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Abstract. The artificial neural network method (ANN) is widely used in both modeling and optimization of manufacturing processes. Deter-
mination of optimum processing parameters plays a key role as far as both cost and time are concerned within the manufacturing sector. 
The burnishing process is simple, easy and cost-effective, and thus it is more common to replace other surface finishing processes in the 
manufacturing sector. This study investigates the effect of burnishing parameters such as the number of passes, burnishing force, burnishing 
speed and feed rate on the surface roughness and microhardness of an AZ91D magnesium alloy using different artificial neural network 
models (i.e. the function fitting neural network (FITNET), generalized regression neural network (GRNN), cascade-forward neural network 
(CFNN) and feed-forward neural network (FFNN). A total of 1440 different estimates were made by means of ANN methods using different 
parameters. The best average performance results for surface roughness and microhardness are obtained by the FITNET model (i.e. mean 
square error (MSE): 0.00060608, mean absolute error (MAE): 0.01556013, multiple correlation coefficient (R): 0.99944545), using the Bayes-
ian regularization process (trainbr)). The FITNET model is followed by the FFNN (i.e. MAE: 0.01707086, MSE: 0.00072907, R: 0.99932069) 
and CFNN (i.e. MAE: 0.01759166, MSE: 0.00080154, R: 0.99924845) models with very small differences, respectively. The GRNN model 
has noted worse estimation results (i.e. MSE: 0.00198232, MAE: 0.02973829, R: 0.99900783) as compared with the other models. As a result, 
MSE, MAE and R values show that it is possible to predict the surface roughness and microhardness results of the burnishing process with 
high accuracy using ANN models.
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The ball burnishing process is simple, practical and cost-ef-
fective, and it has started to frequently replace other surface 
treatment processes such as lapping, honing, grinding or pol-
ishing [8, 10]. It is preferred because of increasing surface 
roughness, fatigue strength and wear resistance of machine 
parts [8]. A schematic drawing of the ball burnishing process 
is shown in Fig. 1 [11]. During the burnishing process, a force 
is applied to the material surface by using hardened balls to 

1. Introduction

Magnesium and its alloys are widely used in the manufactur-
ing, aerospace, automotive and defense industries because of 
its low-density (1.74 g/cm3), good toughness, rigidity and high 
machinability as well as its high strength/weight ratio. The use 
of magnesium alloys has recently increased further with the 
development of industry and technology [1–3]. Magnesium is 
increasingly taking its place within the industry with the devel-
opment of technology [4, 5].

Surface roughness characteristics of machine parts used in 
the industry, especially in the manufacturing sector, are one of 
the factors that significantly affect machine performance and 
production cost [6]. Surface roughness plays a critical role in 
influencing the functional properties of machine parts due to 
friction, such as yield and tensile strength, fatigue strength, 
corrosion behavior and wear resistance [7–9]. The desired sur-
face roughness value in the workpiece is difficult to achieve 
by means of traditional machining methods such as turning, 
milling and grinding.

Fig. 1. Schematic drawing of the ball burnishing process [11]
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form a deformed layer on the surface. The amount of plastic 
deformation on the surface increases and the deformation hard-
ens on the surface.

Factors comprising the ball burnishing process include the 
number of passes, burnishing force, burnishing speed, feed rate, 
ball material, workpiece material, ball size and lubricant. They 
all affect surface quality. Only a sole, very limited study has 
been devoted to modeling the ball burnishing process using the 
artificial neural network (ANN) method [12], although many 
researchers have been experimentally investigating the effects 
of force, speed, feed and passes [13–23]. There are many studies 
on methods such as turning and milling, which are traditional 
chip removal processes in the literature: Karkalos et al. [24] 
focused on the milling of the Ti-6Al-4V ELI titanium alloy by 
milling and then modeling this process. It has been attempted to 
estimate the surface quality of the workpiece and to find the cut-
ting parameters required for minimum surface roughness. ANN 
models have been developed to allow for a more robust simula-
tion model. Das et al. [25] used the ANN method to improve the 
ability to determine the effect of surface roughness of cutting 
parameters on the machining of metal matrix composites. An 
estimation model has been derived by Ali and Dhar [26] on 
surface roughness and tool wear using the ANN method. Abdul-
lah et al. [27] applied turning at different parameters to deter-
mine the surface roughness of an AISI 4140 steel workpiece. 
They applied the ANN and Taguchi method to estimate the qual-
ity of the surface. Two different prediction methods were used 
in this study. The first one is ANN, relying on practical results, 
and the second is the method of regression analysis. The results 
show that neural networks are more effective than predictive 
regression analysis. Asilturk et al. [28] conducted a study on the 
estimation of surface quality after turning applied to an AISI 
4140 steel workpiece. In these models, the cutting parameters 
are used as the input surface roughness output and 81 exper-
iments are performed. The mean square error obtained using 
ANN is 0.002917120%. Jafarian et al. [29] researched various 
ANNs to minimize surface roughness and maximize tool life 
within the turning process. Three separate neural networks were 
used to predict outputs of the process by varying input machin-
ing parameters. A new method to train ANNs using evolutionary 
algorithms was proposed [29]. A comparison between the pre-
dicted results of the above-mentioned method and other ANNs 
trained by conventional methods has been made. Yalcin et al. 
[30] studied the cutting force, surface roughness and the tem-
perature effect of the AISI 1050 steel subjected to face milling 
under different cutting parameters. In addition, the effect of 
the cutting parameters was investigated with the aid of trained 
ANNs using the results obtained from the Taguchi L8 orthog-
onal design. Zuperl et al. [31] aimed at developing a reliable 
method for predicting 3D cutting forces during ball milling in 
their work. In this article, an ANN approach is used to develop 
a generalized model to estimate shear forces based on a series 
of intermittent cut conditions. The results obtained by applying 
a combination of the sigmoidal and Gaussian transfer function 
revealed that the accuracy of the neural network prediction is 
98%. Quiza et al. [32] conducted a study to predict tool wear 
using neural networks in hardened D2 AISI steel in their study. 

Two models were constructed out to predict tool wear for dif-
ferent values of cutting speed, feed and time. One of them was 
based on the multilayer perceptron neural network, and the 
other was based on statistical regression. The design parame-
ters and training process for the neural network were optimized 
using the Taguchi method. The results of the two models were 
analyzed and compared.

ANN methods are widely used to model and optimize the 
performance of manufacturing technologies. Determination of 
optimum processing parameters reduces cost and manufacturing 
time. The motivation of this study is to determine the optimum 
parameters for manufacturing low-cost and high-quality prod-
ucts and to shorten the production time of the manufacturing 
process using ANN methods.

The AZ91D magnesium alloy was burnished by using the 
mechanical surface enhancement technique of the ball burnish-
ing operation designed by means of the L18 orthogonal Taguchi 
method. It is desirable to estimate the best values using the 
results obtained from this operation.

The purpose of this study is to predict surface roughness and 
microhardness of the AZ91D magnesium alloy using four ANN 
models. i.e. FFNN and FITNET, CFNN and GRNN. Burnish-
ing parameters such as the number of passes, burnishing force, 
burnishing speed and feed rate have been used as input of the 
prediction ANN models.

2. Materials and methods

This section of the paper presents the Taguchi method and its 
use in the ball burnishing process of the AZ91D magnesium 
alloy, along with the experimental procedure, a review of ANN 
methods and features of the dataset which is used to develop 
ANN models.

2.1. Experimental design using the Taguchi method. The 
Taguchi method is widely used in engineering analysis. It con-
stitutes an important tool for reducing the number of tests to 
be applied in experimental work in the manufacturing sector to 
a considerable extent and designing high-quality and cost-ef-
fective systems. [33]. Taguchi’s parameter design provides 
a simple and systematic approach to optimizing the design for 
performance, quality and cost while remaining an important tool 
for robust design [33–37]. Selection of the orthogonal array is 
one of the important steps in the Taguchi method and it helps 
carry out experiments to determine optimum parameters.

The first step in the Taguchi method is the selection of an 
orthogonal array suitable for the parameters. The total degrees 
of freedom are calculated to select the appropriate orthogonal 
array for the design of the experiments. In this study, the bur-
nishing force, burnishing speed and feed rate parameters are 
level 3 and passes are level 2. As a result, the degree of free-
dom is 11. According to the literature, the selected orthogonal 
array should have a degree of freedom greater than or equal to 
those of burnishing parameters in the Taguchi method [36]. Tak-
ing the variables into account, the Taguchi L18(22£33) mixed 
orthogonal array was chosen as a suitable design for burnishing 
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experiments (Table 1). The ball burnishing process parameters 
and their limits are presented in Table 2.

Table 1 
Experimental layout using an L18 orthogonal array

Experiment 
number

Number 
of passes

Burnishing 
force

Burnishing 
speed

Feed 
rate

01 1 1 1 1
02 1 1 2 2
03 1 1 3 3
04 1 2 1 1
05 1 2 2 2
06 1 2 3 3
07 1 3 1 2
08 1 3 2 3
09 1 3 3 1
10 2 1 1 3
11 2 1 2 1
12 2 1 3 2
13 2 2 1 2
14 2 2 2 3
15 2 2 3 1
16 2 3 1 3
17 2 3 2 1
18 2 3 3 2

Table 2 
Ball burnishing parameters and their limits

Factors
Level

1 2 3

Number of passes 1 2 –

Burnishing force (N) 50 150 250

Burnishing speed (rpm) 200 400 600

Feed rate (mm/min) 0.10 0.25 0.50

2.2. Experimental procedure. AZ91D magnesium alloy bars 
were used in ball burnishing experiments. In the experiments, 
two samples of the AZ91D magnesium alloy were used with 
a diameter of 35 mm and length of 200 mm. Each sample was 
divided into nine different sections, of a length of 25 mm and 
with a 5 mm slit between the pieces. Experiments were per-
formed by applying different parameter values to each segment.

The ball burnishing process was performed on a CNC lathe 
machine (Fig. 2). The experimental set-up used for the burnish-
ing experiments is shown in Fig. 3. A force gauge device was 
used to accurately determine force parameter values for the 
ball burnishing process. In these experiments, the ball used for 
burnishing was made of AISI 52100 steel with a hardness of 
105 N/mm2 and a diameter of 18 mm. The AZ91D magnesium 
alloy was burnished with a ball burnishing tool which has a Bri-
nell hardness value of 78 N/mm2. These hardness differences 
between the tool and the workpiece have a strong effect on 

the crushing resistance, depending on the compressive force 
applied.

Microhardness tests were carried out using a digital micro-
hardness tester. The samples obtained were then subjected to 
a load of 9.81 N for 15 seconds as part of the Vickers micro-
hardness test. Test results were evaluated by taking three valid 
measurements from all samples.

Surface roughness values were taken on three different 
segments of the workpiece material using portable roughness 
equipment.

2.3. Artificial neural networks (ANNs). A group of massively 
parallel architectures is known as ANNs, and they can learn and 
generalize from examples and experience [38]. Like neurons in 
the brain, a neural network includes processing elements. These 
processing elements form many simple computational elements 
that are lined up in layers. Through an ANN, the experimental 
results can be reproduced and approximated [39]. Four ANN 
models are proposed in this paper.

2.3.1. Feed-forward neural network (FFNN) and function 
fitting neural network (FITNET). FFNN is the simplest 
ANN model. Input, hidden and output layers form the FFNN 

Fig. 2. Liouy Hsing GNC-450L CNC lathe

Fig. 3. Experimental set-up
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(Fig. 4). A backpropagation learning algorithm is used in these 
networks for learning. Weighted input signals are summed up 
and transferred by a nonlinear activation function. After that, 
the response of the network and actual observation results are 
compared. Then the network error, which is propagated back-
ward through the system, is calculated. Afterwards, the algo-
rithm updates the weight coefficients [40].

FITNET is a type of FNNN and it fits an input-output rela-
tionship. A FFNN that has one hidden layer and enough neurons 
in the hidden layers can be used for fitting any finite input-out-
put mapping problem. FITNET uses TANSIG and PURELIN 
transfer functions in the hidden and output layers by default, 
respectively [41].

2.3.2. Cascade forward neural network (CFNN). CFNN has 
an input layer, one or more hidden layers and an output layer. 
Each subsequent layer of CFNN has weights and biases. All 
previous layers send weights to the following layers. The last 
layer of the network is the output layer [42]. The difference 
between CFNN and FFNN lies in the weight connection that 
starts from the input layer and continues along the following 
layers. Additional connections might improve the desired ANN 
learning speed [41].

2.3.3. Generalized regression neural network (GRNN). 
GRNN is based on kernel regression networks and it is a varia-
tion of radial basis neural networks. Backpropagation networks 
require an iterative training procedure. In contrast, GRNN does 
not require any training procedure and this fact makes it faster 
than the backpropagation networks. GRNN approximates any 
arbitrary function between input and output vectors and then 
function estimation is drawn directly from the training data [43].

2.4. Dataset design. The experimental results are used on data-
sets for different ANN models. A dataset comprises 72 samples 
and 6 attributes. The number of passes, burnishing force, bur-
nishing speed and feed rate attributes are used as input data. 
Surface roughness and microhardness attributes are used as 
output data. The dataset’s descriptive statistics are shown in 
Table 3.

The generated prediction models are evaluated by using six-
fold cross-validation. The average error of estimates is predicted 

Table 3 
Dataset’s descriptive statistics

Attributes Minimum Maximum Mean Standard 
deviation

Inputs Number  
of passes

1 2 1.5 0.50

Burnishing 
force

50 250 150 82.22

Burnishing 
speed

200 600 400 164.44

Feed rate 0.10 0.50 0.28 0.17

Fig. 4. ANN functional representation of input/output data

Inputs

Number of passes

Burnishing force

Burnishing speed

Feed rate

Outputs

Surface Roughness

Microhardness

ANN Models

by means of cross-validation using the dataset with one individ-
ual attribute removed. 5/6 (i.e. 60 samples) of the training and 
1/6 (i.e. 12 samples) of the test data form the cross-validated 
datasets. These parameters are used in the ANN networks as 4 
input and 2 output parameters, as shown in Fig. 4.

Three performance measures (R, MSE and MAE) are cal-
culated for all prediction models. Correlations between target 
and predicted values are measured with R. The average of the 
squares of the errors is measured with MSE. The closeness of 
the predictions to the target values is measured with MAE. The 
values of ANN design parameters are selected empirically. The 
best values are chosen after a number of experiments. Summa-
ries of mathematical equations of these performance measures 
are given in equations 1, 2 and 3, respectively [44].

 R = 
∑n

i =1(Oi ¡ Pi)
2

∑n
i =1(Oi ¡ Om)

2
 (1)

 MSE =  1
n i =1

n

∑ (Oi ¡ Pi)
2  (2)

 MAE =  1
n i =1

n

∑ jOi ¡ Pi j (3)

where n is the number of data points used for testing, Oi is 
the observed value, Om is the average of the observed values 
and Pi is the predicted value. MATLAB (R2015b 64 bit) [41] 
was utilized for designing the proposed models and obtaining 
performance measures.

3. Results and discussion

3.1. Experimental results. In this study, the process parame-
ters and experimental results obtained after the ball burnishing 
process are presented in Table 4. Ra is the value that defines 
the average of the grooves and peaks of a surface. The value of 
Rz is the average of the five highest and lowest heights. HV is 
the value obtained as a result of the Vickers microhardness test. 
Fig. 5. shows the variation of the S/N ratios calculated by taking 
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the results obtained from the tests into account. The “smaller 
is better”approach is used for surface roughness calculations 
and the “larger is better”approach is used for microhardness 
calculations.

In Fig. 5, it is seen that when the number of passes and 
force are increased, the roughness value of the surface to which 
the burnishing is applied decreases. As the number of passes 
increases, surface roughness improves due to excess microhard-
ness on the surface [13, 45]. As the force applied to the surface 
increases, the surface roughness value decreases. This is due to 
the reduction of micro-cavities in the surface of the sample by 
increasing the pressure applied onto the surface [13]. The vari-

ation of burnishing speed does not cause a significant change 
in surface roughness. Moreover, as the feed value increases, 
surface roughness also increases. Thus, the surface properties 
deteriorate. Plastic deformation at the lower feed is more inten-
sive and causes more increase in surface hardness. It seems 
that there more deformations occur at low feed rates. This is 
because the work hardening effect on the burnished surface 
is greater at lower feed rates [46]. Optimized ball burnishing 
parameters designed to obtain a smoother surface according to 
the graph generated by calculating the S/N ratios are: the num-
ber of passes: 2, burnishing force of 250 N, burnishing speed 
of 200 rpm and feed rate of 0.1 mm/min.

Fig. 5. Effects of parameters on surface roughness and microhardness

Table 4 
Experimental results of the ball burnishing process

Experiments
Parameters Experimental results S/N ratio (dB)

Number of passes Burnishing force Burnishing speed Feed rate Ra (µm) Rz (µm) HV Ra (µm) HV

1 1 50 200 0.10 0.481 2.479 088.71 6.36 38.96
2 1 50 400 0.25 0.631 3.086 089.09 3.99 38.99
3 1 50 600 0.50 0.718 3.491 096.00 2.88 39.64
4 1 150 200 0.10 0.434 2.277 080.68 7.25 38.13
5 1 150 400 0.25 0.519 2.824 086.26 5.70 38.71
6 1 150 600 0.50 0.550 3.026 088.61 5.19 38.94
7 1 250 200 0.25 0.448 2.373 095.06 6.97 39.56
8 1 250 400 0.50 0.559 2.885 095.01 5.05 39.55
9 1 250 600 0.10 0.424 2.160 095.86 7.45 39.63

10 2 50 200 0.50 0.599 3.113 087.25 4.44 38.81
11 2 50 400 0.10 0.402 2.314 086.60 7.90 38.75
12 2 50 600 0.25 0.480 2.488 087.21 6.38 38.81
13 2 150 200 0.25 0.407 2.224 091.25 7.80 39.20
14 2 150 400 0.50 0.508 2.682 090.95 5.88 39.17
15 2 150 600 0.10 0.358 2.007 090.60 8.93 39.14
16 2 250 200 0.50 0.504 2.801 089.27 5.95 39.01
17 2 250 400 0.10 0.336 2.117 094.98 9.47 39.55
18 2 250 600 0.25 0.409 2.394 102.70 7.76 40.23
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As the speed and the number of passes increase, the micro-
hardness value of the material increases at a small rate. When 
the force increases from 50 N to 150 N, microhardness drops 
very slightly but it then increases a little between 150 N and 
250 N. Due to increased metal flow, the cavities on the surface 
of the sample are decreasing. For this reason, the deformation 
of the material increases. The metal flow also increases and 
therefore the voids on the surface of the sample are reduced. In 
addition, the deformation of the material increases [45]. Micro-
hardness is increased when the speed is increased to 200 rpm 
and 600 rpm. Also, when feed increases from 0.1 mm/min to 
0.25 mm/min, microhardness increases but then it is reduced 
from 0.25 to 0.5. The reason is that at low feed, the effect of 
work hardening is higher on the surface to which burnishing 
is applied [46, 47]. In order to obtain a better microhardness 
value in the experiments, the burnishing parameters which are 
optimized based on the S/N ratios are as follows: the number of 
passes: 2, burnishing force: 250 N, burnishing speed: 600 rpm 
and feed rate: 0.25 mm/min. The graph of the effects of param-
eters on surface roughness and microhardness was obtained 
using the MINITAB 18 software program on the basis of exper-
imental results. Furthermore, the S/N ratios are calculated using 
the MINITAB 18 software program.

Schematic representation of the ball burnishing force value 
is shown in Fig. 6. The force (Fz) is the actual force. The force 
applied to the ball is the measured force between the forces 
generated during the burnishing process. The measurement 
process was performed instantaneously. The burnishing force 
depends strongly on the burnishing speed and even feed [48]. 
According to the study by Kovacz et al. [48], the burnishing 
force is measured after the surface’s smoothness of the work-
piece is eliminated. It is strongly dependent on the burnishing 
speed and even feed.

1500. The minimum gradients were used as 1£10‒7, 1£10‒9 
and 1£10‒11. TANSIG and LOGSIG transfer functions are used 
for the estimations. Hidden layers of the network structure are 
designed as 1, 2 and 3 layers. Each layer is tested with 5, 10, 
15, 20 and 25 neurons.

All these parameters are used together to make 270 dif-
ferent estimates. Weight and biases are randomly initialized. 
Also, train function, learning rate and momentum were used 
as trainbr, 0.02 and 0.5, respectively.

FITNET and CFNN methods have been tested with same 
parameters as the FFNN method. Only the FITNET method 
was tested with both trainbr and trainlm train functions. So, 
540 different estimates were made for the FITNET method and 
270 for CFNN.

Spread, which determines the generalization capability of 
GRNN, is the only parameter to change for the GRNN method. 
It was adopted between 1 and 90. For each spread value, the 
GRNN method has been run 4 times so that 360 different esti-
mates were obtained. Table 6 lists the parameters used in the 
GRNN method.

Table 6 
Parameters of GRNN method

Network type Estimates Spread Number of trials

GRNN 360

1

90
2

50
90

Table 7 includes MSE, MAE and R results for surface rough-
ness and microhardness attributes in the direction of the train 
function, the number of layers and spread parameters according 

Fig. 6. Force generated during ball burnishing [48]

3.2. Prediction results of ANN models. In this study, a total 
of 1440 different estimates were made by means of the pro-
posed methods for different parameters. 270, 540, 270 and 360 
estimates were made by FFNN, FITNET, CFNN and GRNN, 
respectively.

According to Table 5, the FFNN, FITNET and CFNN meth-
ods have been tested with epoch numbers of 500, 1000 and 

Table 5 
Parameters of FFNN, FITNET and CFNN methods

N
et

w
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k 
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pe

Es
tim

at
es

Ep
oc

h 
nu

m
be

r

G
ra

di
en

t Trasfer 
function

Hidden 
layer of 
network 
structure N

eu
ro

ns

FFNN 270

0500

1000

1500

1£10‒7

1£10‒9

1£10‒11

TANSIG

LOGSIG

1

2

3

5
10
15
20
25

FITNET 540

0500

1000

1500

1£10‒7

1£10‒9

1£10‒11

TANSIG

LOGSIG

1

2

3

5
10
15
20
25

CFNN 270

0500

1000

1500

1£10‒7

1£10‒9

1£10‒11

TANSIG

LOGSIG

1

2

3

5
10
15
20
25
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to the four ANN models. When the results are examined, the 
following conclusions are reached:
●	The best average performance results for surface roughness 

and microhardness were obtained using the “trainbr”training 
function in a two-layer FITNET model with 1000 epoch 
numbers using 20 neuron numbers in the LOGSIG trans-
fer function with 1x10‒11 gradients. “trainbr”is a network 
training function that updates the weight and bias values 
according to Levenberg-Marquardt optimization. It min-
imizes a combination of squared errors and weights, and 
then determines the correct combination so as to produce 
a network that generalizes well. The process is referred to 
as Bayesian regularization (Matlab, 2016) [41]

●	The surface roughness value is best predicted by the 
two-layered FITNET model with “trainbr”training function.

●	Optimum R and MSE values for microhardness are accom-
plished with the FFNN model, which uses a single-layer 
“trainbr”train function.

●	The best MAE value for microhardness is obtained with 
the FITNET model, which uses a three-layer “trainlm”train 
function.

●	The CFNN model showed average success in all results.
●	The higher the number of layers in the CFNN model, the 

worse the results obtained.
●	The GRNN model revealed worse results than other models 

for all R, MAE and MSE values.
●	As the value of spread increased, the results of the GRNN 

model deteriorated. Best results are achieved when the 
spread value is 1.

●	For the FITNET and FFNN models, clear difference in the 
number of layers could not be determined.

Table 8 presents average performance results of surface 
roughness and microhardness prediction using ANN prediction 
models. If a general assessment is made according to Table 5 
and Table 8:
●	The best results are obtained with the FITNET model.
●	The FITNET model is followed by the FFNN and CFNN 

models with very small differences, respectively.
●	The GRNN model achieved worse estimation results than 

other models, albeit very quickly, since it did not require 
a recurrent training procedure.

●	When the average MSE, MAE and R values for surface 
roughness and microhardness are examined, the best results 
are obtained with the two-layered FITNET model with 
“trainbr”training function.

When the best results are obtained, the following values 
have been reached.
●	The minimum MSE value is calculated as 0.00110859 for 

surface roughness and 0.00008892 for microhardness.
●	0.02392673 and 0.00702630 values are calculated as best 

MAE value for surface roughness and microhardness, 
respectively.

●	The maximum R-value is calculated as 0.99944545 for sur-
face roughness and 0.99995554 for microhardness.

●	As evidenced by the values obtained, better results were 
obtained in predicting the microhardness attribute.

Table 7 
Performance results of surface roughness and microhardness prediction using ANN prediction models  

(Best results are outlined in bold)

Network 
type

Layer 
number

Train 
function

Surface roughness Microhardness

MSE MAE R MSE MAE R

FFNN 1 trainbr 0.00176266 0.03153937 0.99911813 0.00008892 0.00741008 0.99995554
FFNN 2 trainbr 0.00139800 0.02833287 0.99930066 0.00011303 0.00773669 0.99994348
FFNN 3 trainbr 0.00135803 0.02682043 0.99932069 0.00010012 0.00732129 0.99994994

FITNET 1 trainlm 0.00130431 0.02430685 0.99934757 0.00009662 0.00724314 0.99995169
FITNET 2 trainlm 0.00163820 0.03022628 0.99918050 0.00012326 0.00821088 0.99993837
FITNET 3 trainlm 0.00147856 0.02803173 0.99926042 0.00011331 0.00702630 0.99994334
FITNET 1 trainbr 0.00280989 0.03475843 0.99859368 0.00018883 0.01011976 0.99990558
FITNET 2 trainbr 0.00110859 0.02392673 0.99944545 0.00010357 0.00719353 0.99994822
FITNET 3 trainbr 0.00207860 0.03532469 0.99896008 0.00019316 0.01012355 0.99990342
CFNN 1 trainbr 0.00150250 0.02776128 0.99924845 0.00010059 0.00742205 0.99994971
CFNN 2 trainbr 0.00153044 0.02842476 0.99923443 0.00010561 0.00753309 0.99994719
CFNN 3 trainbr 0.00160366 0.02962260 0.99919783 0.00011638 0.00793599 0.99994181
GRNN Spread = 10 0.00380355 0.04947831 0.99809621 0.00016109 0.00999828 0.99991945
GRNN Spread = 20 0.00631043 0.06124830 0.99683921 0.00019560 0.01115283 0.99990220
GRNN Spread = 50 0.00703572 0.06610467 0.99647579 0.00022721 0.01236774 0.99988639
GRNN Spread = 90 0.00675712 0.06572829 0.99661457 0.00029595 0.01316236 0.99985201
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Figure 7 and 8 demonstrate the observed and predicted sur-
face roughness values and microhardness values, respectively. 
The results obtained as a result of the experiments and the pre-
dicted data are very close to each other. In Table 9, the surface 

roughness and microhardness values obtained from the exper-
iments are compared with the values obtained using the ANN 
models. As a result of the comparison, it is seen that the results 
are almost identical with the ANN models’ results.

Table 8 
Average performance results of surface roughness and microhardness prediction using ANN prediction models  

(Best results are outlined in bold)

Network type Layer number Train function
Average results for surface roughness and microhardness

MSE MAE R

FFNN 1 trainbr 0.00092579 0.01947472 0.99911813

FFNN 2 trainbr 0.00072907 0.01707086 0.99930066

FFNN 3 trainbr 0.00075551 0.01803478 0.99932069

FITNET 1 trainlm 0.00070047 0.01577500 0.99934757

FITNET 2 trainlm 0.00088073 0.01921858 0.99918050

FITNET 3 trainlm 0.00079594 0.01752901 0.99926042

FITNET 1 trainbr 0.00149936 0.02243909 0.99859368

FITNET 2 trainbr 0.00060608 0.01556013 0.99944545

FITNET 3 trainbr 0.00113588 0.02272412 0.99896008

CFNN 1 trainbr 0.00080154 0.01759166 0.99924845

CFNN 2 trainbr 0.00081803 0.01797892 0.99923443

CFNN 3 trainbr 0.00086002 0.01877929 0.99919783

GRNN Spread = 10 0.00198232 0.02973829 0.99900783

GRNN Spread = 20 0.00325301 0.03620057 0.99837071

GRNN Spread = 50 0.00363147 0.03923620 0.99818109

GRNN Spread = 90 0.00352653 0.03944533 0.99823329

Table 9 
Comparison of the results obtained with the ANN models and the experimental results

Sample 
number

Number 
of 

passes

Burnishing 
force

Burnishing 
speed

Feed 
rate

Observed 
surface 

roughness

Observed 
hardness

Predicted 
surface 

roughness

Predicted 
hardness

Success rate 
of surface 
roughness 
prediction

Success 
rate of 

microhardness 
prediction

1 1 50 200 0.10 0.451 87.89 0.475 87.93 0.946 0.999
2 2 250 400 0.10 0.336 94.98 0.327 96.25 0.973 0.986
3 1 50 600 0.50 0.686 98.25 0.711 96.10 0.963 0.978
4 2 50 400 0.10 0.393 85.08 0.391 84.70 0.994 0.995
5 2 250 400 0.10 0.374 92.44 0.349 95.47 0.933 0.967
6 1 50 600 0.50 0.718 96.00 0.712 95.14 0.991 0.991
7 1 150 200 0.10 0.434 80.68 0.421 80.97 0.970 0.996
8 1 250 200 0.25 0.447 98.98 0.453 97.26 0.986 0.982
9 1 250 600 0.10 0.488 95.97 0.471 96.68 0.965 0.992

10 1 50 200 0.10 0.503 90.20 0.542 91.02 0.922 0.990
11 2 150 600 0.10 0.358 90.60 0.371 92.36 0.963 0.980
12 2 150 400 0.50 0.490 92.44 0.476 92.89 0.971 0.995

Average success rate 0.964 0.987
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4. Conclusions

In this paper, the effect of the burnishing parameters (number 
of passes, burnishing force, burnishing speed and feed rate) on 
surface roughness and microhardness were investigated using 
four artificial neural network models (FFNN, FITNET, CFNN, 
GRNN). The experimental design was carried out using the 
Taguchi method and the results obtained were compared with 
the prediction results of ANN models. The data obtained from 
the experiments are used as input values for the ANN method. 
Surface roughness and microhardness values of the material 
(AZ91D) have been estimated with very minor errors with-
out performing the ball burnishing process. It is thus possi-
ble to manufacture high quality products at low cost, and to 

shorten the production period of the manufacturing process 
with the use of the ANN method in the manufacturing sector. 
The best average performance results for surface roughness 
and microhardness were obtained using the “trainbr”training 
function in a two-layer FITNET model with 1£10 ‒11 gradient 
in LOGSIG transfer function, 20 neurons and 1000 epochs. 
The performance of the models can be summarized as fol-
lows: the FITNET model achieved average performance results 
of 0.00060608, 0.01556013 and 0.99944545 for MSE, MAE 
and R, respectively. It is followed by the FFNN model with 
0.00072907 for MSE, 0.01707086 for MAE and 0.99932069 for 
R values. Also, the CFNN model achieved average results close 
to the FFNN model with MSE, MAE and R at 0.00080154, 
0.01759166 and 0.99924845, respectively. The GRNN approach, 

Fig. 7. Relation of the predicted values to the obtained surface roughness values

Fig. 8. Relation of the predicted values to the obtained microhardness values
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however, has obtained worse estimation results than the other 
models. When the average MSE, MAE and R values for surface 
roughness and microhardness are examined, the best results 
are obtained with the two-layer FITNET model with “train-
br”training function. In this study, the success rates of the 
surface roughness and microhardness prediction results were 
yielded as 0.964 and 0.987, respectively, when using the ANN 
models. These results stand as sound proof that the usage of 
ANN models provides for time- and cost-saving in experi-
mental studies.
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