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Abstract. This work presents the results acquired during simulation studies done for a 3D free-floating satellite behaviour with input-output 
decoupling approach. The research object is a free-floating satellite with a 3 DoF rigid 3D manipulator where a noise disturbance was introduced. 
Different approaches are used to compensate the noise influence. Systems using a visual aid to determine the position of manipulator joints are 
not ideal and introduce some uncertainties. What is more, determining the position from joints encoders is not error-free while computing angular 
velocity from numerical differentiation introduces even greater disturbance to the system. A couple of scenarios were investigated where state 
of the manipulator, including its position and velocity, was disturbed with homogeneous noise. Also the control inputs of the manipulator were 
disturbed. Simulation results show that the biggest impact on the control quality has a scenario where the satellite’s state has been disturbed 
with additive noise.
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task is to avoid debris or different material which could destroy 
the satellite.

During capturing the object it is necessary to estimate its 
position. Without a good estimation it is impossible to catch the 
debris. Those aspects were mentioned in [12] where a method of 
a perspective circle and line was used to gather the knowledge 
of a point of interest. Also authors emphasise that the calibration 
of the camera is crucial due to disturbance it introduces when 
it is not calibrated. In [23] authors focus on a vision system 
where they propose a solution for a visual-tracking problem for 
a free-floating space manipulator. This technique allows also to 
estimate the uncertainties of object’s dynamics.

Moreover, control of a space manipulator is a separate sub-
ject which is supported by a great many publications in this 
area. However, a novel approach to control a space manipula-
tor in case of a single joint failure was presented in [4] where 
factitious force method was exploited [10].

It is worth mentioning that in the near distance to the object 
of interest the manipulator workspace is limited and there was 
a lot of research done on this aspect along with the manipula-
bility of a space manipulator [22].

The research object in this paper is a satellite with a 3 DoF 
rigid manipulator arm. Considering the nature of the controlled 
object an input–output decoupling method was used to linearise 
the model [11]. Thanks to the procedure of linearisation we can 
control manipulator joints while tracking desired trajectory in 
external coordinates. The dynamics of examined model was 
derived from generalized coordinates and the model lives in 
a 3D space.

Furthermore, one other aspect of a space object control was 
investigated. The noise disturbance is an accompanying phe-
nomenon during a satellite movement and it can not be com-
pletely avoided, only its influence can be diminished. In this 
work, a number of scenarios were closely examined. During the 

1.	 Introduction

Space robotics is a continuously developing field where there 
are many open problems waiting to be solved. One example 
of such a problem is the task of trajectory planning [16]. Also 
a satellite with a manipulation arm can be used to remove 
space rubbish, debris, etc. that are often an unwanted result 
of space exploration [5, 8, 9]. After successful space missions 
as well as unsuccessful ones debris which comes from sat-
ellites’ crash are orbiting Earth. An another source of such 
objects can be a collision (direct impact of two or more differ-
ent types of objects) which eventually causes debris floating 
around the planet to increase. It is a significant problem which 
unattended, in a near future, can be a serious issue for space 
craft launching.

The main focus of this work was put on the last stage – the 
trajectory of space debris which are in close distance to a satel-
lite. While being in a close distance to the object it is possible to 
track the desired trajectory only by controlling the manipulator 
arm. Even though, the feedback forces cause the satellite to 
change its position and orientation but the position of system’s 
mass center is constant. The manoeuvre of intercepting a space 
object is a not a trivial task mainly due to forces which are 
present between the chaser and the object itself [1, 3]. Also, 
some work was done to validate the strategy of approaching 
and grasping a space object [19]. An another aspect is to ensure 
that the generated trajectory would be recreated [17, 18]. More-
over, during a manoeuvre of intercepting a target a necessity 
of avoiding obstacles can arise [15] where the most important 
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simulation studies four classes of additive disturbances were 
taken into account. The first class is an ideal case where there 
is no noise. The second class is when some noise is present but 
applies to the state vector considering only the manipulator 
joints and its velocities. The next class was disturbance impact 
on control signals while the last class was a mixture of the last 
two.

In the Section 2 kinematics of the space manipulator was 
presented while the Section 3 contains some information on 
the model’s state vector and describes dynamics of our system 
while Section 4 states the control problem. The input-output 
decoupling procedure was discussed in the Section 5. The prob-
lem of noise disturbance along with different scenarios was 
described in the Section 6. Simulation results were collected 
and presented in the Section 7. The discussion of results and 
summary was included in the Conclusions.

2.	 Satellite kinematics

The satellite’s base is a cuboid. A rigid 3R manipulator is 
mounted on the satellite’s base which can track a trajectory in 
the 3D space associated with the global coordination system 
X0Y0Z0. Placement of a local coordination system XbYbZb is 
associated with the satellite’s mass center. It can be presented 
as the following relation

	
A0

b(qb) = Trans(X, x)Trans(Y, y)Trans(Z, z) ¢
A0

b(qb)  ¢ Rot(X, α)Rot(Y, β )Rot(Z, γ ).
� (1)

The Euler angles were selected as XYZ(φ, θ , ψ) where α = φ, 
β = θ  and γ  = ψ . Furthermore, the limitations of Euler angles 
are described as 0 < φ < 2π , 0 < θ  < π  and 0 < ψ  < 2π . 
Placement of the end of manipulator’s first link in relation to 
global coordination system X0Y0Z0 is defined as the following 
transformation

	
A0

1(qb, qr) = A0
bTrans(X, a)Trans(Y, b)Trans(Z, c)¢

A0
1(qb, qr)  ¢ Rot(Z, q1)Trans(X, l1).

� (2)

The position of the end of the second link is described as

	 A0
2(qb, qr) = A0

1 Rot(Z, q2)Trans(X, l2)Rot
³
X, π

2

´
.� (3)

Lastly, the position of the third link, the end effector, is pre-
sented in the following relation

	 A0
3(qb, qr) = A0

2 Rot(Z, q3)Trans(X, l3).� (4)

The A0
3(qb, qr) can be used to derive the end-effector posi-

tion, thus its kinematic can be described as

	 y =  
xeff

yef f

zef f

 = k(qb, qr).� (5)

The position vector has a following form

	 q =  
qb

qr
,� (6)

where qb = (x, y, z, α, β, γ )T and qr = (q1, q2, q3)
T. The respec-

tive velocities are denoted as

	 q ̇  =  
q ̇ b
q ̇ r

 2 R9.� (7)

qb 2 R6 and qr 2 R3. What is more, qb consists of 3 elements 
related to the satellite position in R3 and 3 Euler angles. SO(3) 
group is a matrix which contains 9 elements but has 6 con-
straints. The matrix can be expressed as

	 R =  r1  r2  r3 � (8)

where ri is a column belonging to R3 of the rotation matrix. As 
mentioned earlier, there are 6 constraints:

	 kr1k = kr2k = kr3k	 =	 1,� (9)

	 r1 £  r2	 =	 r3,� (10)

	 r2 £  r3	 =	 r1,� (11)

	 r3 £  r1	 =	 r2.� (12)

Therefore, if there are 6 constraints there are 3 angles which 
parametrize the rotation matrix. What is more, this is the reason 
for angles belonging to R3.Fig. 1. Satellite’s model with marked coordination systems
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The A3
0(qb,qr) can be used to derive the end-effector posi-

tion, thus its kinematic can be described as

y =




xe f f

ye f f

ze f f


= k(qb,qr). (5)

The position vector has a following form

q =

(
qb

qr

)
, (6)

where qb =(x,y,z,α,β ,γ)T and qr =(q1,q2,q3)
T . The respec-

tive velocities are denoted as

q̇ =

(
q̇b

q̇r

)
∈ R9. (7)

qb ∈ R6 and qr ∈ R3. What is more, qb consists of 3 elements
related to the satellite position in R3 and 3 Euler angles. SO(3)
group is a matrix which contains 9 elements but has 6 con-
straints. The matrix can be expressed as

R =
[

r1 r2 r3

]
(8)

where ri is a column belonging to R3 of the rotation matrix. As
mentioned earlier, there are 6 constraints:

||r1||= ||r2||= ||r3|| = 1, (9)
r1 × r2 = r3, (10)
r2 × r3 = r1, (11)
r3 × r1 = r2. (12)

Therefore, if there are 6 constraints there are 3 angles which
parametrize the rotation matrix. What is more, this is the rea-
son for angles belonging to R3.

3. Mathematical model of 3D free-floating satel-
lite

The dynamics of the 3D free-floating satellite was expressed in
generalized coordinates where the vector describing position
has 9 elements and can be divided into two parts. First part
is related to the satellite’s base position and orientation, while
the second part describes the manipulator joint positions. The
state vector of the satellite with a 3R manipulator consists of
its position and their time derivatives.

3.1. Pseudoinertia matrices For further consideration it was
assumed that the three links of the manipulator are rods with
uniformly distributed mass. The mass of each rod is mi while
li is the length of i-th link. Following this assumption the pseu-
doinertia matrix of a single manipulator’s link has a following
form

Ji =




1
3 mil2

i 0 0 − 1
2 mili

0 0 0 0
0 0 0 0

− 1
2 mili 0 0 mi


 , i = 1,2,3. (13)

Lower index i = 1,2,3 determines the link number.
The satellite base has a mass mb and is modelled as a cuboid

with width w (along local Y axis), height h (along local Z axis)
and depth d (along local X axis). For such a 3D object the
pseudoinertia matrix has following form

Jb =




1
12 mbd2 0 0 0

0 1
12 mbw2 0 0

0 0 1
12 mbh2 0

0 0 0 mb


 . (14)
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.� (14)

3.2. Total kinetic energy. The base kinetic energy can be cal-
culated in the following manner

	 Eb =  1
2

tr{A ̇ 0b Jb
³
A ̇ 0b

T́ } =  1
2

q ̇ TQbq ̇ .� (15)

The kinetic energy of an i-th link can be derived from the sim-
ilar formula given below as

	 Ei =  1
2

tr{A ̇ 0i Ji
³
A ̇ 0i

T́ } =  1
2

q ̇ TQiq ̇ .� (16)

3.4. Inertia matrix. The inertia matrix of the whole system 
consisting of a cuboid base and a manipulator with 3 DoF can 
be expressed as a sum of inertia matrices of each term (Qb, Q1, 
Q2 and Q3).

	 M = Qb + 
i =1

3

∑Qi .� (17)

3.4. Coriolis and centrifugal forces matrix. The Coriolis 
matrix can be calculated from the inertia matrix M by using 

the Christoffel symbols of the first kind. C 2 R9£9 and each 
term is equal to

	 Cij(q, q ̇ ) = 
k =1

n

∑ ci
kj(q)q ̇ k ,� (18)

where

	 ci
kj(q) =  1

2

µ
∂Mij

∂qk
 + 

∂Mik

∂qj
 ¡ 

∂Mjk

∂qi

¶
.� (19)

3.5. Dynamics in barycentric coordinates. A rigid manipula-
tor with a free-floating base can be described using following 
dynamics [20]

	 Mq  ̂̈  + Cq   ̂̇  = 
µ

0
u

¶
,� (20)

or more in detail as

	
	Mb	 Mbm

	M T
bm	 Mm

Ã
q  ̂̈ b
q ̈ r

!
 + 

Ã
cb

cr

!
 = 

Ã
0
u

!
� (21)

where M is an inertia matrix of the whole system including 
the satellite base and the 3R manipulator. Additional elements 
of the dynamics such as Coriolis and centrifugal forces were 
includes within terms described as cb and cr. The u is a torque 
input control vector of manipulator joints. Vector q ̂  is similar 
to vector q but instead of satellite position, the first 3 elements 
contain the position of the center of the mass of the whole 
system – the satellite and the manipulator.

	 q ̂  =  x ̂   y ̂   z ̂   α  β  γ  q1  q2  q3
T.� (22)

Therefore, the model is expressed in barycentric coordinates 
instead of generalized coordinates. Using barycentric coordi-
nate system allows to maintain the constant momentum of the 
system (momentum conservation) [13].

During the model calculation it was assumed that the system 
is in the space, therefore in the environment where gravity can 
be omitted. The satellite’s base is a free-floating satellite which 
means that its mass center position can not be directly influ-
enced. Those assumptions were incorporated into the dynamics 
model.

We can define dynamics of our system in respect to the 
satellite [20] as

	 Mbq  ̂̈ b + Mbmq ̈ r + cb = Jb
TFh� (23)

where Fh is a vector of external forces exerted on the system. 
Since there are no external forces, Fh = 0 and cb is defined as

	 cb = M ̇ bq  ̂̇ b + M ̇ bmq ̇ r ,� (24)

the first row of dynamics equations (21) can be rewritten as

	 Mbq  ̂̈ b + Mbmq ̈ r + cb = 0 .� (25)
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Putting cb into above equation we can observe that

	 d
dt

³
Mbq  ̂̇ b + Mbmq ̇ r

´
 = Mbq  ̂̈ b + Mbmq ̈ r + cb = 0 .� (26)

thus

	 Mbq  ̂̇ b + Mbmq ̇ r = const .� (27)

4.	 Control problem statement

Let’s consider a free-floating satellite which is a not propelled 
space object with a 3 DoF rigid manipulator attached to its base. 
Because the satellite has no thrusters we can not directly influ-
ence the position and the orientation of the satellite’s base in 
space. We also assume the following:

Assumption 1. The system has a constant momentum which 
means that the satellite moves with constant velocity. Moreover, 
the corresponding coordinate system attached to the mass center 
of the whole system does not move in relation to the chased 
object.

The task is to follow a desired trajectory which can mimic 
the chase after a space object, i.e. debris. The system consisting 
of a satellite and a chased object does not have to be in rest. In 
other words, it is only required that the satellite’s mass center 
does not move in relation to chased object’s mass center.

The satellite’s task is to move the end-effector along a C 2 
trajectory which is inside the operating space of the arm. This 
task can be also considered as an obstacle avoidance in the near 
of a satellite or a first stage of capturing the object.

Moreover, the satellite is not equipped with reaction wheels 
or thrusters which could change the momentum of the object.

Assumption 2. To fulfil such a task we have proposed a con-
trol algorithm which uses the input-output decoupling method 
for an object with fully known dynamics. In this work we con-
sider a case where the satellite is treated as an under-actuated 
system (21).

5.	 Input-output decoupling control

The satellite has no thrusters, thus its position and orientation 
cannot be directly influenced. A model of a satellite in general-
ized coordinates was presented in this work. For the dynamics 
described by (21) we have relation between control input and 
its state.

The input-output decoupling algorithm is a description of 
a model where the relation between the input to the state of the 
system (the dynamics) and the relation between the state to the 
output (the kinematics) is exploited. Let

	 yi = ki(q),  i = 1, …, m,� (28)

where ki (q) is an i-th element of the end-effector kinematics. 

Then

	 y ̇ i =  d
dt

ki(q) = ∂ki

∂q
dq
dt

 = Ji(q)q ̇ .� (29)

The time derivative of above equation yields

	
y ̈ i =  d2

dt2
ki(q) = J i̇(q)q ̇  + Ji(q)q ̈  =

y ̈ i = q ̇ T ∂2ki

∂q2
q ̇  + Ji q ̈  = Pi + Ji q ̈ .

� (30)

Collecting all output variables a matrix equation can be obtained

	 y ̈  = P + Jq ̈ .� (31)

Let the dynamic equation of a manipulator mounted on 
a satellite be given as

	 Mq ̈  + Cq ̇  = 
µ

0
u

¶
.� (32)

The real inertia matrix M is always non-singular, therefore we 
can reformulate (32) to

	 q ̈  = M –1
µ

0
u

¶
 ¡ Cq ̇ .� (33)

After substitution of dynamic equation (33) to (31) it yields

	
y ̈  = P + JM –1

µ
0
u

¶
 ¡ Cq ̇  = 

y ̈  = P ¡ JM –1 Cq ̇  + JM –1
µ

0
u

¶
.

� (34)

The equation (34) is an affine system

	 y ̈  = F + G
µ

0
u

¶
� (35)

where F = P ¡ JM –1Cq ̇  and G = JM –1. Furthermore, the 
G matrix size is important and the matrix itself is not square 
and can not be directly inverted. However, a part of (35) that 
describes the control can be reformulated into

	 G
µ

0
u

¶
 =  G0  G–

µ
0
u

¶
 = G– u,� (36)

where G–  matrix is square and invertible and its dimension is 
m£m.
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Putting the control law given below as

	 u = G– –1(–F + v)� (37)

to the affine system (35), where v is a new input to the system, 
we obtain a closed-loop system expressed in the form of a dou-
ble linear integrator.

	 y ̈  = v.� (38)

To ensure that the end-effector will follow a desired trajectory 
by moving only its joints we propose a PD controller with cor-
rection

	 v = y ̈ d ¡ Kde ̇  ¡ Kpe ,� (39)

where yd is a desired trajectory of the end-effector, Kp = Kp
T > 0, 

Kd = Kd
T > 0, and the system error is defined as e = y ¡ yd and 

its time derivative equals to e ̇  = y ̇  ¡ y ̇ d. To ensure that the pro-
cedure of the input-output decoupling is possible to derive, the 
necessary condition defined by Isidori in [6] has to be met. It 
says that the number of inputs to the system has to be equal to 
the number of system’s outputs.

6.	 Noise disturbance

Estimating the position and the velocity of manipulator joints 
is a challenging task. Before implementing the real controller it 
is necessary to check how well the proposed algorithm is per-
forming when noise is present, as it is in real-life applications. 
Therefore, a considered model of a free-floating satellite was 
extended with additional noise variables to resemble the real 
object. Following equation describes a model where disturbance 
to the state variables of a manipulator was added. What is more, 
noise added to the control signals was also taken into account.

	 M(q–)q ̈  + C(q–, q– ̇ )q– ̇  = 
µ

0
u–

¶
� (40)

where q– = [qb, q–r ]
T and q– ̇  = [q ̇ b, q– ̇ r ]T.

●	 Disturbed state signal: state variable defining manipulator 
joints is defined as

q–r = qr + δ 0,

where δ 0 is a vector of random noise.
●	 Disturbed velocity signal: similarly, the first derivative of 

manipulator joints’ angles is defined as

q– ̇ r = q ̇ r + δ1

where δ1 is a second random noise vector.
●	 Disturbed input: the control signal vector with some noise

u– = u + δu .

As it was discussed before the noise disturbance is an accom-
panying phenomenon during satellite control due to presence 
of noise in measurements. In this work four classes of noise 
disturbance and nine scenarios in total were examined. The first 
class is an ideal case where there is no noise. The simulation 
results for this scenario were used as a reference point. The 
second class concerns a situation when some noise is present but 
it is applied only to the state vector considering the manipulator 
joints and its velocities. This is common due to measurements 
of joint position and velocity. The position of a rotary joint 
can be measured accurately but only to some degree while the 
measurement of the angular velocity of manipulator joint is 
challenging [14]. The other class was disturbance noise added 
only to control signals. Calculating control signals based on the 
model is an ideal case, however, execution of calculated control 
signals can have a negative and unwanted effects on the control 
quality. The last class is a mixture of the last two classes where 
both noise in state vector and in the input signals is present.

In the Table 1 noise parameters for each scenario were col-
lected. The scenario number 0 is a case where no noise was 
introduced to the system, thus it is an ideal case, a reference 
point. All scenarios beside the one described above were sim-
ulated with additive noise where disturbance was of a homo-
geneous nature with limits given in Table 1.

Table 1 
Range of δ 0, δ1 and δu disturbance for each scenario

Scenario number δ 0 δ1 δu

0 0 0 0

1
£

–10–4; 10–4
¤ £

–10–5;10–5
¤

0

2
£

–10–4; 10–4
¤ £

–10–5;10–5
¤ £

–10–3;10–3
¤

3
£

–10–4; 10–4
¤ £

–10–5;10–5
¤ £

–10–2; 10–2
¤

4
£

–10–2; 10–2
¤ £

–10–3;10–3
¤

0

5
£

–10–2; 10–2
¤ £

–10–3;10–3
¤ £

–10–3;10–3
¤

6
£

–10–2; 10–2
¤ £

–10–3;10–3
¤ £

–10–2; 10–2
¤

7 0 0
£

–10–3;10–3
¤

8 0 0
£

–10–2; 10–2
¤

7.	 Simulations

Simulation studies were conducted for the trajectory tracking 
problem of a free-floating satellite. The desired trajectory of the 
end-effector was following

xef  =  r ¢ cos(ωt) + dx,

yef  =  r ¢ sin(ωt) + dy,

zef  =  0

where r = 0.5 [m], ω = 0.03π , dx = 2.3 [m] and dy = 0.1 [m]. 
The gain coefficients of dynamic controller were Kp = 10 and 
Kd = 50.
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Mass and geometric properties of the satellite and its manip-
ulator were presented below in Table 2.

Table 2 
Mass and geometric properties of the satellite

Symbol Value Description

w 0.5 [m] satellite’s width
h 0.5 [m] satellite’s height
d 0.5 [m] satellite’s depth

a 0.2 [m] manipulator displacement along Xb

b 0.2 [m] manipulator displacement along Yb

c 0.25 [m] manipulator displacement along Zb

mi 1 [kg] mass of ith link
li 1 [m] length of ith link

mb 35 [kg] mass of satellite base

Fig. 2. Real and desired trajectory in XY plane tracked by end-effector
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An example of the desired and real trajectory was presented 
in the Fig. 2 while the errors convergence for each scenario 
were presented in Figs 4‒12.

In the Fig. 3 Euler angles for the satellite were presented 
during the trajectory tracking task.

7.1. Noiseless control. In the Fig. 4 error convergence for ex, ey 
and ez was presented. This plot is a reference signal since during 
the simulation no additional noise was introduced.

Fig. 3. Euler angles during trajectory tracking task
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Fig. 4. Errors for scenario °0 (no noise)
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Fig. 5. Errors for scenario °1
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7.2. Noise in manipulator state and control. Figures 5, 6 and 7 
show error convergence for the class where small noise was 
added to the state vector (Fig. 5) and also noise to the control 
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input was introduced (Fig. 6 and Fig. 7). Those plots are very 
similar to each other which suggest that the increasing noise in 
control inputs has limited impact on the system.

However, when the disturbance to the state vector is 
increased by the order of two in its magnitude then it can be 
observed that this situation has significant effect on the system. 
Figs. 8, 9, and 10 present such situation. As previously the influ-
ence of control input noise was increased which still does not 
have a significant effect.

7.3. Noise in control. Considering plots which are classified 
as only noise disturbed control signals (Fig. 11 and Fig. 12) it 
can be seen that errors do not converge to zero, however, they 
are bounded. What is more, the magnitude of noise ampli-
tude has a direct inf luence on control quality. The greater 
the noise of the amplitude the greater the errors present in 
the system.

Fig. 6. Errors for scenario °2
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Fig. 7. Errors for scenario °3
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Fig. 8. Errors for scenario °4
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Fig. 9. Errors for scenario °5
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Fig. 10. Errors for scenario °6
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8.	 Conclusions

During simulations it was confirmed that the proposed con-
trol algorithm, the input-output decoupling control, is work-
ing properly for the object, i.e. a satellite with a 3R manip-
ulator. The desired trajectory was successfully recreated by 
the end–effector. A model with under-actuated dynamics was 
presented (21) where a matrix G of rectangular shape was pres-
ent. To derive a control algorithm for input–output decoupling 
approach it was shown that the matrix G has a square and 
invertible G–  submatrix. G–  is of 3£3 size where it is directly 
used in control algorithm (35). In this work we have shown 

that proposed approach can be used for a situation where cer-
tain uncertainties are present in the system. We have derived 
four classes of noise disturbance depending on the part of 
the dynamics that is influenced. The first class describes an 
ideal case where there is no noise in the system. This situation 
is impossible to achieve in real system due to measurement 
errors, noise in actuators, etc. The most common practice to 
overcome those obstacles is to use a vision system [2, 21] or 
multisensor fusion [7]. However, it complicates the system. 
Adding noise to the manipulator state, angular position and 
velocity of its joints, and to control inputs was also investi-
gated. Based on the simulation results it was shown that the 
algorithm works for the situation described above, but the most 
essential influence on the control quality has a noise in state 
variables, not in control signals.
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