
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

Volume 66 2019 Number 3
DOI: 10.24425/ame.2019.129676
Key words: phase change, natural convection, extended finite element method, level set method

Paweł Stąpór 1

The modified XFEM for solving problems
of a phase change with natural convection

This paper presents an extended finite element method applied to solve phase
change problems taking into account natural convection in the liquid phase. It is as-
sumed that the transition from one state to another, e.g., during the solidification of
pure metals, is discontinuous and that the physical properties of the phases vary across
the interface. According to the classical Stefan condition, the location, topology and
rate of the interface changes are determined by the jump in the heat flux. The incom-
pressible Navier–Stokes equations with the Boussinesq approximation of the natural
convection flow are solved for the liquid phase. The no-slip condition for velocity
and the melting/freezing condition for temperature are imposed on the interface using
penalty method. The fractional four-step method is employed for analysing conjugate
heat transfer and unsteady viscous flow. The phase interface is tracked by the level
set method defined on the same finite element mesh. A new combination of extended
basis functions is proposed to approximate the discontinuity in the derivative of the
temperature, velocity and the pressure fields. The single-mesh approach is demon-
strated using three two-dimensional benchmark problems. The results are compared
with the numerical and experimental data obtained by other authors.

1. Introduction

Phase change processes play an important role in a number of industry-related
applications, including casting in metallurgy, heat storage systems, cryosurgery,
food conservation, diffusion of gases in biological tissues or penetration of solvents
in polymers. Solidification is also present in various natural processes, for example,
iceberg evolution, magma chamber evolution or crust formation. The modelling of
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such problems is still a challenging task for the materials engineering and science
communities. A comprehensive review of the transport phenomena in multi-phase
systems is presented in [1]. In [2] and [3] the authors discuss the basic concepts
of solidification processes and propose their mathematical modelling. The finite-
element method used for fluid dynamics is discussed extensively in [4].

The simplified models consider heat conduction as a principal way of energy
transport duringmaterialmelting/solidification. Natural convection during freezing
of water is an example of a phase change system where the phenomena cannot
be neglected. Recent practical applications of phase-change materials (PCMs) to
energy-storage systems show the crucial role of natural convection in heat transfer
and the propagation of the interface between the phases. Accordingly, the model
needs to take into account flow in the liquid phase.

A variety of numerical techniques can be applied to obtain an approximate
solution to a phase change problem. The approaches are based either on the de-
forming grid (interface tracking) methods or the fixed grid (interface capturing)
methods. The deforming grid schemes use a transformed coordinate system, ob-
tained by performing complicated mathematical operations, to find the position
of the interface explicitly. When the finite element method (FEM) is applied, the
shape of the mesh needs to correspond to that of the interface, and the problem is
solved separately for each domain, [5, 6]. The major drawback of this method is
that remeshing and field mapping must be performed every few discrete time steps,
which is due to the unacceptable distortion of the original mesh. In the fixed grid
schemes, on the other hand, discontinuities are smoothed across a certain distance
instead of being treated accurately (enthalpy approach), [7–9].

The partition of unity (PU) concept can be employed to enrich the classical
FEM with specific information about the solution, [10]. The local information
can be added directly to the finite element approximation; this, however, requires
that the method be controlled through additional elemental degrees of freedom,
[11]. The extended finite element method (XFEM) allows one to enrich the ap-
proximation through additional nodal shape functions. The XFEM was used suc-
cessfully in [12] to analyse crack propagation problems. Merle and Dolbow [13]
and Chessa et al., [14] were some of the first to apply the XFEM to solve phase
change problems. In [15], the author formulates the one-dimensional phase change
problem for a system with thermo-dependent properties and solves it using the
XFEM combined with the Newton-Raphson method. In [16], authors consider
the use of the XFEM to describe dendritic solidification with melt convection.
They use a diffused-interface model to solve the momentum equations, where
the interface is smeared out over a region. Enrichment is used only to solve the
thermal problem. The simulation of solidification processes with arbitrary flow in
the liquid part is considered in [17], where XFEM is used in the analysis of the
physically non-linear problem. In [18, 19], authors employ the XFEM to analyse
a two-phase flow, which, computationally, is a similar problem. They solve the
Navier-Stokes equations and use abs-enrichment to account for the kink in the
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velocity field. The jump in pressure is not considered. Recently, Li et al. [20] and
Martin et al. [21] consider the XFEM method to solve two-dimensional solidifi-
cation problems including natural convection. They use abs-enrichment scheme
for the temperature approximation, while the sign-enrichment scheme for the melt
velocity and pressure. Constraints at the interface, such as interface temperature
and non-slip condition, are imposed by the penalty method or Lagrange multiplier
approach.

In this paper, the XFEM is applied to solve problems of a phase change with
natural convection in the liquid phase. The proposed enrichment scheme, used in
the momentum equations, is different to those previously mentioned what allows
for better approximation of the velocity field near the interface. The mathematical
model of the problem is represented by the incompressible Navier–Stokes equations
combined with the Boussinesq approximation of the natural convection flow. It
is assumed that the physical properties of the phases vary across the interface.
The fractional four-step method for analysing conjugate heat transfer and unsteady
viscous flow is applied to solve the equations. The no-slip condition for velocity and
the melting/freezing condition for temperature are imposed on the interface using
the penalty method. A new combination of extended basis functions is employed to
approximate the discontinuity in the velocity and the pressure fields. It is assumed
that the solidification front changes over time and the rate is dependent on the jump
in the heat flux across the interface, according to the classical Stefan condition.
The phase interface is captured by the level set method (LSM), defined on the same
finite element mesh.

The LSMwas introduced by Osher and Sethian [22]. In its implicit form, it can
be used extensively to deal with various problems, including the movement of the
interface resulting in the separation of two or more regions, e.g., crack propagation,
[23], multi-phase flow, [24], shape optimization, [25], flame modelling, [26] or
image processing, [27], to mention just a few.

The proposed single-mesh approach is demonstrated on two-dimensional
benchmark problems. The simulation results are compared with the experimen-
tal data and simulation results obtained with other methods.

The structure of the paper is as fallows. The problem considered throughout
the paper, i.e., the solidification/melting of amaterial in a two-dimensional space, is
defined in Section 2. The model includes the natural convection in the liquid phase.
Section 3 discusses the application of the LSM to track the position of the interface
independently of the temperature field. Section 4 gives a brief overview of the main
features of the XFEM and proposes a new combination of enrichment functions.
The resulting matrix equations are provided in Section 5. Section 6 describes the
penalty method used to enforce the interface conditions, and finally, Section 7
presents the calculation results for the selected two-dimensional problems. Three
cases are considered: natural convection of water in a square cavity without a phase
change, water freezing with natural convection and melting of a phase-change
material.
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2. Formulation of the problem

2.1. Assumptions

Let us consider a two-dimensional domainΩwith boundary Γ divided into the
solid region ΩS and the liquid region ΩL , respectively (Fig. 1). The interface ΓI
separates liquid and solid sub-domains. The external boundary Γ contains of the
parts ΓD and ΓN such that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The vectors n and nI

define normal vectors on the external boundary Γ and the interface boundary ΓI ,
respectively.

Ω
S
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L
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y

Solid Liquid

Boundary Γ
NBoundary Γ
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Domain Ω
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Interface Γ
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Γ

g

Fig. 1. Domain Ω split into ΩL and ΩS by the interface ΓI

The velocity and the pressure at the point x in ΩL and at the time t are u(x, t)
and p(x, t), respectively. It is assumed that u(x, t) = 0 inside ΩS and the no-slip
boundary condition is held at the external boundary Γ and at the interface ΓI . The
temperature at the point x inΩ and at the time t isT (x, t). The temperature boundary
conditions define the Dirichlet condition prescribed at part of the boundary ΓD and
the Neumann condition defined at ΓN .

The densities of the solid and the liquid phases can differ; however, there is
no material transport due to expansion or shrinkage caused by a phase change.
The heat can be transferred by conduction in the solid part and by conduction
and convection in the liquid part. The convection in the liquid is a result of the
buoyancy-driven flow. The material properties change discontinuously across the
interface. The incompressible flow and isotropy with respect to heat conduction
are another assumption, which completes the formulation of the problem.

2.2. Governing equations

The convection-diffusion heat equation governs the temperature T (x, t) in both
liquid and solid parts of Ω

c
(
∂T (x, t)
∂t

+ u(x, t) · ∇T (x, t)
)
= k∇2T (x, t) + f in Ω × J, (1)
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where c, k, f denote the volumetric specific heat capacity, the thermal conductivity
and a heat source, respectively. The velocity field u fulfils the condition: u = 0 in
ΩS , and J = (0, t] (t > 0) is the time interval of interest.

The coefficients c and k are discontinuous across the interface boundary ΓI

c =



cL = ρL · c
p
L in ΩL ,

cS = ρS · c
p
S

in ΩS ,
k =




kL in ΩL ,

kS in ΩS ,
(2)

where cpL , cp
S
are the specific heat capacities of the liquid and the solid phases, and

ρL , ρS are their material densities.
The temperature on the external boundary ΓD and the heat flux on ΓN are

given
T (x, t) = TD (x, t) at ΓD × J, (3)

− k∇T (x, t) · n = qN (x, t) at ΓN × J . (4)

The temperature in Ω at t = 0 defines the initial condition

T (x, 0) = T0(x) in Ω. (5)

The internal condition has to be satisfied at the interface boundary ΓI

T (x, t) = TM at ΓI , (6)

where TM is the melting/solidification temperature.
The Stefan condition resulting from the energy conservation across the surface

ΓI , as described in [28], has the form

ρS
(
`p + (cL − cS)(TM − T∗M )

)
VI +

ρS
2

(
1 −

ρS
ρL

)2
V 3
I = q̄ ∀x ∈ ΓI , (7)

where q̄, `p, T∗M and VI are the jump in the heat flux at the interface, the latent
heat of fusion, the bulk melting temperature and the normal velocity of the inter-
face, respectively. In the case when the cubic term is negligibly small and fusion
temperature is constant, the condition (7) takes the simpler form

VI (x, t) =
q̄(x, t)
`

∀x ∈ ΓI , (8)

where ` = `p ρS .
The jump in the heat flux at the interface is calculated according to

q̄(x, t) = (kS∇T (x, t) |ΓSI − kL∇T (x, t) |ΓLI ) · nI , (9)

where ΓSI is the solid side and ΓLI is the liquid side of the interface ΓI .
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The fluid velocity u(x, t) and pressure p(x, t) inΩL are governed by theNavier-
Stokes equations in the velocity-pressure formulation

∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t) − ν∇2u(x, t) +
1
ρL
∇p(x, t) = f in ΩL × J,

∇ · u(x, t) = 0 in ΩL × J,
(10)

where ν and f are the kinematic viscosity and applied body force, respectively.
Equations (10) describe the motion of a nonstationary, isothermal and incom-

pressible Newtonian fluid. The Dirichlet boundary conditions at the boundary Γ of
the domain ΩL are given

u(x, t) = uD (x, t) at Γ ∈ ΩL × J . (11)

The no-slip boundary condition is prescribed at the interface ΓI

u(x, t) = B at ΓI × J . (12)

The divergence-free initial velocity field in ΩL closes the problem

u(x, 0) = u0(x) in ΩL . (13)

The velocity and the pressure in ΩSare assumed to be equal to zero.
The buoyancy-driven flow is introduced using the Boussinesq approximation.

In the approximation, the variation in density is neglected, except in the body force
term. The corresponding buoyancy force is then defined as

f =
1
ρL

(ρ(T ) − ρ0)g , (14)

where g is the gravitational force and ρ0 is the reference density.
If the dependence of the density on the temperature is linear, the buoyancy

term is reduced to
f = β(T0 − T )g , (15)

where β is the coefficient of expansion for the fluid and T0 is the reference temper-
ature.

The system of the Navier-Stokes equations (10) and (1) with the initial and
boundary conditions completes the mathematical formulation of the problem.

3. Level set method

The level set method requires that the moving interface ΓI (t) be modelled as
a zero-level set of a higher-dimensional surface φ(t) such that

ΓI (t) =
{
x : φ(x, t) = 0

}
. (16)
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The evaluation of the time dependent level set function φ for the velocity field
uφ is governed by the level set equation

∂φ(x, t)
∂t

+ uφ · ∇φ(x, t) = 0 in Ω × J (17)

with the initial condition
φ(x, 0) = φ0(x). (18)

A signed distance function is used as level set function φ

φ(x, t) = ± min
xI ∈ΓI

‖x − xI ‖ ∀x ∈ Ω. (19)

Thus, the normal vector nI can be obtained at any point of the domain with
the following formula

nI (x) =
∇φ(x, t)
‖∇φ(x, t)‖

. (20)

The level set method assumes that the convective velocity field uφ is known in
the entire domain Ω. Since the Stefan condition defines the normal velocity only at
the interface, some technique must be used in order to find it in the domain, [29].
According to the method proposed in [14], the solution of partial differential
equation

sign(φ(x))∇V (x) · ∇φ(x) = 0 in Ω (21)

with condition
V (x) = VI (x) at x ∈ ΓI (22)

provides orthogonal extension of VI

uφ (x) = V (x)nI (x). (23)

The solution of equation (21) with finite elements methods needs a weak
formulation(

sign(φh)∇Vh · ∇φh, vh
)
+

(
λ∇φh · ∇vh,∇Vh · ∇φh

)
= 0 ∀vh ∈ Vh . (24)

where (·, ·) denotes the L2 inner product over the domain Ωh, Vh is a finite element
subspace of the test function vh and λ is a stabilization parameter, [30].

Thus, the matrix form of equation (24) with approximation of Vh and φh is

K V = 0, (25)

where

K =
∫
Ωh

sign(Nφ)NTφT∇NT∇NdΩh +

∫
Ωh

λ∇NT∇NφφT∇NT∇NT dΩh , (26)
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with the vector of the elemental shape functions and the level set degrees of freedom
being N = N(x) and φ, respectively.

In this study, the boundary condition (22) is used, according to the approach
proposed in [30], where the velocity of the interface is projected to the nodes of
elements containing the interface. The solution of equation (25) with boundary
condition (22) allows one to find the velocity field uφ at any point x in Ω

uφ (x) = N(x)V nI (x). (27)

The weak formulation of the level set equation (17) with a stabilization term
is given by(

∂φh
∂t

, vh

)
+

(
∂φh
∂t

, λuφ ·∇vh

)
+

(
uφ ·∇φh, vh

)
+

(
uφ ·∇φh, λuφ ·∇vh

)
= 0,

(φh (·, 0), vh) = (φ0, vh) ∀vh ∈ Vh .

(28)

The finite element equation is obtained after the approximation of φh and vh
is introduced to formula (28)

Cφ
dφ
dt
+ Bφφ = B t ∈ J,

φ(0) = φ0 .

(29)

Since the problem is time-dependent, an explicit time integration scheme is applied

1
∆t

Cφφ
n =

(
1
∆t

Cφ − Bφ

)
φn−1, (30)

where

Cφ =

∫
Ωh

NTN + λ∇NTuT
φ∇NdΩh , (31)

Bφ =

∫
Ωh

NTuφ∇N + λ∇NTuT
φuφ∇NdΩh . (32)

4. Extended finite element method

If it is generally assumed that the thermal properties and viscosity are discon-
tinuous across the interface, there is a kink in the temperature and velocity fields
and so is a jump in the pressure field.

In the XFEM, a special approximation is applied by extending the continuous
approximation U (x)C with discontinuous (enriched) term U (x, xI )E

Uh (x) = U (x)C +U (x, xI )E , (33)
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where
U (x)C =

∑
i∈I

Ni (x)Ui (34)

and U is a solution function. The discontinuous term U (x, xI )E is a combination
of enrichment function Ψα(x, xI ) and usually element shape functions N(x)

U (x, xI )E =
∑
j∈J

m∑
α=1

Nj (x)Ψα(x, xI )aα
j , (35)

where J indicates the nodes enriched with Ψα(x, xI ), aα
j are the enriched degrees

of freedom, I is the total number of nodes and m is the number of enrichment
functions and xI denotes that the term depends on the position of the interface.

A compact form of the approximation (33) is given by

Uh (x) = NU(x, xI )UX , (36)

where NU is a vector of enriched shape functions and UX is the extended degrees
of freedom vector

NU(x, xI ) =
[
N(x) N(x)Ψj(x, xI )

]
,

UX =



U
aj


.

(37)

As the nodal values of the level set function φ(xi) are known, the set of enriched
nodes J can be easily found according to

J =
{
k ∈ {1, . . . , e} : min

i∈Ie
k

(φ(xi)) ·max
i∈Ie

k

(φ(xi)) < 0
}
, (38)

where Iek is the set of nodes belonging to the element e.
The extended finite element mesh includes the standard elements, reproducing

elements (the elements cut by the interface) and blending elements (elements
partially enriched). Since the approximation in the partially enriched elements
does not fulfil a partition of unity property, several techniques are proposed to
improve the convergence and accuracy of the method [31, 32].

This study proposes special enrichment functions that vanish in blending ele-
ments; as a result, the optimal convergence rate can be achieved. The approximation
of the temperature field is enriched using the abs-enrichment function proposed by
Moës et al. [33]

Ψ(x) = N(x) |φ| − |N(x)φ|. (39)
The Heaviside (step) function is used to determine the strong discontinuity in

the pressure field. The function is represented as

H (x) =



−1 if φ(x) < 0,
+1 if φ(x) > 0.

(40)
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Applying the shifted-basis approximation, [34, 35] leads to the following for-
mula

Ψ
p
j (x) = H (x) − H (xj ). (41)

In the blending elements, the Heaviside function (40) has the same value at
each point of the element, which means that the function (41) vanishes for this type
of elements.

The kink in the velocity field is approximated using two types of enrichment
functions proposed originally in the analysis of the Poisson equation with discon-
tinuous coefficient by Stąpór [36]

Ψ
1(x) = Ψ(x) (42)

and
Ψ

2
j (x) = Ψ(x)

1 + H (x)H (xj )
2N(x) |φ|

+
1 − H (x)H (xj )

2
. (43)

Since Ψ(x) = 0 and H (x)H (xj ) = 1, the enrichment term (43) is not active in
the blending elements. The proposed enrichment functions can be used to eliminate
a spurious deviation of velocity in the vicinity of the interface. When the standard
abs-enrichment is applied, unphysical oscillations occur because the standard ap-
proximation cannot compensate for the quadratic terms if the solution is linear or
constant in any part of the enriched region.

5. Temporal and spatial discretizations

The fractional four-step method proposed in [37] and the second order Crank-
Nicolson scheme are applied to the momentum and continuity equations (10). The
finite element equations are based on the weak Galerkin formulation of the corre-
sponding differential equation. Details of the derivation of the weak formulation
are provided in [38].

In the first step of the approach, an intermediate velocity field ûn
X is obtained

by solving the momentum equation(
1
∆t

C +
1
2

(B + A)
)

ûn
X =

(
1
∆t

C∗ −
1
2

(B∗ + A∗)
)

un−1
X −G + R , (44)

where n defines the time step. The matrices and vectors are defined as follows

C =
∫
Ωh

NT
u (x, xnI )Nu(x, xnI ) dΩh , (45)

C∗ =
∫
Ωh

NT
u (x, xnI )Nu(x, xn−1

I ) dΩh , (46)
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B =
∫
Ωh

NT
u (x, xnI )un−1∇Nu(x, xnI ) dΩh , (47)

B∗ =
∫
Ωh

NT
u (x, xnI )un−1∇Nu(x, xn−1

I ) dΩh , (48)

A =
∫
Ωh

ν∇NT
u x, xnI )∇Nu(x, xnI ) dΩh , (49)

A∗ =
∫
Ωh

ν∇NT
u (x, xnI )∇Nu(x, xn−1

I ) dΩh , (50)

G =
∫
Ωh

1
ρ

NT
u (x, xnI )∇Np(x, xn−1

I )pn−1
X dΩh , (51)

R =
∫
Ωh

NT
u (x, xnI )f(Tn−1) dΩh . (52)

In the second step, the first correction of the velocity ūn
X is obtained from

1
∆t

C ūn
X =

1
∆t

C ûn
X +

1
2

G∗. (53)

The pressure field that satisfies the continuity constrain is calculated in the
third step

Appn
X =

2ρ
∆t

Rp , (54)

where

Ap =

∫
Ωh

∇NT
p (x, xnI )∇Np(x, xnI ) dΩh , (55)

Rp =

∫
Ωh

2ρ
∆t
∇NT

p (x, xnI )Nu(x, xnI )ūn
X dΩh . (56)

Finally, the velocity at the time step n is obtained from

1
∆t

C un
X =

1
∆t

C ūn
X −

1
2

G , (57)

where
G =

∫
Ωh

1
ρ

NT
u (x, xnI )∇Np(x, xnI )pn

X dΩh . (58)
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A fully implicit time approximation scheme is applied to the heat equation (1),
[39], which gives (

1
∆t

CT + BT + AT

)
Tn

X = −
1
∆t

C∗TTn−1
X − RT , (59)

where

CT =

∫
Ωh

cNT
T(x, xnI )NT(x, xnI ) dΩh , (60)

BT =

∫
Ωh

cNT
T(x, xnI )un

X∇NT(x, xnI ) dΩh , (61)

AT =

∫
Ωh

k∇NT
T(x, xnI )∇NT(x, xnI ) dΩh , (62)

C∗T =
∫
Ωh

cNT
T(x, xnI )NT(x, xn−1

I ) dΩh , (63)

RT =

∫
Ωh

f NT
T(x, xnI ) dΩh −

∫
ΓN

qNNT
T(x, xnI ) dΓN . (64)

The domain of integration containing the interface is divided into separated
sub-regions due to discontinuity of an integrant. One notes that in C∗ the integrant
is discontinuous at two distinct positions xnI and xn−1

I .

6. Enforcement of the interface conditions

The interface condition for temperature (6) and the no-slip condition for ve-
locity (12) are enforced using the penalty approach proposed in [40].

The internal condition (6) can be defined as a penalty function

P(T ) = T − TM = 0 at ΓI . (65)

Introducing the approximation (36) to the penalty function P gives

P(TX) = NT(x, xI )TX − TM = 0 ∀x ∈ ΓI . (66)

For a finite number of points, equation (66) represents a system of linear
constraints

P TX − TM = 0 , (67)

where all the elements of the vector TM are equal to TM and the row i of the matrix
P is NT(xi, xI ).



The modified XFEM for solving problems of a phase change 285

The interface temperature is enforced by adding a penalty force

fP = αTPTPTX − αTPTTM (68)

to equation (59)(
1
∆t

CT + BT + AT + αTPTP
)

Tn
X = −

1
∆t

C∗TTn−1
X − RT − αTPTTM , (69)

where αT is the positive constant defining the penalty parameter for the temperature
condition.

Similarly, the no-slip condition for velocity (12) is enforced by adding a penalty
force

fP = αUPT
u PuuX (70)

to equations (44), (53) and (57). The row i of the matrix Pu is Nu(xi, xI ) while αU
is a penalty parameter defined for the velocity constraint.

In the method, the value of the penalty parameter determines the level of
satisfaction of the constraint and, on the other hand, the conditioning number of
the system.

7. Numerical examples

7.1. Natural convection of water without a phase change

Let us consider natural convection of pure water placed in a differentially
heated square-shaped container. The initial temperature T0 = 5◦C and the initial
velocity u0 = 0 m/s are assumed to be uniform. The temperature of the left (hot)
and the right (cold) vertical walls are TH = 10◦C and TC = 0◦C, respectively. The
horizontal walls are assumed to be adiabatic. The no-slip condition is applied for
velocity on all the walls. The zero-pressure condition is prescribed at one point.
The problem configuration is presented in Fig. 2.

x

y

g=9.81m/s2 T
C
=0oC L=0.038mT

H
=10oC

q
N
=0

q
N
=0

Ra= 2518084
Pr= 6.99

Fig. 2. Natural convection of water – problem definition
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The material properties of water used in the numerical model are provided in
Table 1. The fourth order polynomial given in [41] was used for the approximation
of density in the buoyancy term. The container dimension and the gravitational
acceleration are L = 0.038 m and g = 9.81 m/s, respectively.

Table 1.
Material properties of pure water

ρL cL kL ν β (at 0◦C)

kg/m3 Ws/m3K W/mK m2/s 1/K

999.8 4182 0.6 1.0032·10−6 6.734·10−5

The dimensionless parameters defining the problem are the Rayleigh and
Prandl numbers, Ra = g βcL (TH−TC )L3/kLν = 2518084 andPr = νcL/kL = 6.99,
respectively.

The steady-state solution is assumed to have been reached when the L2 norm
of the velocity residual has a value below 0.1%. The L2 norm is calculated as

L2 =




un − un−1



‖un‖

· 100%. (71)

Figs 3 and 4 present the steady-state solution for the velocity and temperature
profiles along the horizontal and vertical symmetry lines obtained using irregular
50 × 50 and 100 × 100 element meshes and time steps ∆t = 2.5 s and ∆t = 0.5 s.
The non-dimensional coordinates are used.
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Fig. 3. Profile of temperature a) and y-velocity component b) along the horizontal symmetry line
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Fig. 4. Profile of temperature a) and x-velocity component b) along the vertical symmetry line

The results seem to be in good agreement with those obtained by Michalek &
Kowalewski (see Figs 1 and 3 in [42]), who employed the finite volume method
and the finite difference method, and Danaila et al., who applied the adaptive finite
element method (see Fig. 6 in [9]). The steady-state solution is used as the initial
condition for the freezing problem.

7.2. Water freezing with natural convection

The problem considered above is the starting point for the analysis of water
freezing in a square-shaped container. The water begins to freeze after the tem-
perature of the right wall TC drops rapidly from 0◦C to −10◦C. The steady-state
patterns obtained in the previous example are used as the initial conditions for the
temperature, velocity and pressure fields.

The thermophysical properties, melting temperature and latent heat of ice used
in the numerical model are provided in Table 2. The thermophysical properties of
water remain unchanged.

Table 2.
Material properties of ice

ρS cS kS TM `p

kg/m3 Ws/m3K W/mK ◦C Ws/kg

916.8 2116 2.26 0 335·103

A 50× 50 element mesh and a time step of 0.5 s were used in the calculations.
The penalty parameters for the temperature and velocity conditions are defined as
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αT = 108 and αU = 1, respectively. The position of the ice/water interface and the
recirculation pattern for t = 100 s and t = 300 s counted from the moment water
started freezing are shown in Fig. 5. The profiles of velocity and temperature along
the horizontal symmetry line are presented in Fig. 6. The results are compared with
those obtained by means of the commercial codes FLUENT 6.0 and NC4MARV2
used by Michalek & Kowalewski [42]. The experimental data used in the test are
those obtained by Giangi et al. [43].

Zoom for details
Figure 7

(a) (b)

Fig. 5. Recirculation pattern and the position of the interface front for t = 100 s and t = 300 s
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Fig. 6. Profile of the y-velocity component a) and temperature b) along the horizontal symmetry line
for t = 100 s
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Fig. 7 shows zoomed-in view of the approximation of the discontinuity in the
velocity, temperature and pressure fields for the element cut by the interface, see
Fig. 5a. As can be seen, the approximation of the element allows for a kink in the
velocity and temperature fields and a jump in the pressure field along the interface
line, without any unphysical oscillations, which can be observed for the standard
XFEM approaches, [44].

(a) (b) (c)

Fig. 7. Zoomed-in view for the area shown in Fig. 5a: a) velocity, b) pressure and c) temperature

7.3. Melting of a phase change material (PCM)

The problem considered in this section is the melting of n-octadecane, a PCM,
involving natural convection in a square cavity. The physical model of the test is
shown in Fig. 8. Specific heat and conductivity are assumed to be different for the
twophases. Initially, thematerial is solid (T0 = 27.448◦C)but after the left boundary
reaches the hot temperature TH = 32.745◦C, it starts to melt. The right side is held
at cold temperature TC = 27.45◦C. The thermophysical properties of n-octadecane
defined for the test are presented in Table 3; the data are available from [45]. The
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Fig. 8. Melting of the phase change material (n-octadecane). Problem definition
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dimensionless parameters describing the test case are the Rayleigh, Prandl and
Stefan numbers: Ra = g βcL (TH −TC )L3/kLν = 327000, Pr = νcL/kL = 56.2 and
Ste = cL (TH − TC )/` = 0.045, respectively.

Table 3.
Thermophysical properties of n-octadecane

Property Liquid phase Solid phase

Density, ρ (kg/m3) 774 814

Heat capacity, c (kWs/m3K) 1687 1750

Heat conductivity, k (W/mK) 0.152 0.358

Kinematic viscosity, ν (m2/s) 5.063·10−6

Thermal expansion, β (1/K) 8.5·10−4

Latent heat, ` (Ws/m3) 1.986·108

Melting point, TM (◦C) 27.5

Okada [46] investigates the problemboth experimentally and numerically using
finite difference method coupled with the deforming grid scheme and the variable
transformation technique. In [47], the authors solve this problem by applying the
temperature transforming model and various solid velocity correction schemes.
The solution to the problem proposed by Wang et al. [7] involves employing the
finite volume approach and the temperature transforming model. Danaila et al. [9],
on the other hand, suggest using the adaptive finite element method.

In this study, the problemwas solved using regular and irregular 50×50 element
mesheswith the time step∆t = 0.1 s. Fig. 9 presents the positions of the solid–liquid

Numerical, Okada (1984)
Present simulation

Experimental, Okada (1984) Numerical, Okada (1984)
Present simulation

Experimental, Okada (1984)

(a) (b)

Fig. 9. Melting of the phase change material (n-octadecane): a) regular 50 × 50 element mesh,
b) irregular 50 × 50 element mesh
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interface and the natural recirculation pattern for t = 1794 s (dimensionless time:
τ =

αL · Ste · t
L2 = 0.032). The calculated position of the interface front correlates

with the experimental and numerical results [46].

8. Conclusions

This paper has considered the use of a comprehensive numerical model to
deal with problems of a phase change with natural convection in liquids. A single-
domain approach has been presented and validated for selected phase change
systems. The key ingredient of this approach is the use of the extended finite
element method and proper approximation of the discontinuity in the physical
fields. A new set of enrichment functions has been introduced for the considered
problem in a two-dimensional space. The proposed single-mesh approach can
accurately represent the discontinuity in the velocity, pressure and temperature
fields without re-meshing or moving mesh algorithms.

Three cases have been analysed to illustrate the effectiveness of the proposed
method. The first is the classical problem of natural convection of water in a square
cavity with no melting involved. The second problem is the natural convection
freezing of water and the third example involves melting of a PCM. The main
reason for selecting these examples is that they have been broadly studied in the
literature, and thus provide the benchmarks for the proposed method. The results
obtained from this study seem to be in good agreement with the data reported
by other investigators and allows for smooth approximation near the interface
boundary.

Manuscript received by Editorial Board, May 21, 2019;
final version, July 10, 2019.
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