
883Bull.  Pol.  Ac.:  Tech.  67(5)  2019

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 67, No. 5, 2019
DOI: 10.24425/bpasts.2019.130881

Abstract. The article presents issues related to the application of a moving horizon estimator for state variables reconstruction in an advanced con-
trol structure of a drive system with an elastic joint. Firstly, a short review of the commonly used methods for state estimation in presented. Then, 
a description of a state controller structure follows. The design methodology based on the poles-placement method is briefly described. Next, the 
mathematical algorithm of MHE is presented and some crucial features of MHE are analysed. Then, selected simulation and experimental results 
are shown and described. The investigation shows, among others, the influence of window length on the quality of state variables estimation.
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an optimum control signal. It allows to take the input and out-
put constraints of the system into consideration directly. The 
drawback of this method is relatively high computing complex-
ity [6]. All of the above-mentioned control paradigms ensure 
very effective performance, yet they require precise information 
about the states (and in some cases parameters) of the plant.

Because the state vector is usually not measurable in prac-
tical applications, there is a need to apply a special estimation 
technique in order to reconstruct it [8–13]. The application of 
a Luenberger observer or a Kalman filter [8, 9] is quite common 
in the literature. However, both of these methods have some 
drawbacks. The Luenberger observer is sensitive to the changes 
of drive parameters and measurement noises [3]. The Kalman 
filter requires special characteristics of the noises, a condition 
which is usually not fulfilled in the industry [10, 11]. Therefore, 
other approaches are sought.

In the case of drives whose parameters are not known or 
hard to identify, it is possible to use structures based on arti-
ficial neural networks [12]. In this case, very good properties 
are obtained, however, the design methods of such estimators 
are complex and require expert knowledge. It is also possible 
to use simple methods based on the drive model [13], these, 
however, allow to make the estimation of selected state variable 
of a drive (shaft torque).

One of the most advanced estimation methods is the moving 
horizon estimation (MHE) [14, 15, 19]. The technique allows 
to determine the estimation of not only current information but 
also of the historical samples taken from a window with a fixed 
horizon (number of historical samples). The estimator is similar 
to predictive control in which a current sample is used to deter-
mine the future values of state variables. In the world literature 
there are no works (except for the author’s papers) which would 
present the application of this type of estimator in a drive with an 
elastic joint with experimental verification of results. The main 
drawback of the MHE is the high computational complexity of 
the algorithm. This limits the application of this technique to 
the system with a low sampling rate. However, due to the con-

1.	 Introduction

Mechatronic systems are expected to achieve drive speeds and 
positions in the shortest time possible while maintaining high 
precision. This, however, entails the occurrence of high accel-
eration and speed. These phenomena lead to the appearance 
of complete rigidity of mechanical connections [1–3]. For the 
purpose of effective dampening of vibration, it is necessary to 
use special control structures [3–6].

As it is shown in [3], the system with a PI controller cannot 
damp the vibrations effectively, so the control structure is usu-
ally modified by means of insertion of additional feedback from 
one selected state variable. This allows to suppress the torsional 
vibration effectively, yet the settling time cannot be set freely. 
It results from the fact that there are three control parameters 
and four closed-loop poles of the system. The control structure 
with a PID controller has similar properties [3]. In order to 
place four poles in the desired position, it is necessary to have 
the structure with a PI controller and two additional feedbacks 
or a state controller [3, 4].

In the literature more advanced control paradigms can be 
found. They can be divided into a number of major groups. 
Robust control techniques, such as sliding-mode control, can 
be included in the first one. Different frameworks, such as clas-
sical, terminate, integral or twisting sliding-mode algorithms 
are investigated, e.g. in [23]. The second group incorporates 
methodologies based on the adaptive concept. Two main groups 
are evident here, namely direct and indirect approaches [24, 
25]. Works describing fuzzy or neural adaptive algorithms are 
particularly popular. The third group encompasses the model 
predictive control (MPC) approaches. The MPC algorithm 
adapts to the current operation point of the process, generating 
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tinuous increase of the computational power of processors, the 
MHE algorithm can be implemented on-line in industrial drives.

The main goal of the paper is to present a comparative anal-
ysis of the properties of the MHE linear observer working in 
a closed loop control structure with a state controller. Following 
a short introduction, the systematic methodology of the design 
of the state controller is presented. The formulas which allow to 
locate a system’s closed-loop poles freely are provided. Then, 
the mathematical algorithm of the linear MHE and its on-line 
version are presented and discussed. In the simulation tests, 
the properties of the MHE are investigated. The possibility of 
shaping the observer properties by means of suitable selection 
of its weights is also analysed. Additionally, the influence of 
the length of the historical sample on the accuracy of state 
estimation is investigated. The simulation results are confirmed 
by experimental ones. They show that despite the large compu-
tational complexity of the MHE, the estimation algorithm can 
be implemented on-line for the two-mass system with a high 
value of sampling frequency.

2.	 Mathematical model of the drive  
and the control structure

A dual mass system can be presented in the form of two masses 
coupled by an elastic joint. The first mass represents the inertia 
of the drive and the other one stands for the load machine. The 
shaft is considered inertia-free. The model can be described by 
the following equations (relative units) [3, 16]:

	 d
dt
ω1 =  1

T1
(me ¡ ms)� (1a)

	 d
dt
ω2 =  1

T2
(ms ¡ mL)� (1b)

	 d
dt

ms =  1
Tc

(ω1 ¡ ω2)� (1c)

where: ω1, ω 2 – drive and load speeds, me, ms, mL – elec-
tromagnetic, torsional and load torque, T1, T2 – mechanical 
time constant of the drive and load, Tc – elastic time constant. 
The main parameters of the system are: T1 = T2 = 0.203 s and 
Tc = 0.0012 s. The mechanical part is characterized by resonant 
frequency fr = 14.4 Hz.

The above parameters can be determined using the equa-
tions described in [3]. The model can be presented in the form 
of the following equation of state:

d
dt

ω1

ω2

ms

 = 

	0	 0	 – 1
T1

	0	 0	 1
T2

	1
Tc

	 – 1
Tc

	 0

 ¢ 
ω1

ω2

ms

 + 

	1
T1

	 0

	0	 – 1
T2

	0	 0

 ¢ 
ms

mL
.� (2)

A two-mass drive model seems to be a plant easy to control. It 
consists of only two masses and the inertia-free shaft. However, 
in practice when high-performance control is required, high 
precision is not easy to achieve. A good example of this point 
is the control problem of a deep space antenna. The observation 
of the deep universe requires as high precision as possible.

The two-mass drive mechanical model is only a simplifica-
tion of the real system. Additional factors, such as non-linear 
friction located on both sides (motor and load machine), the 
nonlinear characteristic of the mechanical connection (with 
mechanical hysteresis) and even the imperfections in elec-
tromagnetically generated torque (for examples, the torques 
ripples) all influence the control properties. All these factors 
decrease the effectiveness of classical methods, which, in turn, 
provokes the search for other techniques.

In the paper, the control structure presented in Fig. 1 is used. 
In order to limit the electromagnetic torque, the incremental 
version of the state controller is used in the text.

The cascade control concept between the electromagnetic 
(inner loop) and mechanic (outer loop) systems is evident 

Fig. 1. Block diagram of control structure
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in Fig. 1. The inner loop is designed so as to possess much 
faster dynamics (in the experimental set-up, the torque control 
loop can be approximated as the first order term with time 
constant equal to 0.0015 s). The outer loop has much slower 
dynamics (which can be approximated by first order term with 
time constant with the value starting from 0.1 s). Therefore, 
the assumption that the delay caused by torque control can 
be neglected is justified. This assumption constitutes quite 
a common approach in the drive with low frequency oscilla-
tions [3, 6]. This omission is allowed if the tuning dynamic 
of the closed system is smaller than the resonant pulsation 
of the mechanical part. In the case under consideration, this 
condition is met. Additional information about this problem 
can be found in [22].

The situation is different in the case of high frequency tor-
sional vibrations. If the period of the oscillations is similar to 
the delay caused by the torque-control loop, it must be included 
in the analysis of the drive [16, 18].

The main transfer function of the closed system, shown in 
Fig. 1, can be presented in the following way (ignoring potential 
non-linear elements):

G p
ω2
 = 

ω2(s)

ω ref(s)
 ) 

) 
kInt

s4T1T2Tc + s3k1T2Tc + s2(k2T2 + T2 + T1) + (k1 + k3) + kInt

� (3)

Individual parameters of the state controller can be adjusted 
using the pole placement method or the Ackermann’s formula. 
In the presented work, the first mentioned algorithm is used 
because it is convenient and simple in the case of low-order 
systems. It requires a comparison of the drive system equation 
with the reference polynomial of the same degree.

The characteristic equation of (3) is compared to the desired 
polynomial, describing the required dynamics of the closed loop 
system:

	 (s2 + 2ξrω0s + ω0
2)(s2 + 2ξrω0s + ω0

2) = 0� (4)

where: ξr, ω0 – required damping coefficient and resonant fre-
quency of the closed-loop system.

After solving four equations, the formulas which allow to 
set the controller coefficients are obtained (5):

	

kInt = T1T2Tcω0
4

k1 = 4T1ξrω0

k2 = T1Tc 2ω0
2 + 4ξr

2ω0
2 ¡  1

T2Tc
 ¡  1

T1Tc

k3 = k1(ω0
2T2Tc ¡ 1).

� (5)

The additional feedback from the load torque is set with the 
help of the following formula [3, 4]:

	 k4 = k2 + 1.� (6)

The application of the above control structure allows to 
freely shape the dynamics of the control system in the linear 
operation area.

3.	 Moving horizon estimator

Let us now consider a discrete dynamic system described by 
the following state equations:

	
x t + 1 = Ax t + But + ς t

yt = Cx t + η t
� (7)

where: x t 2 Rnx, u t 2 Rnu and yt 2 Rny are the state vectors of 
measurable inputs and outputs, ς t 2 Rnx are unmodellable sys-
tem interferences, η t 2 Rny are output signal interferences and 
t is a discrete time index, while nx, nu, ny are the dimension 
of the space vector, input vector and the output vector, respec-
tively.

MHE is the recurrent estimation algorithm of state variables 
analysed on the basis of a finite data window (N). The problem 
of state determination is investigated for each moment of time: 
N, N + 1, … t ¡ 1, t with account taken of the historical values 
of the state vector estimate:

x t ¡ N x t ¡ N + 1 ¢¢¢ on the basis of the initial estimate  
x– t ¡ N, t and the input information vector  
I t = [yt ¡ N ¢¢¢ yt, u t ¡ N ¢¢¢ u t]

T, 

where N + 1 is the window length. For each moment of time, 
the linear problem of MHE [20, 21] is formulated in order to 
minimize the cost function:

	
J(x ̂ t ¡ N, t, x– t ¡ N, t, I t) = kyt ¡ N, t ¡ y ̂ t ¡ N, tk +
J(x ̂ t ¡ N, t, x– t ¡ N, t, I t) + αkx ̂ t ¡ N, t ¡ x– t ¡ N, tk

� (8a)

	
x ̂ i + 1, t = Ax ̂ i, t + Bu i,   i = t ¡ N, ¢¢¢, t ¡ 1

yi, t = Cx ̂ i, t,   i = t ¡ N, ¢¢¢, t
� (8b)

where: subscript t ¡ N, t defines the historical values of the 
samples in the N window at the moment t, subscript i + 1, t 
defines the prediction of the state vector at time t for historical 
samples in window N, I t is the input information vector, α ¸ 0 
is a gain factor influencing the effect of the correction from 
the pre-estimator and x ̂ i + 1, t in equation (8b) is the prediction 
of the state vector. For the purpose of limiting the influence 
of unstable dynamics of the object, or inaccuracies in model 
determination, it is proposed to introduce the correction of 
the predicted value of the state vector using the Luenberger 
observer or the Kalman filter – in equation (8b). After taking 
account of the above assumption, the problem of the determi-
nation of the state estimate using MHE can be presented in 
the following form:
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J(x ̂ t ¡ N, t, x– t ¡ N, t, I t) = kW(yt ¡ N, t ¡ y ̂ t ¡ N, t)k +
J(x ̂ t ¡ N, t, x– t ¡ N, t, I t) + αkx ̂ t ¡ N, t ¡ x– t ¡ N, tk

� (9a)

	
x ̂ i + 1, t = Ax ̂ i, t + Bu i + L(yi, t ¡ y ̂ i, t),

i = t ¡ N, ¢¢¢, t ¡ 1

yi, t = Cx ̂ i, t,   i = t ¡ N, ¢¢¢, t

� (9b)

where: W 2 Rnx£(N + 1)ny is the matrix of weights differentiating 
the influence of particular historical samples on the value of 
the objective function and L 2 Rnx£ny is the matrix of observer 
gains.

The optimum sequence of the estimated state vector which 
minimizes function (9) can be determined with x ̂ ot ¡ N, t. On this 
basis, the predicted state can be written from equation (7) as:

	
x– t ¡ N, t = Ax ̂ ot ¡ N, t ¡ 1 + But ¡ N ¡ 1 +
x– t ¡ N, t + L(yt ¡ N ¡ 1 ¡ y ̂ t ¡ N ¡ 1, t ¡ 1)

y ̂ ot ¡ N ¡ 1, t ¡ 1 = Cx ̂ ot ¡ N ¡ 1, t ¡ 1

� (10)

where x ̂ ot ¡ N, t is the start value of the state vector.
For the purpose of estimation of the state variables, the drive 

model (1) must be transformed to (2) and the vector of state 
must be extended by load torque so it takes the form of (2).

The above model was discretized with time Ts = 1 ms and 
zero-order extrapolation. The objective function form, which 
is minimized with each estimation step, can be presented as:

	
min

X
J = (Y ¡ C ¢ X)W(Y ¡ C ¢ X)T +

J + α(X ¡ X– )T � (11a)

	 x– t + 1, t = Ax– t, t + Bmet, t + L(ω1t, t ¡ ω– 1t, t)� (11b)

	 Y = 
£
ω1t ¡ N  ω1t + N  ¢¢¢  ω1t

¤T� (11c)

	 X = 
£

x t ¡ N  x t ¡ N + 1  ¢¢¢  x t
¤T� (11d)

	 X–  = 
£

x– t ¡ N ¡ 1  x– t ¡ N + 1  ¢¢¢  x– t ¡ 1
¤T� (11e)

where: Y – vector of output signals defined on horizon N, 
X – vector of state variables defined on window horizon N,  
X–  – vector of state variables predicted in the previous cal-
culation step defined on window horizon N, me t, t – actual 
sample of electromagnetic torque, ω1t, t – actual sample of 
measured motor speed, ω– 1t, t – actual sample of estimated 
motor speed.

The estimator considered can be presented in the form of 
algorithm:

Algorithm 1 (on-line linear MHE observer)

1.	 At time t measure the actual system input me t, t and out-
put ω1t, t

2.	 Formulate matrices Y, X, X– , taking account of the cur-
rent measurement data,

3.	 Find the minimum of objective function (11).
4.	 Download the current value x t from X
5.	 Calculate the prediction of the state vector for the mo-

ment t + 1 (8b)
6.	 Update t ← t + 1 and return to step 1.

To minimize the purpose function, an algorithm based on 
the Hooke-Jeeves method has been used [21]. To speed up the 
operation, the previously determined value has been assumed 
as the starting point.

4.	 Simulation results

This section presents a comprehensive analysis of the proposed 
estimation algorithm. The tests are performed in the following 
order:

The operation assessment is conducted using an indicator 
in the form of the sum of state estimation errors averaged by 
the number of samples:

	 e(ω1) =   i = 1

n
∑ jω1 ¡ ω

e
1j

n
; e(ω2) =   i = 1

n
∑ jω2 ¡ ω

e
2j

n
;� (12a)

	 e(ms) =   i = 1

n
∑ jms ¡ ms

ej

n
; e(mL) =   i = 1

n
∑ jmL ¡ mL

ej

n
� (12b)

and the summary estimation index, taking account of all state 
variable errors, is:

	 esum = e(ω1) + e(ω2) + e(ms) + e(mL).� (13)

Because the state variables are expressed in relative terms, there 
is no need to use scaling factors in (13).

First, open structure tests (controller feedback directly from 
the object) are carried out.

For the purpose of analysing the influence of the observer 
on the operation of the closed control structure, an additional 
quality index is introduced:

	 Jω2
 = 

i = 1

n

∑
³
ω ref(i) ¡ ω2(i)

2́t2.� (14)

The following test algorithm is selected: in time t = 0.1 s 
the drive is started up to reference speed, next in time t = 0.4 s 
the nominal load torque is applied.
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The observer gain is set experimentally at the following 
values: L = 

£
1.055; 17.064; –76.89; –318.28

¤T. Additionally, 
α = 1000. The weight value is divided into two components:

	 W = W0 ¢ 

	w11	 0	 0	 0
	 0	 w22	 0	 0
	 0	 0	 w33	 0
	 0	 0	 0	 w44

� (15)

where W0 is the scaling coefficient and wii are the weight com-
ponents of matrix W.

In the first test, the influence of the weight coefficients of 
matrix W on estimator properties is tested:

w11 = w22 = w33 = w44 = 1 (case 1),
w11 = 0.25, w22 = 0.5, w33 = 0.75, w44 = 1 (case 2),
w11 = 1 w22 = 0.75, w33 = 0.5, w44 = 0.25 (case 3),
w11 = 1.45, w22 = 1.75, w33 = 1.38 w44 = 0.1 (case 4).

In this part of the simulation, W0 = 1000 (the values are set 
experimentally).

Table 1 
Estimation quality (10–3)

e(ω1)10–2 e(ω2) e(ms) e(mL) esum

case 1 7.008 2.553 15.7 38.63 56.92

case 2 7.015 2.552 15.6 38.62 56.95

case 3 7.014 2.544 15.5 38.57 56.74

case 4 7.015 2.541 15.4 38.55 56.68

The first three matrices present the even distribution of the 
influence of historical samples and the current ones (case 1), 
smaller significance of historical samples (case 2) and larger 
significance of historical samples (case 3), respectively. The last 
matrix is selected in an experimental manner.

The obtained estimation quality indices are presented in 
Table 1 and waveforms of the state variables are presented in 
Fig. 2.

The results presented (Fig. 2.) show that the estimator works 
correctly. The estimation error in transient states takes on min-
imum values and the noise level is very low.

The results presented show that the accentuation of current 
samples (case 3) results in the improvement of estimator oper-
ation in comparison with the weight values accentuating the 
historical samples (case 2). However, the least favorable results 
are obtained for the system with the same values of weights. In 
summary, it can be stated that the use of the weight matrix with 
unevenly distributed weights leads to obtaining the best results. 
It should also be said that the differences are relatively small.

In the next step, the influence of weight value α on esti-
mation quality when the mechanical time constant of the load 
machine changes is presented. In these considerations, the fol-
lowing values were tested: α = 500, α = 1000 and α = 5000. 
The results are presented in Fig. 3. The analysis of the obtained 
results allows to conclude that the selection of coefficient α 
below weight W0 leads to the impairment of the quality of state 
variable estimation (apart from the drive motor speed). In the 
case of significant underassessment of plant parameters, the 
higher value of coefficient α leads to a more correct estimation. 
However, it should be observed that this value is significantly 
smaller than the nominal one and that this situation is purely 
hypothetical.

Fig. 2. Waveforms of real (green color) and estimated (red color) values of state variables: a) motor drive speed, b), c) load speed, d) load 
torque, e),f) torsional moment

(d)

(a)

(e)

(b)

(f)

(c)
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Then, the influence of the values of window length on the 
system operation is checked. In these considerations two values: 
N = 0 and N = 4, are selected. The first case corresponds to the 
situation of a classic observer and the state vector estimation is 
based only on a current sample. The comparison of the obtained 
results is shown in Table 2, where there are the data for both 
the system for which significant measurement noise (labelled 
“with noise” in Table 2) is taken into account and the system 
without it (labelled “without noise” in the Table). The noise 
has been selected at 0.01 level (per unit). Figure 4 presents the 
waveforms of state variables for the system with and without 
noise in the open system.

The data presented in Table 2 show that extending the win-
dow length causes higher robustness to measurement noise. For 
the load torque and load speed it is a twofold change. However, 
in the system without any measurement noise the estimation 
quality is reduced. Taking into account the fact that measure-
ment noise exists in every real system, it can be stated that the 
system with a longer window is better.

The above analysis is well illustrated in the waveforms pre-
sented in Fig. 4, where one can observe a significantly smaller 
value of oscillation in the system with the longer window.

Next, the closed control system was tested. In this case, the 
estimated values were used as control system feedback. The 
results obtained are presented in Table 3 and Fig. 5. The pre-
sented data allow to observe a situation similar to the one in the 

Fig. 3. Influence of coefficient α on estimation quality: motor drive speeds (a), load speeds (b), torsional moment (c), load torque (d), with 
changes of the mechanical time constant of machinery

Table 3 
Influence of window length and measurement noise level on the 
estimation quality of state variables in closed structure (10–3)

e(ω1)10–2 e(ω2) e(ms) e(mL) ITAE

2.4 2.3 7.8 58.5 3.32 N = 0 without 
noise1.8 2.5 9.5 56.7 3.31 N = 4

29.4 15.8 40.0 268.7 4.02 N = 0 with 
noise16.3 5.7 19.1 108.7 3.48 N = 4

Table 2 
Influence of window length and measurement noise level on the 

estimation quality of state variables in open structure (10–3)

e(ω1)10–2 e(ω2) e(ms) e(mL)

15.909 6.2 18.6 115.5 with noise
N = 4

3.4037 4.7 15.6 90.3 without noise

25.094 11.4 28.4 206.0 with noise
N = 0

1.0729 1.7 6.4 49.5 without noise

open structure, the only difference being the more significant 
influence of the window extension (in the case of load speed, 
it is nearly threefold).
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Fig. 4. Waveforms of real and estimated values of state variables for various window length values in open structure: a) motor speed, b) load 
speed, c) shaft torque, d) load torque

Fig. 5. Waveforms of real and estimated values of state variables for various window length values in closed structure: a) motor speed, b) load 
speed, c) shaft torque, d) load torque
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results are presented in Fig. 7. As can be concluded from the 
results presented, the control structure (controller and observer) 
operates in an accurate and stable manner. Speed fluctuations 
are insignificant.

Additionally, Fig. 8a presents the waveform of the objec-
tive function J and Fig. 8b – the waveform of the algorithm 
realization time.

Fig. 6. Pictorial view of experimental setup

Fig. 7. Experimental results a) reference, motor and load speeds, b) 
electromagnetic, shaft and load torques in a closed structure with an 

MHE observer

5.	 Experimental research

The experimental test is conducted on an experimental setup 
with DC motors, 0.5 kW, which are connected by means of 
a long shaft (l = 0.6 m, φ = 0.005 m). The drive motor is fed 
by an H bridge converter. The converter is controlled by a pulse 
width modulator, carrier frequency 13 kHz, and cooperated with 
a PI-type current controller. Drive motor speed is measured 
by a Kuebler incremental encoder with a resolution of 36 000 
pulses per revolution. Currents are measured by an LEM sen-
sor (a Hall effect sensor). Experimental setup is presented in 
Fig. 6. The control algorithm and the analysed estimator are 
implemented on the DS1103 rapid prototyping card.

In the first tests the control structure is calculated with 
a 1 ms step. Next, the discretization step is adapted to estima-
tor calculation time. First of all, it was checked how much time 
was necessary for the MHE observer to calculate the estimated 
value.

Additionally, the time is compared with the value necessary 
to calculate the Kalman filter. The results obtained are presented 
in Table 4.

Table 4 
Time necessary to determine estimates by selected estimators

Kalman MHE

T aver
calc  [ms] 0.055 1.6

As can be seen, the level of the algorithm complexity is 
quite high and exceeds the calculation step of the controller 
itself that had been adopted earlier. This is why the sampling 
time is changed to 0.002 s.

Next, the operation of the system is tested in the closed-
loop structure. The test comprises cyclical speed reverses with 
the reference value which is one-half of the nominal speed. In 
addition to this, load torque is applied in the steady state. The 

a)

b)

ω
 [p

.u
]

0.5

0

–0.5

0 1 2 3 4

t [s]

m
 [p

.u
]

3
2
1
0

–3
–2
–1

0 1 2 3 4

t [s]

t [s]



891

Estimation of state variables of the drive system with elastic joint using moving horizon estimation (MHE)

Bull.  Pol.  Ac.:  Tech.  67(5)  2019

It can be clearly seen that in the initial phase of the structure 
operation, the time necessary to determine control (including the 
estimation of the state vector) is significantly longer than at sub-
sequent stages. The next such time increment is observed at the 
reversal time. This results from a quick dynamic state in which 
the differences between real and estimated signals are large.

Figure 9 presents the increase in the estimated state vari-
ables and the comparison of real values and their estimates 
(both speeds were measured). As can be seen, the differences 
are small and they quickly disappear. The maximum momentary 
error of the second speed determination was at the level of 7% 
of the real value.

Finally, it is experimentally checked how a change of drive 
parameters influences the estimation quality. In this research, 

the nominal mechanical time constant along with half and dou-
ble values of this parameter were used. The results obtained are 
presented in Table 5.

Table 5 
Influence of the changes in mechanical time constant on estimation 

of motor and load speed

e(ω1) e(ω2) Comments

0.02009 0.01890 T2 = T2N

0.0211 0.02168 T2 = 2T2N

0.0210 0.02231 T2 = 0.5T2N

Fig. 9. Experimental comparison of real and estimated waveforms of: motor speed (a, d) and load speed (b, e), torsional moment (c), load torque (f)

Fig. 8. Waveforms of calculation time (a) and values of indicator J (b) in closed structure with MHE observer
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6.	 Summary

The paper presents issues related to the development and testing 
of the MHE controller for a drive with an elastic coupling. The 
synthesis of the estimator and comprehensive simulation and 
experimental tests in the open and closed structure have been 
presented. As a result the following conclusions can be drawn:
●	Despite the high complexity of the algorithm, it is possible 

to practically implement it in a drive system in which the 
time constants are small enough, and it can also work in 
a closed structure.

●	The basic parameters which can influence the dynamic 
parameters are the gain matrix L, the weight matrix W and 
coeff icient α. The selection of gains is key for estimator sta-
bility, however, it can be conducted using algebraic methods 
(like in the case of the classical observer).

●	The introduction of the time window has a significant influ-
ence on the reduction of measurement noise impact and 
leads to the improvement in drive operation.
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