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Abstract. The paper is intented to show a new, state space, discrete, non integer order model of a one-dimensional heat transfer process. The 
proposed model derives directly from time continuous, state space model and it uses the discrete Grünwald-Letnikov operator to express the 
fractional order difference with respect to time. Stability and spectrum decomposition for the proposed model are recalled, the accuracy and 
convergence are analyzed too. The convergence of the proposed model does not depend on parameters of heater and measuring sensors. The 
dimension of the model assuring stability and predefined rate of convergence and stability is estimated. Analytical results are confirmed by 
experiments.
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are given in [15]. The use of fractional order approach to the 
modeling and control of heat systems is also presented in [30].

The paper is organized as follows: at the beginning some 
elementary ideas and definitions are presented. Next we propose 
discrete state space model using discrete PSE approximation. 
Elementary properties: spectrum decomposition, stability, accu-
racy and convergence of the model are discussed. Finally the 
experimental verification of the proposed results is presented.

2.	 Preliminaries

A presentation of elementary ideas is started with a definition 
of a non integer order, integro-differential operator. It was given 
for example by [5, 11, 12, 28].

Definition 1. The elementary non integer order operator. The 
non integer order integro-differential operator is defined as fol-
lows:

	 aDt
α f (t) = 

dα (t)
dtα

	 α > 0

f (t)	 α = 0
t

a

R
f (τ)(dτ )α 	 α < 0

.� (1)

where a and t denote time limits for operator calculation, α 2 R 
denotes the non integer order of the operation.

The fractional order, integro-differential operator is 
described by different definitions, given by Grünvald and 
Letnikov (GL definition), Riemann and Liouville (RL defi-
nition) and Caputo (C definition). Relations between Caputo 

1.	 Introduction

Mathematical models of distributed parameter systems based on 
partial differential equations can be described in an infinite-di-
mensional state space, usually in a Hilbert space, but Sobolev 
space can also be applied. This problem has been analyzed by 
many Authors. Fundamentals has been drawn by [27], they are 
given also in [13], analysis of a hyperbolic system in Hilbert 
space was presented by [2]. This paper gives also a broad over-
view of literature.

The modeling of processes and phenomena hard to analyse 
with the use of other tools is one of main areas where non 
integer order calculus is applied. Non integer models of differ-
ent physical phenomena were presented by many Authors. The 
amount of FO models of various processes is collected in the 
book [5]. The book [4] presents fractional order models of cha-
otic systems and Ionic Polymer Metal Composites (IPMC). FO 
models of ultracapacitor are given for example by [8]. The use 
of fractional calculus to modeling diffusion processes is consid-
ered in [9, 29, 31]. A collection of recent results employing new 
Atangana-Baleanu operator can be found in [10]. In this book 
i.e. the FO blood alcohol model, the Christov diffusion equation 
and fractional advection-dispersion equation for groundwater 
transport process are presented.

Heat transfer processes can also be described using non 
integer order approach. For example a temperature–heat flux 
relationship for heat flow in semi-infinite conductor is presented 
in [5], the beam heating problem is given in [8], the FO trans-
fer function temperature models in the room are presented by 
[6], the temperature models in three dimensional solid body 
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and Riemann-Liouville, between Riemann-Liouville and Grün-
wald-Letnikov operators are given in [1, 5]. Discrete versions 
of these operators are analysed with details in [7]. In the further 
consideration the GL definition is used ([4, 25]):

Definition 2. The Grünwald-Letnikov definition of the FO op-
erator.

	 0
GLDt

α f (t) =  lim
h!0

h–α

l=0

h t
h

i

∑(–1)l
µα

j
¶

f (t ¡ lh).� (2)

In (2) (αl ) is the binomial coefficient:

	 µ
α
l

¶
 = 

	 1,	 l = 0

	α(α ¡ 1) … (α ¡ l + 1)
l!

,	 l > 0
.� (3)

A fractional order linear state space system is considered 
for example in [1, 5]. Using GL operator and for homogenous 
initial condition it takes the following form:

	 0
GLDt

α x(t) = Ax(t) + Bu(t)
GLDt

α y(t) = Cx(t).
� (4)

where α 2 (0, 1) denotes the fractional order of the state equa-
tion, x(t) 2 RN, u(t) 2 RL, y(t) 2 RP are the state, control and 
output vectors respectively. A, B, C are the state, control and 
output matrices, respectively.

The GL definition is limit case for h ! 0 of the Fractional 
Order Backward Difference (FOBD), commonly employed in 
discrete FO calculations (see for example [26], p. 68):

Definition 3. The Fractional Order Backward Difference-FOBD.

	 (∆αx) =   1
hα l= 0

L

∑ (–1)l
µ
α
l

¶
x(t ¡ lh).� (5)

Denote coefficients (–1)l(αl ) by dl:

	 dl = (–1)l
µ
α
l

¶
.� (6)

The coefficients (6) can be also calculated with the use of the 
following, equivalent recursive formula (see for example [4], 
p. 12), useful in numerical calculations:

	
d0 = 1

dl = 
³

1 ¡  1 + α
l

´
dl ¡ 1,  l = 1, …, L .

� (7)

It is proven in [3] that:

	
l=1

1

∑ dl = 1 ¡  α .� (8)

From (7) and (8) we obtain at once that:

	
l= 2

1

∑ dl = 1.� (9)

In (5) L denotes a memory length necessary to correct 
approximation of a non integer order operator. Unfortunately 
good accuacy of approximation requires to use a long memory 
L what can make difficulties during implementation.

The discrete, fractional order state equation using definition 
(5) is written as follows (see for example [7, 14]):

	
(∆L

αx)(t + h) = A+x(t) + B+u(t)
y(t) = C+x(t).

� (10)

where x(t) 2 RN is the state vector, u(t) 2 RP is the control, 
y(t) 2 RM is the output. A+, B+ and C+ are state, control and 
output matrices respectively. If we shortly denote k-th time 
instant: hk by k, then equation (10) turns to:

	
(∆L

αx)(k + 1) = A+x(k) + B+u(k)
y(k) = C+x(k).

� (11)

where:

	 A+ = hαA.� (12)

	 B+ = hαB.� (13)

	 C+ = C.� (14)

The solution of state equation (11) takes the form:

	 x(k + 1) = P+x(k) ¡ 
l= 2

L

∑ A+
l x(k ¡ l) + hαB+u(k)� (15)

where:

	 P+ = A+ + αI.� (16)

	 P+ = dl IN£N .� (17)

Finally the Final Value Thoerem (FVT) should be recalled. It 
allows to calculate the steady-state value of a time function 
described by the Laplace transform or the “z” transform. It is 
formulated as follows:

Theorem 1. Final Value Theorem for continuous time. Let f (t) 
is a function of time t and F(s) is its Laplace transform. Assume 
that F(s):
1.	has no poles in the right part of the complex plane,
2.	has maximally one pole on the imaginary axis: s = 0.

then:

	 lim
t!1

f (t) =  lim
s!0

sF(s).� (18)
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Theorem 2. Final Value Theorem for discrete time. Let f +(k) 
is a discrete function of time, defined in k time moments and 
F+(z) is its z-transform. Assume that F+(z):
1.	has no poles outside the unit circle,
2.	has maximally one pole on the unit circle: z = 1.

then:

	 lim
k!1

f +(k) =  lim
z!1

(z ¡ 1)F +(z).� (19)

3.	 The experimental system and its models

The simplified scheme of the considered heat plant is shown in 
Fig. 1. It has the form of a thin copper rod heated by an electric 
heater ∆xu long, localized at one end of rod. The output tem-
perature is measured using Pt-100 RTD sensors ∆x long located 
in points: 0.29, 0.50 and 0.73 of rod length. More details of the 
construction are given in the section “Experimental Results”.

The state matrix A is the diagonal matrix:

	 A = diag{λβ0
, λβ1

, …, λβN}� (21)

where:

	 λβn
 = – awπ βnβ ¡ Ra,  n = 0, 1, …, N .� (22)

In (22) β is the fractional order of the system with respect 
to length, aw and Ra denote coefficients of heat conduction 
and heat exchange. The spectrum σ  of the state operator A is 
expressed as underneath:

	 σ (A) = {λβ0
, λβ1

, …, λβN}.� (23)

From (22) it follows at once that λβ0
 > λβ1

 > … > λβN
.

The input operator B has the following form:

	 B = [b0, b1, …, bN ]T � (24)

where:

	 bn = 
xu, n = 0

2sin(nπxu)

nπ , n = 1, …, N .
� (25)

The output operator C is expressed as follows:

	 C =  
C1

C2

C3

.� (26)

Each row of the output operator C is associated to one RTD 
sensor:

	 Cj = [cj0, cj1, …, cjN ]  j = 1, 2, 3 � (27)

where:

	 cjn = 
xj2 ¡ xj1, n = 0,

2(sin(nπxj2) ¡ sin(nπxj1))
nπ , n = 1, …, N ,

	 j = 1, 2, 3.

� (28)

Coordinates x1 and x2 depend on sensor location on the rod 
and they are equal:

x = 0.29:  x1 = 0.26, x2 = 0.32
x = 0.50:  x1 = 0.47, x2 = 0.53
x = 0.73:  x1 = 0.70, x2 = 0.76

From (25) and (26) it turns out, that the control function 
b(x) and output function c(x) are the interval constant functions.

Fig. 1. The simplified scheme of the experimental system

The fundamental time continuous model describing the 
heat conduction in the rod is the partial differential equation of 
the parabolic type with the homogeneous Neumann boundary 
conditions at the ends, the homogeneous initial condition, the 
heat exchange along the length of rod and distributed control 
and observation. This equation with integer orders of both dif-
ferentiations has been considered in many papers, for example 
in [16‒18].

3.1. The time-continuous model. The time-continuous, non 
integer order model with respect to time using Caputo opera-
tor is given in [19]. The model considering the both time and 
space coordinates employing Caputo and Riesz operators is 
presented with details in papers [21, 22]. Here its finite dimen-
sional approximaton of size N, using GL operator is recalled. 
It takes the following form:

	
0
GLDt

αQ(t) = AQ(t) + Bu(t)
Q(0) = 0

y(t) = k0CQ(t).

� (20)

In (20) α > 0 denotes non integer order of the system with 
respect to time, Q(t) 2 RN + 1 is the state vector, u(t) 2 R is the 
control signal, y(t) 2 R3 is the output signal measured by RTD 
sensors, k0 is the coefficient necessary to fit the response of the 
model to experimental response.
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4.	 The proposed discrete model

The discrete time model follows directly from continuous 
model (20) after use FOBD (5). Then solution (15) takes the 
following form:

Q+(k + 1) = P+Q+(k) ¡ 
l= 1

L

∑A+
l Q+(k ¡ l) + B+u(k)

y+(k) = C+Q+(k).
�(29)

In (29) A+
l  is expressed by (17), P+, B+ and C+ take the fol-

lowing form:

	

P+ = diag{λ+
β0

, λ+
β1

, …, λ+
βN}

B+ = hαB

C+ = C

� (30)

where:

	 λ+
βn

 = α + hαλβn
 = α ¡ hα(awπ βnβ + Ra) .� (31)

In (22) is proven that the spectrum of the time-continuous 
system can be decomposed into single, seperated eigenvalues 
(analogically as in the integer order case). This property is 
mapped to discrete time system. Particularly the solution (29) 
can be decomposed to separated “subsolutions” associated to 
the single eigenvalues (31).

4.1. Decomposition of the system. The state vector Q+(k) of 
the discrete model (29) can be expressed as:

	 Q+(k) =  
q+

1(k)
…

q+
N(k)

.� (32)

The matrices P+ and A+
l  describing the solution of the discrete 

system (29) are diagonal matrices. Consequently the solution 
(29) can be decomposed into N independent modes, associated 
with n-th state variable Q+

n (k) and described by n-th eigenvalue. 
The n-th mode of solution for fixed memory length L takes the 
form as follows:

	
qn

+L(k + 1) = λ+
βn

qn
+(k) ¡ 

l= 2

L

∑ dl qn
+(k ¡ l) +

qn
+L(k + 1) + bn

+u+(k),  n = 0, …, N .

� (33)

For each memory length the solution takes the following form:

	
qn

+1(k + 1) = λ+
βn

qn
+(k) ¡ 

l= 2

1

∑ dl qn
+(k ¡ l) +

qn
+L(k + 1) + bn

+u+(k),  n = 0, …, N .

� (34)

Between input of the system and the j-th output the discrete 
transfer function G+

j (z–1) can be defined:

	 G j
+L1(z–1) = 

n=0

N

∑G+L, 1
nj (z–1)  j = 1, 2, 3.� (35)

The upper index “L” denotes the fixed memory length, index “1” 
denotes each memory length. The transfer function G+L

nj (z–1)  
associated to n-th mode of solution for fixed memory length 
L is as follows:
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Between input of the system and the j-th output the discrete
transfer function G+

j (z
−1) can be defined:

G+L∞
j (z−1) =

N

∑
n=0

G+L,∞
n j (z−1) j = 1,2,3. (35)

The upper index "L" denotes the fixed memory length, in-
dex "∞" denotes each memory length. The transfer function
G+L

n j (z
−1) associated to n-th mode of solution for fixed mem-

ory length L is as follows:

G+L
n j (z

−1) =
c+jnb+n z−1

1− z−1λ+
βn +

L
∑

l=2
dlz−l−1

j = 1,2,3. (36)

and analogically G+∞
n j (z−1) can be defined:

G+∞
n j (z−1) =

c+jnb+n z−1

1− z−1λ+
βn +

∞
∑

l=2
dlz−l−1

j = 1,2,3. (37)

4.2. Stability The stability conditions for the model (29)-(31)
are proven in the paper [20]. The fundamental result is that too
high order N of the considered discrete model can cause its
instability. Propositions describing the maximal permissible
order N assuring the preservation of the stability are recalled
here.

PROPOSITION 1. (Maximum size of model NsL assuring the
stability of the discrete model for fixed memory length L)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size NsL of finite-dimensional approxima-
tion assuring the stability of the discrete model (29) meets the
following inequality:

NsL ≤ Int







1+α −hα Ra +
L
∑

l=2
dl

hα awπβ




1
β



. (38)

PROPOSITION 2. (Maximum size of model Ns∞ assuring the
stability of the discrete model for each memory length)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size NsL of finite-dimensional approxima-
tion assuring the stability of the discrete model (29) meets the
following inequality:

Ns∞ ≤ Int

((
2+α −hα Ra

hα awπβ

) 1
β
)
. (39)

In (38) and (39) Int(x) denotes an integer number nearest to
x.
From (8) it turns out that condition (39) is the limit case of
(38) for L → ∞. Results of numerical calculations show that
the both propositions give practically the same result ([20]).

4.3. Accuracy The accuraccy of the considered model can be
described using approach given in papers [23] and [24]. The

steady-state error of the considered model is defined as fol-
lows:

ε = yss − y+ss. (40)

where yss and y+ss are steady-state responses of continuous and
discrete model respectively. They are equal:

yss = lim
t→∞

y(t). (41)

yss+ = lim
k→∞

y+(k). (42)

Both above responses can be calculated using Final Value The-
orem (FVT) (18) and (19) for continuous and discrete systems
respectively.
For time continuous system and the control in the form of the
Heaviside function: u(k) = 1(k) the steady state response is
equal:

yss =−CA−1B. (43)

With respect to (21)-(26) it is as follows:

yss = [yss
1 ,y

ss
2 ,y

ss
3 ]

T . (44)

where:

yss
j =

N

∑
n=0

yss
n j, j = 1,2,3. (45)

yss
n j =

c jnbn

λβn

, j = 1,2,3. (46)

Next the steady state response of the discrete system needs
to be given. Fixed memory length L and each memory length
need to be analysed separately. Using FVT Theorem (19) and
discrete transfer functions (36), (37) and with respect to (6),
(7), (8) and (9) we obtain the steady-state response of system
y+ss = [y+ssL,∞

1 ,y+ssL,∞
2 ,y+ssL,∞

3 ]T . Upper index "L" denotes the
fixed memory length, index "∞" denotes each memory length.
For fixed memory length the steady state response is equal:

y+ssL
j =

N

∑
n=0

yssL
n j , j = 1,2,3. (47)

where:

y+ssL
n j =

c+jnb+n

1−λ+
βn +

L
∑

l=2
dl

j = 1,2,3. (48)

Next the steady state response for each memory length equals
to:

y+ss∞
j =

N

∑
n=0

yss∞
n j j = 1,2,3.. (49)

where:

y+ss∞
n j =

c+jnb+n
2−λ+

βn
j = 1,2,3. (50)

With respect to (30) and (31) yssL
n j and yss∞

n j take the form:

y+ssL
n j =

hα c jnbn

1−α +
L
∑

l=2
dl −hα λβn

j = 1,2,3. (51)

y+ss∞
n j =

hα c jnbn

2−α −hα λβn
j = 1,2,3. (52)
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and analogically G+1
nj (z–1) can be defined:
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Between input of the system and the j-th output the discrete
transfer function G+

j (z
−1) can be defined:

G+L∞
j (z−1) =

N

∑
n=0

G+L,∞
n j (z−1) j = 1,2,3. (35)

The upper index "L" denotes the fixed memory length, in-
dex "∞" denotes each memory length. The transfer function
G+L

n j (z
−1) associated to n-th mode of solution for fixed mem-

ory length L is as follows:

G+L
n j (z

−1) =
c+jnb+n z−1

1− z−1λ+
βn +

L
∑

l=2
dlz−l−1

j = 1,2,3. (36)

and analogically G+∞
n j (z−1) can be defined:

G+∞
n j (z−1) =

c+jnb+n z−1

1− z−1λ+
βn +

∞
∑

l=2
dlz−l−1

j = 1,2,3. (37)

4.2. Stability The stability conditions for the model (29)-(31)
are proven in the paper [20]. The fundamental result is that too
high order N of the considered discrete model can cause its
instability. Propositions describing the maximal permissible
order N assuring the preservation of the stability are recalled
here.

PROPOSITION 1. (Maximum size of model NsL assuring the
stability of the discrete model for fixed memory length L)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size NsL of finite-dimensional approxima-
tion assuring the stability of the discrete model (29) meets the
following inequality:

NsL ≤ Int







1+α −hα Ra +
L
∑

l=2
dl

hα awπβ




1
β



. (38)

PROPOSITION 2. (Maximum size of model Ns∞ assuring the
stability of the discrete model for each memory length)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size NsL of finite-dimensional approxima-
tion assuring the stability of the discrete model (29) meets the
following inequality:

Ns∞ ≤ Int

((
2+α −hα Ra

hα awπβ

) 1
β
)
. (39)

In (38) and (39) Int(x) denotes an integer number nearest to
x.
From (8) it turns out that condition (39) is the limit case of
(38) for L → ∞. Results of numerical calculations show that
the both propositions give practically the same result ([20]).

4.3. Accuracy The accuraccy of the considered model can be
described using approach given in papers [23] and [24]. The

steady-state error of the considered model is defined as fol-
lows:

ε = yss − y+ss. (40)

where yss and y+ss are steady-state responses of continuous and
discrete model respectively. They are equal:

yss = lim
t→∞

y(t). (41)

yss+ = lim
k→∞

y+(k). (42)

Both above responses can be calculated using Final Value The-
orem (FVT) (18) and (19) for continuous and discrete systems
respectively.
For time continuous system and the control in the form of the
Heaviside function: u(k) = 1(k) the steady state response is
equal:

yss =−CA−1B. (43)

With respect to (21)-(26) it is as follows:

yss = [yss
1 ,y

ss
2 ,y

ss
3 ]

T . (44)

where:

yss
j =

N

∑
n=0

yss
n j, j = 1,2,3. (45)

yss
n j =

c jnbn

λβn

, j = 1,2,3. (46)

Next the steady state response of the discrete system needs
to be given. Fixed memory length L and each memory length
need to be analysed separately. Using FVT Theorem (19) and
discrete transfer functions (36), (37) and with respect to (6),
(7), (8) and (9) we obtain the steady-state response of system
y+ss = [y+ssL,∞

1 ,y+ssL,∞
2 ,y+ssL,∞

3 ]T . Upper index "L" denotes the
fixed memory length, index "∞" denotes each memory length.
For fixed memory length the steady state response is equal:

y+ssL
j =

N

∑
n=0

yssL
n j , j = 1,2,3. (47)

where:

y+ssL
n j =

c+jnb+n

1−λ+
βn +

L
∑

l=2
dl

j = 1,2,3. (48)

Next the steady state response for each memory length equals
to:

y+ss∞
j =

N

∑
n=0

yss∞
n j j = 1,2,3.. (49)

where:

y+ss∞
n j =

c+jnb+n
2−λ+

βn
j = 1,2,3. (50)

With respect to (30) and (31) yssL
n j and yss∞

n j take the form:

y+ssL
n j =

hα c jnbn

1−α +
L
∑

l=2
dl −hα λβn

j = 1,2,3. (51)

y+ss∞
n j =

hα c jnbn

2−α −hα λβn
j = 1,2,3. (52)
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  j = 1, 2, 3.� (37)

4.2. Stability. The stability conditions for the model (29‒31) are 
proven in the paper [20]. The fundamental result is that too high 
order N of the considered discrete model can cause its insta-
bility. Propositions describing the maximal permissible order 
N assuring the preservation of the stability are recalled here.

Proposition 1. Maximum size of model NsL assuring the sta-
bility of the discrete model for fixed memory length L. Let us 
consider the discrete model of heat transfer process described 
by (29). The size NsL of finite-dimensional approximation assur-
ing the stability of the discrete model (29) meets the following 
inequality:

	 NsL ∙ Int
1 + α ¡ hαRa + 

l = 2

L
∑ dl

hαawπ β

1
β

.� (38)

Proposition 2. Maximum size of model Ns1 assuring the sta-
bility of the discrete model for each memory length. Let us 
consider the discrete model of heat transfer process described 
by (29). The size NsL of finite-dimensional approximation assur-
ing the stability of the discrete model (29) meets the following 
inequality:

	 Ns1 ∙ Int

ÃÃ
2 + α ¡ hαRa

hαawπ β

!1
β

!
.� (39)

In (38) and (39) Int(x) denotes an integer number nearest 
to x.

From (8) it turns out that condition (39) is the limit case of 
(38) for L ! 1. Results of numerical calculations show that 
the both propositions give practically the same result ([20]).
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4.3. Accuracy. The accuraccy of the considered model can be 
described using approach given in papers [23] and [24]. The 
steady-state error of the considered model is defined as follows:

	 ε  = y ss ¡ y+ss.� (40)

where y ss and y+ss are steady-state responses of continuous and 
discrete model respectively. They are equal:

	 y ss =  lim
t!1

y(t).� (41)

	 y ss+ =  lim
k!1

y+(k).� (42)

Both above responses can be calculated using Final Value The-
orem (FVT) (18) and (19) for continuous and discrete systems 
respectively.

For time continuous system and the control in the form of 
the Heaviside function: u(k) = 1(k) the steady state response 
is equal:

	 y ss = – CA–1B.� (43)

With respect to (21‒26) it is as follows:

	 y ss = [y1
ss, y2

ss, y3
ss]

T� (44)

where:

	 yj
ss = 

n=0

N

∑ yss
nj ,  j = 1, 2, 3.� (45)

	 yss
nj  = 

cjnbn

λβn

,  j = 1, 2, 3.� (46)

Next the steady state response of the discrete system 
needs to be given. Fixed memory length L and each memory 
length need to be analysed separately. Using FVT Theorem 
(19) and discrete transfer functions (36, 37) and with respect 
to (6‒8) and (9) we obtain the steady-state response of system 
y+ss = 

£
y1
+ssL, 1, y2

+ssL, 1, y3
+ssL, 1¤T. Upper index “L” denotes the 

fixed memory length, index “1” denotes each memory length. 
For fixed memory length the steady state response is equal:

	 yj
+ssL = 

n=0

N

∑ yssL
nj ,  j = 1, 2, 3 � (47)

where:

	 y+ssL
nj  = 

c+
jn b+

n

1 ¡ λ+
βn + 

l = 2

L
∑ dl

  j = 1, 2, 3.� (48)

Next the steady state response for each memory length equals 
to:

	 yj
+ss1 = 

n=0

N

∑ yss1
nj   j = 1, 2, 3 � (49)

where:

	 y+ss1
nj  = 

c+
jn b+

n

2 ¡ λ+
βn

  j = 1, 2, 3.� (50)

With respect to (30) and (31) y ssL
nj  and y ss1

nj  take the form:

	 y+ssL
nj  = 

hαcjnbn

1 ¡ α + 
l = 2

L
∑ dl ¡ hαλβn

  j = 1, 2, 3 � (51)

	 y+ss1
nj  = 

hαcjnbn

2 ¡ α ¡ hαλβn
  j = 1, 2, 3.� (52)

Finally the steady-state error with respect to (40) takes the fol-
lowing form:

	 ε ssL, 1 =  ε1
ssL, 1, ε 2

ssL, 1, ε 3
ssL, 1 T

� (53)

where:

	 ε j
ssL, 1 = j yss

j  ¡ y+ssL, 1
j j,  j = 1, 2, 3.� (54)

With respect to (51) and (52):

	 ε j
ssL, 1 = j

n=0

N

∑ε ssL, 1
jn j .� (55)

Each component of (55) is as follows:

ε ssL
nj  = cjnbn

1 + 
l = 2

L
∑ dl ¡ α ¡ 2hαλβn

λβn

Ã

1 + 
l = 2

L
∑ dl ¡ α ¡ hαλβn

!   j = 1, 2, 3 � (56)

	 ε ss1
nj  = cjnbn

Ã
2 ¡ α ¡ 2hαλβn

λβn(2 ¡ α ¡ hαλβn)

!
  j = 1, 2, 3.� (57)

4.4. Convergence. The convergence can be analyzed with 
respect to order N or with respect to memory length L. Unfor-
tunately the analysis with respect to L can be done numerically 
only. However, this analysis with respect to N can be done 
analytically using approach given in the paper [23]. It is pre-
sented below.

The rate of convergence ROCN for the model of the size N 
is defined as the absolute value of the steady state value of the 
N-th mode of solution for the j-th output:

	 ROC L, 1
Nj  = j y+ssL, 1

Nj j.� (58)

where upper indices L and 1 denote fixed memory length and 
each memory length respectively, y+ssL, 1

Nj  is calculated using 
(51) and (52) with n = N. The size of model N∆L assuring the 
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predefined value ∆L of ROC for fixed memory length L can be 
estimated. It is described by the following proposition:

Proposition 3. Minimum size of model N∆L assuring the pre-
defined Rate of Convergence ∆L of the discrete model for 
fixed memory length L. Let us consider the discrete model of 
heat transfer process described by (29). The size N∆L of model 
assuring the predefined value ∆L of ROC meets the following 
inequality:

	

Non integer order, discrete, state space model of heat transfer process using Grünwald-Letnikov operator

Finally the steady-state error with respect to (40) takes the fol-
lowing form:

εssL,∞ =
[
εssL,∞

1 ,εssL,∞
2 ,εssL,∞

3

]T
. (53)

where:
εssL,∞

j =
∣∣∣yss

j − y+ssL,∞
j

∣∣∣ , j = 1,2,3. (54)

With respect to (51) and (52):

εssL,∞
j =

∣∣∣∣∣
N

∑
n=0

εssL,∞
jn

∣∣∣∣∣ . (55)

Each component of (55) is as follows:

εssL
n j = c jnbn




1+
L
∑

l=2
dl −α −2hα λβn

λβn

(
1+

L
∑

l=2
dl −α −hα λβn

)


 j = 1,2,3.

(56)

εss∞
n j = c jnbn

(
2−α −2hα λβn

λβn
(
2−α −hα λβn

)
)

j = 1,2,3. (57)

4.4. Convergence The convergence can be analyzed with re-
spect to order N or with respect to memory length L. Unfortu-
nately the analysis with respect to L can be done numerically
only. However, this analysis with respect to N can be done ana-
lytically using approach given in the paper [23]. It is presented
below.
The rate of convergence ROCN for the model of the size N is
defined as the absolute value of the steady state value of the
N-th mode of solution for the j-th output:

ROCL,∞
N j =

∣∣∣y+ssL,∞
N j

∣∣∣ . (58)

where upper indices L and ∞ denote fixed memory length and
each memory length respectively, y+ss∞

N j is calculated using
(51) and (52) with n = N. The size of model N∆L assuring
the predefined value ∆L of ROC for fixed memory length L can
be estimated. It is described by the following proposition:

PROPOSITION 3. (Minimum size of model N∆L assuring the
predefined Rate of Convergence ∆L of the discrete model for
fixed memory length L)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size N∆L of model assuring the predefined
value ∆L of ROC meets the following inequality:

N∆L ≥ Int




√√
S2

L +
8h2α aw

∆L
−SL

π
√

hα aw


 . (59)

where:

SL = 1−α +
L

∑
l=2

dl +hα Ra. (60)

In (59) Int(..) denotes the nearest integer value.

Proof. The condition ROCL
N j ≤ ∆L with respect to (25) and

(28) is equivalent to:

∆L ≤

∣∣∣∣∣
hα

SL +hα awπβ Nβ
∆L

∣∣∣∣∣ ·P. (61)

where:

P =
2

N2
∆Lπ2

∣∣∣∣sin
(

Nπ(x j2 − x j1)

2

)
cos

(
Nπ(x j2 + x j1)

2

)
·

·sin
(

Nπxu

2

)∣∣∣∣ .
(62)

The factor P expressed by (62) is not greater than 2
N2

∆Lπ2 , be-

cause the expression inside absolute value |..| does not exceed
one. It allows to assume that:

P ≤ 2
N2

∆Lπ2 . (63)

This gives the upper estimation of N∆L, but (61) takes to sim-
plier form:

∆L ≤

∣∣∣∣∣∣
2hα

N2
∆Lπ2

(
SL +hα awπβ Nβ

∆L

)
∣∣∣∣∣∣
. (64)

The expression inside |...| is always positive for SL > 0. This
allows to ignore the absolute value. Next to simplify further
calculations assume that β = 2. Then the (64) takes the form:

∆L ≤ 2hα

N2
∆Lπ2

(
SL +hα awπβ Nβ

∆L

) ⇐⇒

⇐⇒ ∆Lπ4hα awN4
∆L +∆Lπ2SLN2

∆L −2hα ≥ 0.

(65)

Solving the double quadratic inequality (65) we obtain directly
the condition (59) and the proof is completed.

The case of each memory length is the limit case for L → ∞
and it is expressed as follows:

PROPOSITION 4. (Minimum size of model N∆∞ assuring the
predefined Rate of Convergence ∆∞ of the discrete model for
each memory length)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size N∆∞ of model assuring the predefined
value ∆∞ of ROC meets the following inequality:

N∆∞ ≥ Int




√√
S2

∞ + 8h2α aw
∆∞

−S∞

π
√

hα aw


 . (66)

where:
S∞ = 2−α +hα Ra. (67)

In (66) Int(..) denotes the nearest integer value.

Proof. The each memory length is a limit case: L → ∞ of con-
dition (59). This gives:

S∞ = lim
L→∞

SL. (68)
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� (59)

where:

	 SL = 1 ¡ α + 
l =2

L

∑ dl + hαRa .� (60)

In (59) Int(‥) denotes the nearest integer value.

Proof. The condition ROC L
Nj ∙ ∆L with respect to (25) and (28) 

is equivalent to:

	 ∆L ∙ j hα

SL + hαawπ
βN β

∆L
j ¢ P� (61)

where:

	

P =  2
N 2
∆Lπ

2 jsin
Ã

Nπ (xj2 ¡ xj1)

2

!

cos
Ã

Nπ (xj2 + xj1)

2

!

¢

P = ¢ sin
Ã

Nπ xu

2

!

j .
� (62)

The factor P expressed by (62) is not greater than 2
N 2
∆Lπ 2

, be-

cause the expression inside absolute value j‥j does not exceed 
one. It allows to assume that:

	 P ∙  2
N 2
∆Lπ

2
.� (63)

This gives the upper estimation of N∆L, but (61) takes to sim-
plier form:

	 ∆L ∙ j 2hα

N 2
∆Lπ

2
¡
SL + hαawπ

βN β
∆L

¢ j.� (64)

The expression inside j…j is always positive for SL > 0. This 
allows to ignore the absolute value. Next to simplify further 
calculations assume that β = 2. Then the (64) takes the form:

	
∆L ∙  2hα

N 2
∆Lπ

2
¡
SL + hαawπ

βN β
∆L

¢  () 

 () ∆Lπ
4hαaw N 4

∆L + ∆Lπ
2SLN 2

∆L ¡ 2hα ¸ 0

� (65)

Solving the double quadratic inequality (65) we obtain directly 
the condition (59) and the proof is completed.� □

The case of each memory length is the limit case for L ! 1 
and it is expressed as follows:

Proposition 4. Minimum size of model N∆1 assuring the pre-
defined Rate of Convergence ∆1 of the discrete model for each 
memory length. Let us consider the discrete model of heat trans-
fer process described by (29). The size N∆1 of model assuring 
the predefined value ∆1 of ROC meets the following inequality:
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Finally the steady-state error with respect to (40) takes the fol-
lowing form:

εssL,∞ =
[
εssL,∞

1 ,εssL,∞
2 ,εssL,∞

3

]T
. (53)

where:
εssL,∞

j =
∣∣∣yss

j − y+ssL,∞
j

∣∣∣ , j = 1,2,3. (54)

With respect to (51) and (52):

εssL,∞
j =

∣∣∣∣∣
N

∑
n=0

εssL,∞
jn

∣∣∣∣∣ . (55)

Each component of (55) is as follows:

εssL
n j = c jnbn




1+
L
∑

l=2
dl −α −2hα λβn

λβn

(
1+

L
∑

l=2
dl −α −hα λβn

)


 j = 1,2,3.

(56)

εss∞
n j = c jnbn

(
2−α −2hα λβn

λβn
(
2−α −hα λβn

)
)

j = 1,2,3. (57)

4.4. Convergence The convergence can be analyzed with re-
spect to order N or with respect to memory length L. Unfortu-
nately the analysis with respect to L can be done numerically
only. However, this analysis with respect to N can be done ana-
lytically using approach given in the paper [23]. It is presented
below.
The rate of convergence ROCN for the model of the size N is
defined as the absolute value of the steady state value of the
N-th mode of solution for the j-th output:

ROCL,∞
N j =

∣∣∣y+ssL,∞
N j

∣∣∣ . (58)

where upper indices L and ∞ denote fixed memory length and
each memory length respectively, y+ss∞

N j is calculated using
(51) and (52) with n = N. The size of model N∆L assuring
the predefined value ∆L of ROC for fixed memory length L can
be estimated. It is described by the following proposition:

PROPOSITION 3. (Minimum size of model N∆L assuring the
predefined Rate of Convergence ∆L of the discrete model for
fixed memory length L)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size N∆L of model assuring the predefined
value ∆L of ROC meets the following inequality:

N∆L ≥ Int




√√
S2

L +
8h2α aw

∆L
−SL

π
√

hα aw


 . (59)

where:

SL = 1−α +
L

∑
l=2

dl +hα Ra. (60)

In (59) Int(..) denotes the nearest integer value.

Proof. The condition ROCL
N j ≤ ∆L with respect to (25) and

(28) is equivalent to:

∆L ≤

∣∣∣∣∣
hα

SL +hα awπβ Nβ
∆L

∣∣∣∣∣ ·P. (61)

where:

P =
2

N2
∆Lπ2

∣∣∣∣sin
(

Nπ(x j2 − x j1)

2

)
cos

(
Nπ(x j2 + x j1)

2

)
·

·sin
(

Nπxu

2

)∣∣∣∣ .
(62)

The factor P expressed by (62) is not greater than 2
N2

∆Lπ2 , be-

cause the expression inside absolute value |..| does not exceed
one. It allows to assume that:

P ≤ 2
N2

∆Lπ2 . (63)

This gives the upper estimation of N∆L, but (61) takes to sim-
plier form:

∆L ≤

∣∣∣∣∣∣
2hα

N2
∆Lπ2

(
SL +hα awπβ Nβ

∆L

)
∣∣∣∣∣∣
. (64)

The expression inside |...| is always positive for SL > 0. This
allows to ignore the absolute value. Next to simplify further
calculations assume that β = 2. Then the (64) takes the form:

∆L ≤ 2hα

N2
∆Lπ2

(
SL +hα awπβ Nβ

∆L

) ⇐⇒

⇐⇒ ∆Lπ4hα awN4
∆L +∆Lπ2SLN2

∆L −2hα ≥ 0.

(65)

Solving the double quadratic inequality (65) we obtain directly
the condition (59) and the proof is completed.

The case of each memory length is the limit case for L → ∞
and it is expressed as follows:

PROPOSITION 4. (Minimum size of model N∆∞ assuring the
predefined Rate of Convergence ∆∞ of the discrete model for
each memory length)
Let us consider the discrete model of heat transfer process de-
scribed by (29). The size N∆∞ of model assuring the predefined
value ∆∞ of ROC meets the following inequality:

N∆∞ ≥ Int




√√
S2

∞ + 8h2α aw
∆∞

−S∞

π
√

hα aw


 . (66)

where:
S∞ = 2−α +hα Ra. (67)

In (66) Int(..) denotes the nearest integer value.

Proof. The each memory length is a limit case: L → ∞ of con-
dition (59). This gives:

S∞ = lim
L→∞

SL. (68)
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� (66)

where:

	 S1 = 2 ¡ α + hαRa .� (67)

In (66) Int(‥) denotes the nearest integer value.

Proof. The each memory length is a limit case: L ! 1 of con-
dition (59). This gives:

	 S1 =  lim
L!1

SL � (68)

where SL is expressed by (60). The rest of the proof is identical 
as (61‒65).� □

The use of both conditions (59) and (66) gives practically 
the same result. It can be explained by the fact that the factor 
S1 in (66) is the limit case of factor SL in (59) and the sum 
(9) fastly goes to one. The simplification (63) gives the upper, 
“cautious” estimation of N∆L, 1. However it allows to analyze 
the convergence independently on size and location of heater 
and sensors.

Finally the size N reccommended for the model can be pro-
posed as follows:

	 N∆ < N < Ns .� (69)

5.	 Experimental results

Experiments were led using the experimental system shown 
with details in Fig. 2. The length of rod equals to 260 [mm]. The 
control signal in the system is the standard current 0‒20 [mA] 
given from analog output of the PLC. This signal is amplified to 
the range 0‒1.5 [A] and it is the input signal for the heater. The 
temperature distribution along the rod is measured by the stan-
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dard RTD sensors Pt-100. Signals from the sensors are directly 
read by analog inputs of the PLC in Celsius degrees. Data from 
PLC are collected by SCADA. The whole system is connected 
via PROFINET industrial network. The temperature distribu-
tion with respect to time and length is shown in the Fig. 3. 
The step response of the model was tested in time range from 
0 to Tf  = 300 [s] with sample time h = 1 [s], parameters of 

the model (20‒31) were calculated via the minimization of the 
MSE (Mean Square Error) cost function (70) using MATLAB 
fminsearch function. The parameters are given in the Table 1 
(see [20]).

	 MSE =   1
3Ks j =1

3

∑
k=1

Ks

∑
µ

y+
pj(k) ¡ y+

j (k)
¶2

.� (70)

Table 1 
Parameters of the heat plant, n = 13, L = 150

Parameter α β a Ra

value 0.9448 2.0336 0.0006 0.0531

In (70) Ks denotes the number of collected samples for one 
sensor, y+pj(k) and y+

j (k) are responses of plant and model in 
k-th time moment and at j-th output respectively.

The stability of the considered model is analysed in [20]. 
The use of conditions (38) and (39) from Propositions 1 and 2 
gives NsL ∙ 20, Ns1 ∙ 20.

The steady state error is analysed next. The error ε ss1
N 2  as 

a function of size N, calculated with respect to (54) for each 
memory length is shown in Fig. 4, the comparison steady 
state errors for each memory length vs fixed memory length 
is shown in the Fig. 5. Next the convergence of the considered 
model needs to be considered. In should be assumed that we 
need to find the size N∆L and N∆1 of model assuring the value 

Fig. 2. The construction of the experimental system

Fig. 3. The spatial-time temperature distribution in the plant
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∆N = 0.0005. The use of conditions (59) and (66) from Prop-
ositions 3 and 4 gives the values: NL = N1 ¸ 13. This result is 
verified by diagrams shown in Figs 6 and 7.

Finally, the order N of the model assuring the keeping sta-
bility and predefined rate of convergence is as follows:

13 ∙ N ∙ 20.

The comparison experimental step response to step response 
of the model with parameters given in the Table 1 and order 

Fig. 8. Comparison of experimental step response to step response 
of the model. Red line is the experimental step response, black line 

denotes the step response of the model
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Fig. 5. The comparison of steady state error ε ss1
N 2  for each memory 

length to fixed memory length
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of the model N = 13 and the order of the discrete GL operator 
equal L = 150 is given in Fig. 8. For diagrams in this figure the 
cost function (70) equals to: MSE = 0.0719.

6.	 Final conclusions

The final conclusions are as follows:
●	 The most important result is the analytical estimation of 

accuracy and convergence of the proposed model. This 
allows to optimize its size during digital implementation. 
Additionally the convergence does not depend on size and 
localization of the heater and sensors.

●	 The presented results can be generalized into class of frac-
tional order, linear systems with the diagonal state matrix 
and spectrum containing single, separated, real eigenval-
ues.

●	 Future studies of the presented issue will cover applying 
an implicit scheme , i.e. where in equation (10) we have 
A+x(t + h) on the right side. This scheme is expected to be 
more accurate and the choice of the step size h will not be 
as critical as in the explicit scheme considered in this paper.

●	 The numerical optimization of the presented model using 
biologically inspired optimization methods, for example 
Particle Swarm Optimization algorithm or Grey Wolf algo-
rithm is also planned to do. It can be explained by the fact 
that the value of order N is the only one possible to ana-
lytical estimation in the form of interval [Ns; N∆ ]. All other 
parameters of the model need to be numerically assigned 
only.
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