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Abstract

Various trading strategies have been proposed that use estimates of the Hurst
coefficient, which is an indicator of long-range dependence, for the calculation
of buy and sell signals. This paper introduces frequency-domain tests for long-
range dependence which do, in contrast to conventional procedures, not assume
that the number of used periodogram ordinates grow with the length of the time
series. These tests are applied to series of gold price returns and stock index
returns in a rolling analysis. The results suggest that there is no long-range
dependence, indicating that trading strategies based on fractal dynamics have
no sound statistical basis.
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1 Introduction

In order to describe the long-range dependence of a financial time series, one often
uses the Hurst coefficient H, which is related to the fractional differencing parameter
d via H = d+ 0.5: H = 0.5 is indicative of no long-range dependence, whereas
H > 0.5 corresponds to trend-reinforcing behavior and H < 0.5 to a mean-reverting
behavior. Building on earlier work by Carbone et al. (2004), De Souza and Gokcan
(2004) and Batten et al. (2013), Auer (2016a) suggested a trading strategy that takes
a long position when H > 0.7 A B > 05 0or H < 03 A B < 0.5, and a short
position when H < 0.3 A B > 05o0r H > 0.7 A B < 0.5, where B expresses the
ratio of positive returns to the total number of returns and H and B are computed
using a rolling window over w = 240 trading days. When 0.3 < H < 0.7, three-
month treasury bills are purchased. Applying this trading strategy to daily time
series of gold, silver and gold-silver spread returns (from January 1979 to March 2015)
and including transaction costs, his strategy outperformed the buy-and-hold strategy
regardless of the method used to estimate H. For the periodogram regression method
for example, developed by Geweke and Porter-Hudak (1983), he only used the first
K = |w%3] = |240°3°| = 6 Fourier frequencies. However, Reschenhofer at al.
(2018) argue that “while choosing a very small value of K makes perfect sense in the
case of macroeconomic time series with large business cycles, the situation is quite
different in the case of series of log prices of stocks or commodities. In the latter
case, short-run effects are much less severe (if at all), hence the number K of included
Fourier frequencies should be much larger”.

Another application of the Hurst coefficient can be found in stock markets. Due to
a considerable number of publications claiming an increase of efficiency in emerging
markets over time, Cajueiro and Tabak (2004) and Auer (2016b) computed the Hurst
coefficient to verify this claim and found a downward trend in the Hurst coefficient.
However, this downward trend does not necessarily have to be facilitated by a change
of long-range dependence over time. Indeed, Reschenhofer at al. (2018) observed
that the autocorrelation of stock returns changed from positive to negative in the last
decades, which implies in the case of a simple AR(1) model that the maximum of the
spectral density at frequency zero becomes a minimum and the slope of the spectral
density, on which the estimation of d is based, changes accordingly.

More reliable results can be obtained when a formal statistical test is employed.
Conventional tests are based on the asymptotic normality of semiparametric
estimators of d which only use the periodogram ordinates at the lowest frequencies
in order to avoid interference from short-range dependencies. Thereby it is assumed
that both the length n of the time series and the number K of used periodogram
ordinates are large and that K is small relative to n (Geweke and Porter-Hudak, 1983;
Robinson, 1995). Unfortunately, this assumption is often implausible in practice,
particularly when d is estimated over a rolling window. A parametric approach based
on fractionally integrated ARMA models (see Granger and Joyeux, 1980; Hosking,
1981), which can be estimated by maximum likelihood (Sowell, 1992) or approximate
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maximum likelihood (Fox and Taqqu, 1986), is not an alternative unless we are sure
that these models are correctly specified (see, e.g., Robinson, 1995; Reschenhofer,
2013). An interesting alternative to the specification of a fixed model (which we
do not intend to pursue in this paper) would be to formally take into account the
model uncertainty, e.g., in a Bayesian approach. For example, Koop et al. (1997)
argued that “functions of the model parameters, like impulse responses, are not
model-specific quantities and it is formally possible to average them over models”
(for posterior properties of long-run impulse responses see Koop et al., 1994). In
the next section, we therefore propose new frequency domain tests for the fractional
differencing parameter d, which are based on a fixed number of periodogram ordinates
in the neighborhood of frequency zero. The results of a Monte-Carlo power study are
presented in Section [3] Section [] applies the tests to financial time series before
Section [Bl concludes.

2 Testing for Long-Range Dependence

Suppose that the mean-corrected observations y; can be described by a fractionally
integrated ARMA (ARFIMA) process

w=1-GL— =L (1-L) A+ OL 4+ 0,Lu (1)
(Granger and Joyeux, 1980; Hosking, 1981) with spectral density

2 p o
o iw]
‘1— g pje
j=1

fo(w)
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flw)y=11- e_i“’|_2d ;—W(‘l + Zﬁje_i‘”j
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(2)
= (2sin(w/2)) > fo(w),

where the fractional differencing parameter —0.5 < d < 0.5 takes care of any long-
range dependence, while the autoregressive (AR) parameters ¢i,...,¢, and the
moving average (MA) parameters 61,...,0, describe the short-range dependence.
Since the ARMA component fo(w) of the spectral density is approximately constant
near frequency zero, the spectral density can be approximated by

flw) ~ w2 >0, (3)

in a neighborhood of frequency zero. Subsection proposes frequency-domain
tests for testing hypotheses about the parameter d and Subsection [2.2] checks the
plausibility of certain assumptions on which these tests are based.

2.1 Test Statistics
In this subsection, we develop test statistics for testing hypotheses of the form

Hy:d>dy>0vs Hy :d < dy (4)
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and
Hy:d<dy<0vs Hy:d>dy. (5)

However, being skeptical about the presence of long-range dependence in return series,
we use a more specific alternative for the construction of the test statistics, namely
H, :d = 0. Considering the case

Hy:d=dy#0and Hy : d =0, (6)

where both hypotheses are simple, we obtain the most powerful test for comparing
these hypotheses by using the likelihood ratio as test statistic (Neyman-Pearson
Lemma). We use the frequency-domain likelihood (Whittle likelihood), which is based
on the assumption that the periodogram ordinates

Ik—lwk 7‘21] e—zwkt

(7)

at the Fourier frequencies wy := 27k/n, k=1,...,m = |(n—1)/2] are approximately
independent and exponentially distributed with means f; := f(wg) (see Subsection
for a discussion of the plausibility of this assumption), because it allows us to achieve
robustness against short-range autocorrelation simply by using only frequencies
wg,k = 1,..., K << m, in a neighborhood of frequency zero. The only term of
interest in the log ratio

log (Hk L/ £ ex (Ik/fm) _
T, (1/£9) exp(—Ii/ £2)
K

K
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is the third one, which has, after multiplication by 2, approximately a y2-distribution
with 2K degrees of freedom. The problem that the scale parameter ¢y is unknown
can be addressed by rescaling. Unfortunately, the sum of the rescaled periodogram

ordinates oy
P B T

N K —2d0
Zk:llk/fk Zk 1Ik/°-’

is equal to one and is therefore useless as test statistic. However, the random variables

j=1,.. K, (9)

k
=319 k=1, K-1, (10)
j=1
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are under the null hypothesis approximately distributed as the order statistics of a
random sample of size K —1 from a uniform distribution on [0, 1]. If the null hypothesis
is false and the alternative hypothesis is true, i.e. d = 0, then the spacings (distances
between successive order statistics) I? will have a downward trend if dy < 0. In this
case, the cumulative distribution function (CDF) will first be flat and then become
steeper and steeper, hence the true distribution will be stochastically greater than a
uniform distribution.

Thus, the null hypothesis can be tested by applying a one-sided Kolmogorov-Smirnov
goodness-of-fit test which is based on the supremum

Dicy = sup(Fo(z) = Fic—1()) (11)

of the differences between the hypothesized CDF and the empirical distribution
function

=
0
FKfl(l') = ﬁ Z I(—OO,I]JIQ' (12)
k=1
Analogously, the test statistic
Dy = sup(Fr—_1(z) — Fo(x)) (13)

can be used if dy > 0.

Naturally, the statistics Dy, and D1+<—1 can also be used for testing the composite
null hypotheses and The fact that the rescaled periodogram ordinates I](-J
exhibit a downward trend or an upward trend under the null hypothesis dy < 0 and
dy > 0, respectively, which implies a convex or a concave CDF for the cumulative
variables J?, is crucial for the performance of these tests because of the well-
known inefficiency of the Kolmogorov-Smirnov test in case of more complex (e.g.,
multimodal) alternatives (see Reschenhofer and Bomze, 1992; Reschenhofer, 1997).
Finally, in case we suspect there is indeed some long-range dependence and want to
find supporting evidence, we may simply apply a one-sided or two-sided Kolmogorov-
Smirnov test to the cumulative normalized periodogram

k K
Je=>_L/Y I k=1,... . K-1 (14)
j=1  j=1
For K = m, this test reduces to a standard frequency-domain test for white noise.

2.2 Plausibility Checks

In order to ensure that for d # 0 the normalized periodogram ordinates
Hwp)/f(wy),...,[(wk)/f(wk) are asymptotically i.i.d. standard exponential, we
have to let J grow with n (i.e., J/y/n — oo; see Kiinsch, 1986). Clearly, the omission
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of the very first (and possibly most informative) periodogram ordinates I1,...,I;_1
comes with a price. For example, Reisen et al. (2001) compared several methods for
the estimation of the parameter d and found that already the omission of only the
first Fourier frequency leads to an increase in the mean squared error. We therefore
decided against omitting any frequencies. Further justification for this decision is
given below.
For illustration, we assume that the spectral density f(w) of y; is given by in the
neighborhood of frequency zero and, in addition, the autocovariance function ~y(j) of
Yz is given by

V() ~ C(d)>! (15)

for large j, which holds true for ARFIMA processes (e.g., Brockwell and Davis, 1987,
469).
In the case of a fractionally integrated white noise

(1= L)%y =, (16)
where u; is white noise with mean zero and variance o2, we have ¢ = 02/2r and

Cd) = M — 2T(1 — 2d) Smgfd), (17)

(see e.g., Brockwell and Davis (1987), 466-467), hence Robsinson’s (1995)
approximation (1.5) of E[Ij/ fx] becomes

2d 1
(2r)2d—1 { d(2d+ 1

1
9T(1 — 2d) sin(rd) ;- / (1- A)Vd—lst(m)dA}. (18)
0

Figure a plots the approximation for the values k& = 1,...,25,
d=0.1,0.2,0.3,0.4. Apparently, the deviations from 1 are relatively small. This
finding is corroborated by Figure [Ilb, which displays the means of the normalized
periodogram ordinates Ij/fr obtained from 100,000 realizations yi,...,y, of an
ARFIMA(1,d,0) process

(1= oL) (1 — L)y, = u (19)

for n = 250, ¢ = 0.1, £ = 1,2,...,25, d = —0.4,—-0.2,0,0.2,0.4. Moreover, not
only are the means of the normalized periodogram ordinates close to 1, but their
distributions look similar to the standard exponential distribution (see Figure c—f).
All computations are carried out with the free statistical software R (R Core Team,
2017).

Finally, the simulation results presented in the next section show that the tests
proposed in this paper attain the advertised levels of significance, which also speaks
against a serious violation of the assumptions underlying our tests.
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Figure 1: Distributions of the normalized periodogram ordinates I/ fx
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(a) Large-sample approximations of the means for k =1,...,25, d =0.1,0.2,0.3,0.4

(b)

Sample means obtained from 100,000 realizations yi,...,yn of a fractionally integrated
ARMA(1,0) process for n =250, ¢ =0.1, k=1,...,25,d=—0.4,-0.2,0,0.2,0.4

Histogram of I1/f1 from 100,000 realizations for d = 0.25 (c), 0.49 (d) versus probability
density of the standard exponential distribution (bold black line)

Q@ — Q plots of sample quantiles of I1/f1 (e) and Is/fs (f) from 100,000 realizations for
d = 0.25 versus quantiles of the standard exponential distribution (the gray line is the 45-
degree reference line)
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3 Monte Carlo Power Study

For a closer examination of the performance of the new tests, a Monte Carlo power
study was conducted. Two standard tests were also included in this study to provide
evidence of the need for a new test. Both tests are based on the asymptotic normality
of the estimator of d (see Hurvich et al., 1998) obtained from the log periodogram
regression

log I(wy) = c+d(—log|l —e ™ %)+, k=1,..., K, (20)

(see Geweke and Porter-Hudak, 1983). The first test, Ty, uses the asymptotic variance
and the second, T g, the variance formula of the LS estimator of the slope in a simple
linear regression, which depends on the sample size. The difference between the
two tests may be substantial for small values of K but vanishes as K increases.

For dy = —04,-0.3,...,0.3,04 and ¢ = —0.1,0,0.1, 5,000 pseudorandom

Table 1: Rejection rates at the 1% level of tests based on the test statistics D},
(da <dp) and Dy, (da > dp), respectively, for K = 6 (top value), K = 24 (bottom
value) and n = 250

do\da —-04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4

04 0.006 0.026 0.042 0.078 0.119 0.175 0.259 0.359 0.445
0.006 0.073 0.25 0.481 0.652 0.921 0.975 0.992 0.999
_03 0.013 0.009 0.022 0.047 0.081 0.118 0.188 0.268 0.341
0.021 0.01 0.063 0.32 0.475 0.781 0.952 0.968 0.991

02 0.022 0.014 0.008 0.022 0.04 0.065 0.122 0.188 0.257
0.091 0.034 0.008 0.061 0.213 0.48  0.74 0.91 0.981

01 0.038 0.024 0.011 0.008 0.02 0.036 0.079 0.12 0.18
0.197 0.092 0.035 0.01 0.065 0.221 0.501 0.751 0.925

0.039 0.025 0.012 0.01 0.009 0.011 0.024 0.045 0.078

0.258 0.139 0.056 0.022 0.01 0.035 0.163 0.418 0.751

0.075 0.058 0.054 0.027 0.026 0.01 0.018 0.041 0.078

0.53 0.41 0.378 0.102 0.104 0.01 0.067 0.235 0.52

0.096 0.076 0.054 0.04 0.026 0.019 0.009 0.019 0.042

0.689 0.545 0.38 0.225 0.104 0.037 0.006 0.065 0.25

0.124 0.102 0.081 0.055 0.04 0.032 0.016 0.009 0.025

0.812 0.715 0.548 0.375 0.217 0.1 0.0317 0.009 0.074

0.175 0.138 0.107 0.08 0.062 0.046 0.028 0.015 0.009

0.904 0.825 0.7 0.551 0.374 0.214 0.093 0.03 0.009

0.1

0.2

0.3

0.4

samples of size n = 250 from the ARFIMA(1,d,0) process were obtained
with the help of the R package fracdiff. For each sample, the hypothesis (4) with
dop =0.1,0.2,0.3,0.4 is tested using the test statistic D?}_l, the hypothesis with
do = —0.1,-0.2,—-0.3, —0.4 is tested using the test statistic Dy _, and the hypothesis

Hy:d=dy=0vs Hy:d#0 (21)
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is tested using the test statistic D};_l when dq < 0or Dy_, when dg > 0.

For ¢ = 0, Tables [I] and [2| show the rejection rates at the 1% and 5% level,
respectively. We omitted the tables for ¢ = —0.1,0.1 as they do not substantially
differ from these tables. At the 5% level and K = 24, the power is 0.301 (0.435)
if dg = 0 and dy = 0.2 (-0.2). The corresponding values for K = 6 are 0.114
and 0.153. These cases are particularly relevant when we suspect that there is no
long-range dependence at all and we want to reject the null hypothesis that dy > 0.2
(dy < —0.2). The power is relatively low. However, in a rolling analysis, we obtain a
large number of test results, hence it may be possible for us to draw our conclusions
from the overall picture. Tables [3 an [4] are analogous to Tables [I] and 2] They show
the rejection rates at the 0.01 and 0.05 level of significance, respectively, for the
conventional test Trs. For the 5% level and K = 24, the power is 0.114 (0.101) if
da =0 and dy = 0.2 (-0.2). The corresponding values for K = 6 are 0.006 and 0.005.
Obviously, the power is much lower than that of the new test. The tables for the test
T, are omitted because this test is completely useless in case of small sample sizes.
It incorrectly rejects the null hypothesis at the 1% level with a probability of about
0.05 and at the 5% level with a probability of about 0.1 if K = 6. The corresponding
probabilities are about 0.02 and 0.06, respectively, if K = 24.

Table 2: Rejection rates at the 5% level of tests based on the test statistics D};_l
(da < do) and Dy, (da > dp), respectively, for K = 6 (top value), K = 24 (bottom
value) and n = 250

do\da —-04 -03 —-02 -0.1 0 0.1 0.2 0.3 0.4

_04 0.041 0.099 0.145 0.214 0.31 0.375 0.498 0.5988  0.67
0.041 0.22 0.462 0.709 0.9 097 0.995 0.998 0.999
03 0.072 0.044 0.095 0.149 0.209 0.289 0.403 0.508 0.58
0.121 0.048 0.189 0.438 0.701 0.892 0.972 0.992 0.999
_0.2 0.097 0.074 0.044 0.12 0.153 0.208 0.299 0.414 0.492
0.282 0.135 0.044 0.182 0.435 0.716 0.903 0.965 0.991
01 0.109 0.079 0.069 0.051 0.086 0.138 0.218 0.307 0.391
0.138 0.292 0.1316 0.052 0.185 0.435 0.703 0.881 0.952
0.121 0.082  0.07 0.054 0.049 0.059 0.095 0.131 0.226
0.531 0.352 0.189 0.095 0.053 0.118 0.405 0.62 0.85
0.238 0.251 0.192 0.112 0.101 0.051 0.09 0.103 0.222
0.829 0.825 0.67 0.298 0.298 0.046 0.161 0.431 0.73
0.293 0.261 0.231 0.15 0.114 0.089 0.042 0.085 0.152
0.918 0.837 0.695 0.494 0.301 0.131 0.042 0.203 0.481
0.352 0.3 0.243 0.198 0.143 0.104 0.081 0.046 0.09
0.967 092 0.858 0.679 0.507 0.315 0.13 0.047 0.208
0.405 0.371 0.3 0.234 0.192 0.146 0.101 0.07 0.042

0.991 0.962 0.917 0.825 0.641 0.385 0.2898 0.136 0.046

0

0.1

0.2

0.3

0.4
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Table 3: Rejection rates at the 1% level of the test Tpg (right-tailed if d4 > dy and
left-tailed if d4 < dp) for K = 6 (top value), K = 24 (bottom value) and n = 250

do\da -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4

0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.002 0.007
0.002 0.003 0.021 0.085 0.252 0.492 0.723 0.887 0.963
0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.002 0.002
0.010 0.008 0.003 0.023 0.076 0.245 0.498 0.726 0.882
0.001 0.001 0.002 0.000 0.000 0.000 0.000 0.002 0.000
0.034 0.010 0.004 0.002 0.012 0.080 0.262 0.498 0.731
0.001 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000
0.083 0.027 0.017 0.003 0.000 0.022 0.083 0.247 0.497
0.003 0.002 0.002 0.000 0.001 0.000 0.000 0.000 0.000
0.199 0.077 0.038 0.009 0.003 0.008 0.016 0.102 0.253
0.004 0.002 0.003 0.000 0.002 0.001 0.000 0.000 0.000
0.427 0.202 0.103 0.031 0.009 0.001 0.004 0.023 0.090
0.006 0.002 0.004 0.000 0.002 0.002 0.001 0.000 0.000
0.672 0.421 0.244 0.096 0.029 0.010 0.003 0.005 0.026
0.011 0.004 0.005 0.002 0.002 0.002 0.001 0.003 0.000
0.872 0.658 0.469 0.235 0.096 0.032 0.010 0.004 0.004
0.018 0.006 0.005 0.002 0.002 0.002 0.001 0.003 0.001
0.960 0.868 0.680 0.456 0.224 0.096 0.034 0.011 0.000

—0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Table 4: Rejection rates at the 5% level of the test Trg (right-tailed if d4 > dy and
left-tailed if d4 < dp) for K = 6 (top value), K = 24 (bottom value) and n = 250

do\da —-04 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0.003 0.001 0.003 0.005 0.014 0.015 0.020 0.044 0.070
0.012 0.035 0.112 0.300 0.583 0.774 0.901 0.966 0.997
0.005 0.002 0.003 0.003 0.007 0.008 0.012 0.024 0.042
0.040 0.011 0.027 0.106 0.322 0.561 0.769 0.905 0.971
0.008 0.003 0.004 0.001 0.005 0.005 0.007 0.010 0.024
0.103 0.035 0.020 0.032 0.101 0.297 0.551 0.767 0.895
0.013 0.004 0.005 0.002 0.004 0.002 0.002 0.007 0.011
0.251 0.096 0.048 0.012 0.024 0.113 0.308 0.563 0.775
0.022 0.007 0.006 0.002 0.002 0.000 0.000 0.002 0.007
0.485 0.250 0.126 0.040 0.013 0.029 0.124 0.298 0.540
0.027 0.012 0.009 0.003 0.003 0.003 0.000 0.002 0.004
0.714 0.477 0.280 0.122 0.041 0.015 0.029 0.129 0.305
0.038 0.019 0.014 0.005 0.006 0.004 0.002 0.002 0.000
0.899 0.703 0.509 0.275 0.114 0.044 0.014 0.033 0.123
0.047 0.030 0.021 0.010 0.010 0.005 0.002 0.005 0.000
0.973 0.902 0.739 0.515 0.263 0.124 0.041 0.015 0.032
0.079 0.045 0.041 0.013 0.014 0.005 0.006 0.005 0.003
0.993 0.976 0.911 0.759 0.477 0.274 0.123 0.043 0.014

—-0.4

—-0.3

-0.2

—0.1

0.1

0.2

0.3

0.4
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4 Empirical Results

In this section, we apply our tests both to gold price returns and stock index returns.
The gold price returns were obtained from a series of daily gold prices from 1979-
01-01 to 2017-11-10 (downloaded from the website www.gold.org of the World Gold
Council). The stock index returns were obtained from the daily DJIA from 1928-10-
02 to 2018-02-07 (downloaded from Yahoo!Finance). In the latter case, the choice
of an extremely long observation period makes sure that periods of varying degrees
of efficiency are included. Figure [2| displays the cumulative numbers of rejections

Figure 2: Cumulative numbers of rejections (at the 5% level) by tests based on DIJEA
with dg = 0.2, K = 24 (a,c) and Dy _; with dy = —0.2, K = 24 (b,d) for financial
time series (bold; a,b: DJIA returns, ¢, d: gold returns) and synthetic series obtained
with various values of d (d = —0.2,...,0.2) and ¢ = —0.1 (e), ¢ =0 (+), » = 0.1 (A)
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(at the 5% level of significance) obtained for the gold price returns as well as for
the stock index returns in a rolling analysis using the tests based on the statistics
D}f1 with dp = 0.2 and Dy _; with dy = —0.2 for K = 24 and window length
n = 250. Comparing these lines with the corresponding lines obtained for synthetic
time series from with d = —0.2,-0.1,0,0.1,0.2 and ¢ = —0.1,0,0.1, we
find a high agreement only if d = 0. Of course, it is possible to obtain similar
rejection rates in case of a balanced mixture of values of d greater than 0.2 and
less than -0.2, respectively. However, in the absence of any contrary indication, it
is generally preferable to go for the simplest explanation. Furthermore, in order to
be of any practical use, the subperiods with extreme values of d must not be too
short. Unfortunately, we found no evidence of varying long-range dependence in the
cumulative plots. Hence we conclude that there is no indication that |d| could be
greater than 0.2 over a longer period of time.

5 Conclusions

In this paper, we question the existence of fractal dynamics in return series and
propose new frequency domain tests for testing hypotheses about the fractional
differencing parameter d, which we then apply to DJIA returns and gold price returns.
Our test procedure is a two step process where we first transform a subsample
of periodogram ordinates, so that their cumulative sum is distributed as the order
statistics of a random sample of size K —1 from a uniform distribution on [0, 1] under
the null hypothesis and either has a concave or a convex CDF under the alternative
hypothesis. Then we apply a Kolmogrov-Smirnov goodness-of-fit-test for a uniform
distribution on [0,1], which is most powerful against these types of alternatives. In the
special case, where the null hypothesis states that there is no long-range dependence
(i-e., d = 0), our test reduces to a standard frequency-domain test for white noise,
though applied only to a part of the periodogram. We also provide evidence that there
is no need to omit the very first periodogram ordinates because of their deviating
properties in the case of long-range dependence.

In a rolling frequency-domain analysis of a daily financial time series, we can typically
only assume that the size of the rolling window is large but not the number of
included periodogram ordinates that are not corrupted by short-range dependence.
It is therefore a great advantage of our tests that they are based on a fixed number
of periodogram ordinates. In contrast, conventional frequency-domain tests critically
depend on the assumption that the number of included periodogram ordinates is large.
If this assumption is violated they either have extremely low power or do not attain
the advertised levels of significance.

The results of our Monte Carlo power study suggest that it may be difficult to
distinguish between values of d that are too close to each other, e.g., —0.2 and 0 or 0.2
and 0. However, in our rolling analysis of gold price returns and stock index returns,
we obtain a great number of test results which can be compared to the corresponding

M. Mangat and E. Reschenhofer 104
CEJEME 11: 93-106 (2019)



www.czasopisma.pan.pl P N www.journals.pan.pl
TN

Testing for Long-Range Dependence ...

results obtained from synthetic series of the same length that have been generated
with a known value of d. In this comparison, we find a perfect agreement between the
returns series and the synthetic series that exhibit no long-range dependence over the
whole observation period. Since there are also no indications of significant deviations
from short-range dependence in any subperiods, we conclude that trading strategies
that are based on fractal dynamics have no sound statistical basis.
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