²(t) denotes the value of 
the variable ² at the t th iteration of the algorithm, and ²(k) is 
the value of the variable ² which is calculated using the mea-
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 

   R R R R R .                          (21) 
Combining (19) and (21), the error term R is given 
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value is got: 

sin( ) ( )v S R R v .                   (23) 
It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 
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in this paper is to calculate H
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3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
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P
 R 0 . 

Step 2) Calculate H
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

.� (24)

Step 3. �Calculate and normalize the average value Hz–E(t + 1) 
from all of ∆HzE

(k)(t):
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2
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It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
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HT  are calculated 
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passive robot. By using the values of F
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estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
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solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
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It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 
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error model (3) firstly by assuming that A

PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H
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Step 3) Calculate and normalize the average value 

( 1)H
E t z  from all of ( ) ( )H k

E t z : 

( ) ( )

1 1

( 1)

( ) ( ) ( ) ( )

H
E

n n
H H k H H k

E E E E
k k

t

t t t t
 

 

     
 

 

z

z z z z
.(25) 

Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2

max 1max 1max( ) ( )ce x y                 (18) 
It can be assumed that the poses alignment error has 

little influence on the dual-manipulators calibration result 
when maxce  is smaller than the repeatability error of the 
robot. 

5. Estimation algorithm  

Once the feature point is aligned to the optical axis, 
the joint angles of each robot are saved. By using the 
saved angles, the actual poses P

FT  and A
HT  are calculated 

based on the calibrated kinematics of the two robots. The 
tool-flange transformation matrix F

TT is calculated while 
the calibration target is regarded as the last joint of the 
passive robot. By using the values of F

TT  and P
FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
system. 

There are two types of errors to be estimated: 1) the 
rotational errors A

PR  and H
C z ; 2) the translational 

errors P P
A p  and H H

E p . The rotational errors are 
estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
 

5.1 Estimation of the rotational errors. In general, 
solving the rotational error is more challenging because of 
the nonlinear and normalization naturesof the rotation 
matrix. An error in the rotation matrix R can be modeled 
as a smallrotation  R . By using Rodrigues’ formula [23], 
we have:  
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where  R  is an orthonormal matrix, , ,x y zv v v   v  is 

the rotation axis, and v  is the rotation angle. 
Considering a small error of the rotation matrix, the 

relationship between the real value Rand nominal value 
R can be expressed as: 
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quite small compared with R. Then the approximate 
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It is worthy to know that the approximation in (23) 

holds only for small rotation angle v . 
The estimation method is inspired from the work [19]. 
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PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 
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where xk  and yk  are the amplification coefficients which 
can be estimated by camera calibration, and 1z  is the 
distance between the feature point and the camera. 

The maximum detection error maxce is: 
2 2
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It can be assumed that the poses alignment error has 
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when maxce  is smaller than the repeatability error of the 
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Once the feature point is aligned to the optical axis, 
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FT , the 

optical axis vector kμ can be estimated from the actual 
positions of the feature point. These values are used to 
estimate the unknown parameters in the dual-manipulators 
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estimated recursively and then used to calculate the 
translational errors. Hereafter the estimation procedure for 
each type of errors is detailed. Then the verification 
method is presented. 
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PR  is equal to 
3 30 . Then the updated H

C z  is reused to form a 
regression matrix to calculate A

PR . When this process is 
repeated, the estimated errors from different measure 
results will converge to a reasonable value. 

To construct the detailed algorithm, let n be the total 
number of the virtual constraints. Symbol ( )t  denotes 
the value of the variable   at the tth iteration of the 
algorithm, and ( )k  is the value of the variable which is 
calculated using the measurement results at the kth optical 
axis. The iterative algorithm consists of the following 
steps: 
Step 1)  Initialization. t=0, 3 3A

P
 R 0 . 

Step 2) Calculate H
E z  using measurement results at 

each optical axis: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )H k A k T A k P k A k H
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Step 4) Calculate ( )A
P tR  using the updated ( 1)H

E t z . 
For the dual-manipulators system, the error of A

PR  is 
small. So the rotation angle in (19) is small and the 
formula (23) holds. The error A

PR   is estimated 

.

� (25)

Step 4. �Calculate ∆RP
A(t) using the updated Hz–E(t + 1).

Step 1. �For the dual manipulator system, the error of RP
A is 

small. So the rotation angle in (19) is small and formula 
(23) holds. The error ∆RP

A is estimated iteratively, so 
neglecting the term (1 ¡ cos(θv))S(v)S(v) in (23) has 
little effect on the estimation result. If we combine (3) 
and (23), we get:
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

.� (26)

Step 1. �Let us suppose that S(w) = sin(θv)S(v), w = 
£
wx, wy, wz

¤
 

(26) can be expressed as:
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

.� (27)

Step 1. �Notice that if S(w)PzE
(k) = –

£
PzE

(k)£
¤
w, we have:
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

� (28)

	

6 

iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

� (29)
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 
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where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P
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After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
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A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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P tR , so the resulting 
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P t R  can be orthonormal.  
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P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
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are the nonzero singular values of tJ . 
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Σ , the 
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and hand-eye calibration results by comparing the 
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between the positions of the feature point and the 
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 
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Σ , the 
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A p  and H H

E p are estimated as: 
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5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H
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The mismatch error be  before the calibration process 

is: 
( )P P P P P
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After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
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Tp   of the feature point is calculated by 
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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t t t tJ V ΣU ,                                 (34) 

1 0 0
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,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
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R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T
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Step 5) Calculate ( )A
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P tR  while 
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with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 
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where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 
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5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H
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The mismatch error be  before the calibration process 

is: 
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
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After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
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
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

� (32)
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actual value of kμ , P
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where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 
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5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H
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The mismatch error be  before the calibration process 

is: 
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After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
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The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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Step 1. �with sin(θv(i)) = kw(i)k, S(v(i)) = S(w(i)/sin(θv(i)))
Step 1. �It is worth noticing that δRP
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A(t) is 

used to update and correct RP
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5.2. Estimation of translational errors. Once the rotation 
matrices are corrected, these results would be then used to 
calculate translational errors. By using the actual value of μk, 
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P and RH
A, the translational error’s Jacobian matrix JT in the 

translational error model (12) can be calculated based on (9). 
JT is the rank deficient and it can be written as:

	 JT = Vt ΣtUt� (34)
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A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P
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After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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nonzero singular values of Jt .
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+, transla-

tional errors ∆PpA
P and ∆HpE
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AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

.� (36)

5.3. Verification method. The verification method is designed 
in this section to verify the calibration results. Ma [13] verified 
the calibration results by computing the closeness of the left and 
right side of the equation AXB = YCZ. In our paper, inspired 
by [13], we evaluate the base-base and hand-eye calibration 
results by comparing the mismatch errors before and after 
dual robot calibration. The mismatch errors are the distances 
between the positions of the feature point and the constructed 
optical axis.

The position PpT
P of the feature point is calculated by means 

of passive robot kinematics and tool-flange transformation. The 
nominal position of the camera Pp–E

P and the nominal value of 
the optical axis vector Pz–E are:
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

� (37)
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

.� (38)

The mismatch error eb before the calibration process is:
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
can be calculated based on (9). TJ  is rank deficient and it 
can be written as: 

t t t tJ V ΣU ,                                 (34) 

1 0 0

0 0

0 0 0

t i





 
 
 

  
 
 
  

Σ

 
    

 
    

 

,                           (35) 

where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 

( , )P P H H T T
A E t t t tcol   p p U Σ V ρ .                       (36) 

5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P

A A AR R R , = +H H H H H H
E E Ep p p  and

= +P P P P P P
A A Ap p p  are the calibrated actual value. 
The mismatch error ae  after the calibration process is: 

( )P P P P P
T E E

a P
E

e
 


p p z

z
           (42) 

From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

.� (39)

After calibration, the estimated position of the camera PpE
P 

and the estimated value of the optical axis vector PzE are:
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iteratively, so neglecting the term (1 cos( )) ( ) ( )v S S v v  
in (23) has little effect on the estimation result. Combine 
(3) and (23), we have: 

( ) ( ) ( )( ) ( 1)A P k A k H A P k
P v E H E P ES t   R v z R z R z .      (26) 

Suppose ( ) sin( ) ( )vS Sw v , , ,x y zw w w   w , (26) 
can be expressed as: 

( ) ( ) ( )( ) ( ) ( 1)P k A T A k H P k
E P H E ES t  w z R R z z .      (27) 

Notice that ( ) ( )( ) P k P k
E ES     w z z w , we have: 

( ) ( )k k
R RJ w ρ ,                             (28) 

( ) ( )k p k
R E   J z ,                             (29) 

( ) ( ) ( )( ) ( 1)k p k a T a k h
R E p h E t  ρ z R R z .                 (30) 

By using all of the measurement results, we can obtain
1[( ) , , ( ) ]T n T T

R R RJ J J  and 1[( ) , , ( ) ]T n T T
R R Rρ ρ ρ . 

Then w is calculated using the following equation: 
1( ) ( ) ( 1)T T

R R R Rt t w J J J ρ .                        (31) 
Step 5) Calculate ( )A

P t R  and correct ( )A
P tR  while 

guarantee its normalization. 
( )

sin( ( )) ( ( )) (1 cos( ( ))) ( ( )) ( ( ))

A
P

v v

t
I i S i i S i S i


 


  
R

v v v
,(32) 

( 1) ( ) ( )A A A
P P Pt t t R R R ,                        (33) 

with sin( ( )) ( )v i i  w , ( ( )) ( ( ) / sin( ( )))vS i S i iv w . 

It is worth noticing that ( )A
P t R  rather than ( )A

P tR  
is used to update and correct ( )A

P tR , so the resulting 
matrix ( 1)A

P t R  can be orthonormal.  
Step 6) Repeat steps 2) – 5), until

( 1) ( )A A
P P Rt t   R R , where R is the desired 

accuracy of the rotation matrix. 
 
5.2 Estimation of the translational errors. Once the 
rotation matrices are corrected, these results would be 
then used to calculate the translational errors. By using the 
actual value of kμ , P

AR  and A
HR , the translational error 

Jacobian matrix TJ  in the translational error model (12) 
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where tV  and tU  are orthonormal matrices and ( 5)i i   
are the nonzero singular values of tJ . 

By using the pseudo inverse of tΣ  denoted by t
Σ , the 

translational errors P P
A p  and H H

E p are estimated as: 
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5.3 Verification method. Verification method is designed 
in this section to verify the calibration results. Ma [13] 
verified the calibration results by computing the closeness 
of the left and right side of the equation AXB = YCZ. In 
our paper, inspired from [13], we evaluate the base-base 
and hand-eye calibration results by comparing the 
mismatch errors before and after the dual-robots 
calibration. The mismatch errors are the distances 
between the positions of the feature point and the 
constructed optical axis. 

The position P P
Tp   of the feature point is calculated by 

the passive robot kinematics and tool-flange 
transformation. The nominal position of the camera P P

Ep  
and the nominal value of the optical axis vector P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (37) 
P P A H

E A H Ez R R z                         (38) 
The mismatch error be  before the calibration process 

is: 
( )P P P P P

T E E
b P

E

e
 


p p z

z
             (39) 

After calibration, the estimated position of the camera 
P P

Ep  and the estimated value of the optical axis vector 
P

Ez are: 
P P P A H H P A A P P

E A H E A H A  p R R p R p p            (40) 
P P A H

E A H Ez R R z                         (41) 
where = +P P P
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The mismatch error ae  after the calibration process is: 
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 
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P are the calibrated actual values.
The mismatch error ea after the calibration process is:
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From (39) and (42), it is easy to see that the mismatch 
error is related to all of the calibrated parameters, 
including rotational and translational matrices. In order to 
demonstrate the effectiveness of the proposed calibration 
method, the measurement data which is different with the 
experiment data is used in the verification experiment. 
Because of the randomness of the validation data, it can 
be proved that the accuracy of the dual-manipulators 
system is improved if the mismatch error is decreased 
after calibration. 

.� (42)

From (39) and (42), it is easy to see that the mismatch error 
is related to all of the calibrated parameters, including rotational 
and translational matrices. In order to demonstrate the effec-
tiveness of the proposed calibration method, the measurement 
data, which are different from the experiment data, are used 
in the verification experiment. Because of the randomness of 
the validation data, it can be proved that the accuracy of the 
dual manipulator system is improved if the mismatch error is 
decreased following calibration.
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is used for kinematic calibration. The joint angle θ i, link offset 
di, link length ai, link twist α i and rotation angle β i are the 
kinematic parameters in the improved DH model. The detailed 
description of this non-standard DH convention is presented in 
the Appendix. The base-base transformation matrix PTA

P and the 
hand-eye transformation matrix HTE

H are inaccurate and have 
a nominal value given by:

PTA
P =  

	–1	 0	 0	 1200
	 0	 –1	 0	 0
	 0	 0	 1	 0
	 0	 0	 0	 1

, HTE
H =  

	1	 0	 0	 –60
	0	 1	 0	 60
	0	 0	 1	 26
	0	 0	 0	 1

.

6.2. Experiment procedure. The data measurement procedure 
based on the visual control method is implemented on a PC 
under Visual C++. The closed-loop control of the visual control 
method is at 10 Hz, enabling the feature point to move to the 
optical axis automatically and quickly. During the visual control 
process, the Open CV library is used to preprocess the image 
captured by the camera and extract the chessboard corners. The 
sub-pixel corner detection is an excellent technique in Open CV. 
The pixel coordinates of the feature point are detected in real 
time. An image visible in the view of the camera during the 
visual control process is presented in Fig. 5. The center of the 
red circle is the center of the optical axis, and the center of the 
green circle is the feature point.

Fig.4. Configuration of the dual manipulator calibration system

Table 1 
Kinematic parameter errors calibrated for the first robot

Link i α i(°) ai(mm) di(mm) θi(°) β i(°)

1 89.97 105.9 136.5 -0.15 /

2 0.26 287.8 / 89.89 0.05

3 89.66 121.4 4.7 0.37 /

4 – 90.59 – 0.2 312.3 – 0.49 /

5 89.63 – 2.1 – 1.2 – 90.33 /

6 0 60 123.7 – 0.14 /

7 0 0.1 2.2 – 90 /

Table 2 
Kinematic parameter errors calibrated for the second robot

Link i α i(°) ai(mm) di(mm) θi(°) β i(°)

1 90.35 105.7 136.5 – 1.37 /

2 – 0.53 289.0 / 89.90 0.52

3 90.58 124.5 -3.6 – 0.29 /

4 – 91.10 – 0.1 313.6 – 1.51 /

5 91.21 1.0 0.7 – 91.35 /

6 0 60.4 133.8 – 0.48 /

7 0 0.5 2.8 – 90 /

Fig.5. Sampled image in the view of camera during visual control 
process

6.	 Experiment and results

6.1. Experimental setup and initial setting. As shown in 
Fig. 4, the experimental setup consists of two Reinovo 6-DOF 
industrial manipulators, a Bumblebee CCD camera and a cali-
bration target. The Reinovo robot has repeatability of 0.1 mm. 
The camera has a resolution of 1024£768 and a focal length 
of 2.5 mm. The calibration target is a 3£3 planar checkerboard 
pattern. The middlemost corner of the checkerboard pattern is 
chosen as the feature point.

The kinematic parameters of the two robots are shown in 
Table 1 and Table 2, respectively. The improved DH model [24] 

During the calibration poses selection process, the direc-
tions of the optical axis have to be different from each other. 
They should also occupy a massive part of the operational 
space which is shared by the two robots to enhance observ-
ability of the errors. There are seven constructed virtual 
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constraints, and four positions of the feature point align with 
each virtual constraint. The generated calibration poses of the 
two robots are depicted in Fig. 6. The minimum angle αmin in 
(13) is set as 45°, and the maximum angle αmax is set as 135°. 
Visibility of the calibration target is best when αv = 90°. The 
distances Lv  between the feature point and camera in (14) are 
ranging from 30 cm to 50 cm to ensure good visibility of the 
feature point.

estimation results of ω and ∆HzC are su mmarized in Table 3, 
with ∆HzC = 

£
∆HzC(x), ∆HzC(y), ∆HzC(z)

¤T.
After correcting rotational errors, the resulting rotational 

matrices are used to estimate translational errors, as described 
in section 5.2. The estimation results of translational errors, 

∆PpA
P = 

£
∆PpA

P(x), ∆PpA
P(y), PpA

P(z)
¤T and 

∆HpE
H = 

£
∆HpE

H(x), ∆HpE
H(y), HpE

H(z)
¤T, 

are su mmarized in Table 4.
From Table 3 and Table 4, it could be noticed that rotational 

errors and translational errors of the base-base are larger than 
that of the hand-eye transformation. This is because initial 
value of the base-base transformation matrix is approximated 
poorly. Even though the initial errors are large, the proposed 
algorithm can estimate the errors recursively and achieve sat-
isfactory accuracy.

Fig.7. Recursive estimation of the base-base rotational error and optical 
axis direction error

Fig. 6. The generated calibration poses of the two robots

z

y

x

The goal of the visual control method is to make the feature 
point move as close to the optical axis as possible. During the 
visual control process, the positioning of the calibration target 
is invariant. Therefore, the angle between the optical axis and 
calibration target has no effect on the calibration result. The 
feature point is supposed to align with the optical axis when 
the pixel difference between them is less than 

£
0.1, 0.1

¤
, with 

the maximum alignment error amounting to ecmax = 0.087 mm, 
which is calculated based on (17, 18). Actually, the distribution 
of the position errors while the feature point is aligning with 
the optical axis at multi-positions could be approximated by 
a Gaussian distribution whose mean value is 0. Therefore, it 
can be considered that the feature point alignment errors have 
little influence on calibration accuracy.

6.3. Results and discussion. After the measurement proce-
dure, the values of TF

P, TH
A, TT

F and μk are obtained. Then the 
base-base rotational error ∆RP

A and optical axis direction error 
∆HzC of the robots are calibrated firstly by using the itera-
tive algorithm described in section 5.1. The estimated values 
of ∆RP

A and ∆HzC at each iteration are converged quickly, as 
shown in Fig. 7. The recursive error of ∆RP

A reduces from 0.16 
to less than 0.01 after only 20 iterations. For simplicity, vector 
ω = 

£
ωx, ω y, ωz

¤T is used to denote the base-base rotational 
error and ∆RP

A can be calculated based on (19) and (29–31). The 

er
ro

r n
or

m

iterations

Table 3 
Estimation results of  ω and ∆HzC

Estimation of ω Estimation of ∆HzC

Error 
variable

Estimated 
error

Error 
variable

Estimated 
error

ωx – 0.0122 ∆HzC(x) – 0.0978

ωy 0.0805 ∆HzC(y) – 0.0076

ωz – 0.1579 ∆HzC(z) – 0.0001

Table 4.  
Estimation results of ∆PpA

P and ∆HpE
H

Estimation of ∆PpA
P Estimation of ∆HpE

H

Error 
variable

Estimated error 
(mm)

Error 
variable

Estimated error 
(mm)

∆PpA
P(x) 18.2 ∆HpE

H(x) 7.3

∆PpA
P(y) 113.0 ∆HpE

H(y) – 6.8

PpA
P(z) 11.5 HpE

H(z) – 0.57
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6.4. Experimental validation. Verification experiments are 
performed to demonstrate the effectiveness of the proposed 
method. In the verification experiments, the data measurement 
procedure is repeated. Two virtual constraints are constructed 
and seven positions of the feature point align with each virtual 
constraint. The mismatch errors before and after base-base and 
hand-eye calibration are depicted in Fig. 8.

than 0.2 mm when the distance between the laser and optical 
sensor is 0.5 m. For the camera-based calibration method, 
the calibration results depend on the corner detection 
accuracy. Take the camera used in our experiments as an 
example: the detection error is 0.087 mm when the distance 
between the camera and the calibration target is 0.5 m.
As a consequence, the accuracy of the camera used in our 

experiment is slightly higher than that of the laser. The detec-
tion error will become even smaller if the camera has higher 
resolution. 

8.	 Conclusions

A virtual constraint-based calibration method for a dual manip-
ulator system is proposed in this paper. It is inexpensive and 
easy to perform. The main contributions of our efforts to this 
paper are as follows: (1) The robot-robot and hand-eye matrices 
of the dual manipulator system can be calibrated simultaneously 
using the proposed method. (2) The measurement process is 
completed automatically, which simplifies the calibration pro-
cess. (3) The iterative estimation algorithm is designed to esti-
mate the parameter errors and does not require 3D pose mea-
surement. The average mismatch error is decreased by 89.8%, 
which verifies the effectiveness of the proposed method.

Combined with our previous work, i.e. [21], the dual 
manipulator system, including the kinematics, the relationship 
of robot-robot, hand-eye and flange-tool can be calibrated by 
using only a camera and calibration target. However, the rel-
ative rotational errors of the hand-eye configuration are only 
calibrated partially. Our future work will focus on solving this 
problem and correct the hand-eye rotational matrix fully. The 
proposed virtual constraint-based calibration method will be 
extended to include the single-manipulator and multi-manipula-
tor systems. Moreover, we will pay more attention to calibration 
poses optimization and study its influence on calibration results 
thoroughly.
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Nomenclature
	 A	 base frame of active robot
	 P	 base frame of passive robot
	 H	 end-effector frame of active robot
	 F	 end-effector frame of passive robot
	 E	 camera frame
	 T	 marker target frame
	 TY

X	 homogeneous transformation matrix from frame Y to 
frame X

	 RY
X	 rotation matrix from frame Y to frame X

	 Z pY
X	 relative position vector from origin of frame Y to 

origin of frame X in frame Z
	 X zY	 vector of Z-axis of frame Y in frame X
	 Pc

(k)	 origin of the camera frame

Fig. 8. Mismatch errors between optical axis vectors before and after 
calibration
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The maximum mismatch error reduces from 106.1 mm 
to 11.3 mm, and the average mismatch error reduces from 
60.8 mm to 6.2 mm, i.e. by as much as 89.8%. The compari-
son of the mismatch errors shows that the accuracy of the dual 
manipulator system is improved by using the method proposed.

7.	 Discussion

Generally, laser and optical sensors could be used to replace the 
camera and calibration target used in this paper. A laser is used 
to construct the virtual constraint and an optical sensor is cen-
tered on the laser line. Newman [25] used the laser constraint to 
calibrate robot kinematic parameters. The laser constraint and 
optical axis constraint are compared from the following aspects:
1) �Cost. Laser has a slightly lower cost as compared to the 

high resolution camera. Their costs are positively correlated 
with their accuracy. Still, both of them are very cheap as 
compared to high precision devices such as laser tracker 
and the optical capture system. However, cameras are more 
often used in robot tasks nowadays and they have become 
almost standard features in robots.

2) �Convenience. Thanks to extensive research on robot vision, 
the vision-based robot control method has been greatly 
developed. It is convenient for detecting the corners of the 
calibration target and automatically controlling the move-
ment of the robot based on the visual control algorithm. 
Therefore, the calibration process based on the optical axis 
constraint is more automatic and convenient.

3) �Accuracy. For the laser-based calibration method, the cal-
ibration results depend on the spot size of the laser beam. 
Generally, the spot size of the high precision laser is less 
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	APe
(i, k)	 calibration position of the feature point in the active 

robot base frame
	PPe

(i, k)	 calibration position of the feature point in the passive 
robot base frame

	 αv	 angle between the optical axis and the calibration 
target

	 Lv	 distance between the camera and the calibration target
	 θ	 vector of robot joint angles
	 θv	 scalar value related to v
	 v	 unit vector
	 S(²)	 cross-product matrix of vector
	 ²–	 nominal value
	 ∆²	 error between nominal value and true value
	 δ²	 small error of matrix
	 μk	 vector of the kth optical axis

	 ²(i, k)	 matrix at the kth virtual constraint and the ith position 
of the feature point

	 JT	 translational error’s Jacobian matrix
	 ρt	 translational error matrix
	 JR	 rotational error’s Jacobian matrix
	 ρR	 rotational error matrix
	 n	 total number of virtual constraints
	 m	 total number of positions of the feature point 	 at each 

virtual constraint
	 t	 number of iterations
	 εR	 desired accuracy of rotational matrix
	 θi	 joint angle of the ith link
	 di	 link offset of the ith link
	 ai	 link length of the ith link
	 αi	 link twist of the ith link
	 βi	 rotation angle of the ith link
	 eb	 mismatch error before the calibration process
	 ea	 mismatch error after the calibration process
	 ec max	 maximum value of the poses alignment error

Appendix

The kinematics model for robot calibration should meet the 
following conditions: model completeness, parameter mini-
mality and model continuity. In the DH method, the kinematic 
model is not continuous for the robots which possess parallel 
or near-parallel joint axes. Hayati [24] proposed an improved 
DH model. For the general joint axes, DH method is applied for 
robot kinematic modeling. The DH model is standard thus its 
details are not presented here. For the parallel or near-parallel 
consecutive joint axes, an additional parameter β is added to 
describe the deviation between the parallel axes.

As shown in Fig. 9, β take the form of rotations around y 
axes to align the z axis with that of joint i + 1. The transforma-
tion between the i and i + 1 coordinate axes is:

iTi + 1 =  

	cθ i
sβ i

 ¡ sθ i
sα i

cβ i
	 –sθ i

cα i
	 cθ i

sβ i
 + sθ i

sα i
cβ i

	 aicθ i

	sθ i
cβ i

 ¡ cθ i
sα i

sβ i
	 cθ i

cα i
	 sθ i

sβ i
 ¡ cθ i

sα i
cβ i

	 ai sθ i

	 – cα i
sβ i

	 sα i
	 sα i

cβ i
	 0

	 0	 0	 0	 1

.
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