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Abstract. Two methods for calculating transport parameters in semiconductor superlattices by applying Green’s functions are compared in 
the paper. For one of the methods, the Wannier functions method, where computations in the complex space and Wannier functions base are 
required, the Hamiltonian matrix is small in size and its elements depend solely on the energy. For the real space method, as it operates in the 
floating point domain and uses the Hamiltonian containing the elements dependent both on energy and position, the Hamiltonian matrix is larger 
in size. The size makes the method computationally challenging. To find the consequences of choosing one of the methods, a direct comparison 
between the computations, obtained for both methods with the same input parameters, was undertaken. The differences between the results 
are shown and explained. Selected simulations allowed us to discuss advantages and disadvantages of both methods. The calculations include 
transport parameters such as the density of states and the occupation functions, with regard to scattering processes where the self-consistent 
Born approximation was used, as well as the spatial distribution of electron concentration for two superlattices structures. The numerical results 
are obtained within the non-equilibrium Green’s functions formalism by solving the Dyson and the Keldysh equations.
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to obtain final results. Therefore, it might be difficult to eval-
uate the effectiveness and the correctness of the results, as the 
main features of the numerical models applied are not known. 
Despite many discussions on advantages and disadvantages of 
various approaches, the key question, which method to select 
to obtain quick, results accurate for a particular case, has re-
mained unsolved. It seems quite reasonable to assume that the 
analysis of the results obtained for both methods with identical 
input parameters can shed at least some light on the problem. 
As for a commercial user, it can prove difficult, time-con-
suming, and costly to select proper testing tools, the analysis 
we propose helps to take the right decision on the method and 
the tool to be applied.

The present study is a detailed comparison of two methods 
to calculating the transport parameters in SL, where non-equi-
librium Green’s function (NEGF) theory is applied. As for the 
first method, presented by Hałdaś et al. [15‒16] and Kolek et al. 
[17], the computations are performed in the real space, we call it 
the real space method (RSM). Although this approach provides 
accurate data for many device parameters, it requires huge data 
storage capacities. For the other method, presented by Mączka 
et al. [18‒22] where the Wannier functions (WF) properties for 
superlattices are applied, called the Wannier functions method 
(WFM), the main computations are limited to the energy space. 
For such a case a nano-device can be described with a small-
size Hamiltonian, hence simulations are much faster than RSM 
ones. For biased SL structures, the transformation of quantum 
states from position to energy domain is required, therefore 
WFM may be questioned with regard to their accuracy. We 
have also addressed this problem. It has been shown that the 

1.	 Introduction

Semiconductor superlattices (SL) are the base structures for 
quantum cascade lasers (QCLs). They are the devices that emit 
radiation in the mid- to far-infrared electromagnetic spectrum 
[1‒3]. The concept of the process for lasing in QCLs had been 
proposed by R.F. Kazarinov and R.A. Suris [4] and over the last 
two decades they inspired many scientific and practical studies: 
the works [5‒6] deserve particular attention. Theoretical ap-
proach to transport in superlattices brought many interesting 
works on the application of the Monte Carlo method [7‒8]. 
With increasing computing power, the method has gained 
gravity. Still, it is worth to remember that Monte Carlo simu-
lations base on semi-classical method of Boltzmann equation, 
in which neglect quantum coherence. Yet, their uncertainty can 
be verified with other computational methods, some of which 
are: Green’s functions method operating in the real space [9] 
(that is the approach we adopted) or maximally localized Wan-
nier functions (MLWF) applied to calculation by Wacker et al. 
[10‒13]. These methods provide software tools for simulating 
nanodevices, e.g, a widely known Nextnano [14]. The tools 
are used to explore physical phenomena in superlattices or to 
design specific parameters of the devices. Simulations can be 
found surprising at times, both with regard to the variety of 
values the calculated parameters take, and the time required 
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results obtained for both approaches may differ, and the re-
spective causes have been explained. The analysis is limited 
to the basic functions associated with the SL transportation, as 
we believe any other differences in parameters may be a direct 
consequence of the changes presented here.

2.	 Main features of the models

In the paper, two SL structures are considered. First of them 
(structure A) is a base of typical far-infrared terahertz QCL, 
described by Callebaut et al. [23]. In each QCL structure, the 
period contains an active region and a separate injector region. 
The lasing transition occurs in the active region. The injector 
serves as a reservoir of electrons to be injected into the active 
region of the adjacent stage. The direction of the electron flow 
is shown in Fig. 1. Electrons are injected from n = 1’ into n = 5 
(in the next period) to make a subsequent vertical transition into 
n = 4. LO phonon transition occurs between levels n = 4, n = 3 
and n = 2, n = 1. It is viable as the subbands n = 4 and n = 3 
are resonant and the distance between these states is above 
the LO phonon energy. As shown in Fig. 1, the electron flow 
resembles a cascade formed by the electrons moving from one 
stage to the other, as long as a bias is applied.

The second of considered SL structures (structure B) was 
described by Page et al. [24]. It is room temperature 25 mW 
pulsed operation of an AlGaAs/GaAs mid-infrared (»9.5 μm) 
QCL structure.

Two models simulating phenomena in SL were applied in 
our computations. For the WFM, a model (see Fig. 2a) is com-

posed of the infinite number of modules. One module corre-
sponds to one period of the SL structure.

For such an infinite model, the allowed minibands and 
Bloch functions are initially determined. A one-dimensional 
Schrödinger equation

	
–ħ2

2
d
dz

1
me(z)

d
dz

 + V(z) +  ħ2k 2

me(z)
Ψ (z) = EΨ (z),� (1)

where Ψ (z) are envelope functions, V(z) is the spatially de-
pendent superlattice potential, and me(z) is the effective mass 
constant within each semiconductor layer, is required to be 
solved.

Equation (1) is solved by the transfer matrix formulation 
(TMF) method [19]. In this approach, the envelope function 
Ψ (z) in the semiconductor layer j can be written as

Fig. 2. Two models of superlattice structures: a) The model used in 
WFM, which comprises an infinite number of modules (one module 
provides one SL structure period); b) The multi-quantum well model 

used in RSM
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Fig. 1. Conduction-band line-up for the first of concerned SL structure. 
The device consists of GaAs/Al0.15Ga0.85As layers of thicknesses of  
7.8/2.4/6.4/3.8/14.8/2.4/9.4/5.4 nm; the barriers are marked in boldface, 
wells in plain text; underlined value is doped to n = 1.93£1016 cm–2 
in the 14.8 nm wide well. The arrows indicate transitions between the 
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	 ψ j(z) = Ajeikj(E)(z ¡ zj) + Bjeikj(E)(z ¡ zj),� (2)

where z j is the position of the structure region j, and  
kj(E) =  2mj(E ¡ Vj)/ħ2 , with mj and Vj as the mass and the 
potential in the region j, respectively. Subsequently, the Bloch 
states in equation (2) are computed. They are denoted as ϕq

ν(z), 
where n is the index of the miniband and q is the Bloch vector 
within the range h–π/d , π/di. The term d is the length of the 
superlattice period. The Bloch functions are evaluated by the 
grid with 0.1 nm mesh size (a). It yields 524 points per period. 
As in our case one miniband for excited state is included, the 
miniband index ν runs from 1 to 5. Then, quantum states are 
constructed on the basis of MLWF. The Wannier functions as-
sociated with miniband ν are constructed according to the re-
lation [25]

	 Wν(z ¡ nd) =  d
2π

π/d

–π/d

∫ ϕq
ν(z) ¢ e– inqddq .� (3)

The phases of the Bloch functions are chosen arbitrarily 
for each value of q to obtain MLWF. These operations were 
performed for each miniband ν. Practically, a separate numer-
ical method is required to analyze WF localization. We based 
it on the analysis of the WF parts maxima, the real and imag-
inary alike. The second criterion is to check the values of WF 
integrals in the selected potential wells of the SL structure. 
The results of the numerical research were reported in [19, 21]. 
Quantum states, obtained as above, are necessary to construct 
the Hamiltonian matrix and to apply the NEGF formalism, as 
explained further.

The model applied in RSM (see Fig. 2b) is a semi-infinite 
model, in which the multi-quantum well alignment [15] of the 
biased SL band structure continues into the leads (semi-in-
finite electrodes R and L). It is assumed that outside the ana-
lyzed part of the structure, the conduction band edge does not 
change. It is the main difference for this model with respect 
to the WMF, as it does not require initial computations of the 
allowed minibands in the simulated structure. Unlike WFM, 
the quantum states in SL can be obtained directly by employing 
NEGF formalism.

3.	 Hamiltonians for WFM and RSM

The Wannier states, obtained as presented in the previous sec-
tion, are used to construct the Hamiltonian H ̂ WFM. In our sim-
ulations, only the couplings between the Wannier states in the 
same period, and the nearest-neighbor periods are considered. 
Therefore, the matrices representing the Hamiltonian are con-
structed with 15 states from three periods, what corresponds to 
basic assumptions proposed in [13]. 

The Hamiltonian H ̂ WFM may be separated into two parts: 
H ̂ WFM = H ̂ 0 + H ̂ scatt , where H ̂ scatt represents the scattering pro-
cesses in the investigated structure, whereas H ̂ 0 contains the 
superlattice potential and the static electric field ξ applied 
in the growth direction, thus rewritten as H ̂ 0 = H ̂ SL + H ̂ ξ. By 

expressing the Hamiltonian H ̂ SL in the Wannier basis, we ob-
tain [25]
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The phases of the Bloch functions are chosen 
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where n is the number of the superlattice periods, index 
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operators for an electron with in-plane wave vector k. 
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1T represents the off-diagonal couplings 
between Wannier levels in different periods, and kE  
are the diagonal elements of SLH  in this basis. The 
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where d is the length of a period, e is the electron 
charge, and )()( zzWldzWdzR *

l
 −=  . In the NEGF 

theory, scattering processes expressed in scattĤ  are 
applied in the form of self-energies, described in the 
next section. For the single energy of the wave vector k, 
the size of Hamiltonian matrix in WFM can be 
calculated from the formula WSPH NNS

WFM
= , where 

PN  is the number of analyzed periods, and WSN  is the 
number of Wannier states, in the specified range of 
energy. Three periods with five Wannier states each are 
considered, thus (for structure A) the resulting size of 
the Hamiltonian matrix 

WFMHS is 15. The Hamiltonian 
of the device, used for real space method, can be 
written as [25] 
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where z is the spatial coordinate in the growth direction 
for the energy states E, V is the Hartree potential, and m 
is the position and energy-dependent effective mass. 
The grid with a = 0.6 nm for z space coordinate is 
assumed, hence the size of the Hamiltonian matrix for a 
single energy level of the wave vector k, can be defined 
as adS

RSMH /= . For this method, we consider one 
period of the superlattice, the size of the Hamiltonian 
matrix 

RSMHS is 88 (for structure A). The way, in which 
the Hamiltonian matrix is constructed, as well as its 
content, provides the basic difference between two 
presented methods.  

HRSM contains elements, which depend both on 
energy and position, therefore many parameters of the 
SL structure can be calculated directly from the RSM. 
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NEGF formalism, as explained further.  

The model applied in RSM (see Fig. 2b) is a semi-
infinite model, in which the multi-quantum well 
alignment [15] of the biased SL band structure 
continues into the leads (semi-infinite electrodes R and 
L). It is assumed that outside the analyzed part of the 
structure, the conduction band edge does not change. It 
is the main difference for this model with respect to the 
WMF, as it does not require initial computations of the 
allowed minibands in the simulated structure. Unlike 
WFM, the quantum states in SL can be obtained 
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3. Hamiltonians for WFM and RSM 
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previous section, are used to construct the Hamiltonian 

WFMĤ . In our simulations, only the couplings between 
the Wannier states in the same period, and the nearest-
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matrices representing the Hamiltonian are constructed 
with 15 states from three periods, what corresponds to 
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The Hamiltonian WFMĤ  may be separated into two 
parts: scattWFM ĤĤĤ += 0 , where scattĤ  represents the 
scattering processes in the investigated structure, 
whereas 0Ĥ  contains the superlattice potential and the 
static electric field ξ applied in the growth direction, 
thus rewritten as 

ĤĤĤ SL +=0 . By expressing the 

Hamiltonian SLĤ  in the Wannier basis, we obtain [25] 
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where n is the number of the superlattice periods, index 
ν labels the Wannier state )(zWn

 within the period n, 
†

n,

ka


 
and 

kn,a
  stand for the creation and annihilation 

operators for an electron with in-plane wave vector k. 
Parameter 

1T represents the off-diagonal couplings 
between Wannier levels in different periods, and kE  
are the diagonal elements of SLH  in this basis. The 

Hamiltonian Ĥ can be written as [25] 
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where d is the length of a period, e is the electron 
charge, and )()( zzWldzWdzR *

l
 −=  . In the NEGF 

theory, scattering processes expressed in scattĤ  are 
applied in the form of self-energies, described in the 
next section. For the single energy of the wave vector k, 
the size of Hamiltonian matrix in WFM can be 
calculated from the formula WSPH NNS

WFM
= , where 

PN  is the number of analyzed periods, and WSN  is the 
number of Wannier states, in the specified range of 
energy. Three periods with five Wannier states each are 
considered, thus (for structure A) the resulting size of 
the Hamiltonian matrix 

WFMHS is 15. The Hamiltonian 
of the device, used for real space method, can be 
written as [25] 
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where z is the spatial coordinate in the growth direction 
for the energy states E, V is the Hartree potential, and m 
is the position and energy-dependent effective mass. 
The grid with a = 0.6 nm for z space coordinate is 
assumed, hence the size of the Hamiltonian matrix for a 
single energy level of the wave vector k, can be defined 
as adS

RSMH /= . For this method, we consider one 
period of the superlattice, the size of the Hamiltonian 
matrix 

RSMHS is 88 (for structure A). The way, in which 
the Hamiltonian matrix is constructed, as well as its 
content, provides the basic difference between two 
presented methods.  

HRSM contains elements, which depend both on 
energy and position, therefore many parameters of the 
SL structure can be calculated directly from the RSM. 

,� (6)

where z is the spatial coordinate in the growth direction for the 
energy states E, V is the Hartree potential, and m is the position 
and energy-dependent effective mass. The grid with a = 0.6 nm 
for z space coordinate is assumed, hence the size of the Ham-
iltonian matrix for a single energy level of the wave vector k, 
can be defined as SHRSM

 = d/a. For this method, we consider one 
period of the superlattice, the size of the Hamiltonian matrix 
SHRSM

 is 88 (for structure A). The way, in which the Hamiltonian 
matrix is constructed, as well as its content, provides the basic 
difference between two presented methods.

HRSM contains elements, which depend both on energy and 
position, therefore many parameters of the SL structure can be 
calculated directly from the RSM. On the other hand, when 
comparing the size of the Hamiltonian matrices, it seems that 
under the NEGF formalism, where the same equations are 
solved for both methods, the calculations with WFM should 
be faster than with RSM. Still, as WFM requires to be computed 
prior to MLWF, it is not so obvious. Both methods, applied to 
SL simulations with the same parameters, are presented in order 
to resolve such doubts.
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4.	 Green’s functions and self-energies

While computing transport characteristics in the SL structure 
under the applied bias, the first step is to describe the non-equi-
librium stationary state of the system by using non-equilibrium 
Green’s functions namely, the retarded Green’s function GR and 
the correlation function G<. For both methods, the Dyson and 
the Keldysh equations [28] are solved. The first of them, in the 
basic form can be written as [29]

	 (E I ¡ H ¡ ΣR)GR = I .� (7)

In this equation, GR is the matrix of the retarded Green’s 
functions, which in the Wannier basis takes on the form 
GR

WF =  f (α, β, kk, E), where α and β are the general indices 
that include both the period and the Wannier level indices. For 
example, α ´ α(µ, n), whereas n refers to the superlattice pe-
riods and µ corresponds to the selected Wannier levels. The 
remaining parameters in the relation GR

WF are: the in-plane wave 
vector kk and the total energy E.

In the RSM approach, the retarded Green’s functions can 
be written as G R

RS = f (z, z′, kk, E), where z and z′ are the real 
space coordinates.

The Hamiltonian equations in WFM and RSM are presented 
in section 3. The main difference between the Hamiltonians is 
the reduced number of the position coordinates for WFM. Con-
sequently, the Hamiltonian matrix size is significantly smaller, 
so simulations take shorter time. To illustrate the time efficiency 
of simulations, we initially assumed the self-energies ΣR as the 
constant diagonal elements iη for both described methods. The 
parameter η was used as defined with [30]

	 G R(E) =  lim
η → 0+

G(Z = E + iη).� (8)

The correlation function G< was calculated from the 
Keldysh equation [31]

	 G< = GR∑<GR†,� (9)

where the self-energies Σ< initially (in thermodynamic equilib-
rium) are the diagonal elements iη ¢ fn(E), where

	 fn(E) = 1/
£
exp((E ¡ EF)/kBT) ¡ 1

¤
� (10)

For the biased structure

	 fn(E) = 1/
£
exp((E ¡ µzB)/kBT) ¡ 1

¤
,� (11)

where the values of µzB were determined from approximation 
inspired by Büttiker probes [32, 33]. A detailed description 
of using this approach in our simulations, was provided in 
[21, 22].

Then, the self-consistent Born approximation was initi-
ated. According to this approach, in the WFM the self-ener-
gies ∑R

WF(α, β, kk, E) are evaluated with the formula [12]
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where loE  is the energy of the optical phonons, 
and ( ) 1/exp1)( −= TkEEf BB  is the equilibrium 
phonon distribution at temperature T. The matrix 
elements )(

1

'ph ,V kk  represent the interaction with 
optical phonons and can be calculated according to 
equation [12] 
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where the constant value 
( )  plolo neEC  4/2

1
2

12 +=  with loE as the LO-

phonon energy (36.7 meV), p  
as the relative 

permittivity of the material and ( )lon   is a phonon 
number state represented by )( loB Ef . The expression 

( )zqM  is computed according to [12] 
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where Lw is the distance along the z-direction, over 

,� (12)

where Elo is the energy of the optical phonons, and fB(E) =  
= 1/ exp(E/kBT) ¡ 1  is the equilibrium phonon distribution at 
temperature T. The matrix elements V ph

α1β(k, k′) represent the in-
teraction with optical phonons and can be calculated according 
to equation [12]
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where loE  is the energy of the optical phonons, 
and ( ) 1/exp1)( −= TkEEf BB  is the equilibrium 
phonon distribution at temperature T. The matrix 
elements )(

1

'ph ,V kk  represent the interaction with 
optical phonons and can be calculated according to 
equation [12] 
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where Lw is the distance along the z-direction, over 
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where the constant value C = Eloe2 n(ω lo) + 1/2 ±1/2 /4πεp 
with Elo as the LO-phonon energy (36.7 meV), εp as the rela-
tive permittivity of the material and n(ωlo) is a phonon number 
state represented by fB(Elo). The expression Mαβ(qz) is computed 
according to [12]

	 Mαβ(qz) = 
Lw

0
∫ dz e iqzzWα

*(z) ¢ Wβ(z) ,� (14)

where Lw is the distance along the z-direction, over which the 
Wannier functions W(z) extend. The parameter B in equation 
(13) replaces the relation B = (qz

2 + k 2 + k '2 + q0
2) where q0 is 

the Debye length and qz is the component of the Bloch vector in 
the growth direction. The self-energies in the Keldysh equation 
∑<

WF(α, β, kk, E) can be written as [12]
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In the real space method, the self-energies 
( ) ,

| |,,',R

RS
Ekzz  are evaluated as [27] 
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where 0
112 2/)(  −−

 −= rloEe and the self-energies 

( ),
| |,,',

RS
Ekzz  are described by [26] 
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To determine the Green’s functions, RG (E) and 
G (E), the quantum transport equations (7), (9) and the 

equations for the self-energies are solved iteratively, 
until a self-consistent solution for these equations is 
reached. Computations stop upon reaching the assumed 
convergence. The convergence test was carried by 
comparing differences in the k-integrated Green’s 
functions Im{ i

R
i

R EGEG )()( 1  −+ } with the carrier 

density Im{ ii EGEG )()( 1


+
 −  }, evaluated in two 

successive iteration steps, with a given tolerance value. 

5. Simulations and discussion 

Both methods were tested using a standard PC, 
equipped with an Intel XEON 3.33 GHz. The analysis 
of simulations starts with comparing of the minibands 
parameters, calculated for the typical THz-QCL 
structure [23] (structure A) in the thermodynamic 
equilibrium. The numerical results are presented in 
Table 1, which shows the values of energy for the five 
lowest energy levels of the quantum states, obtained 
directly from the RSM. The other 3 columns of this 
table present basic parameters of the minibands 
computed with the TMF method under the applied 
WFM. Similarly to the approach presented elsewhere 
[13], a five Wannier states base were used and 
interactions were limited to three adjacent structural 
periods. Therefore, in TMF part of Table 1, the values 
of the energy levels for five lowest centers of the 
minibands and the corresponding values of 

1T , 
representing the coupling between Wannier-states of 
miniband ν, are presented. Knowing that   25.01


MBWT  , 

where  
MBW  is the bandwidth ν, one can get more 

information about the SL band structure using WF 
rather than RSM, where the single states from only one 
period of SL can be observed. 

Additionally, in order to ensure the effectiveness of 
the calculations with the RSM, we must make sure that 
the Hamiltonian matrix size in this method is not too 
large. 
Table 1. Minibands and quantum states basic parameters, 
computed with RSM and WFM. 

In our case, it is related to the discretization of the SL 
structure by a = 0.6 nm. For comparison, Bloch 
functions determined with the TMF have an accuracy of 
a = 0.1 nm, therefore, the values of the energy levels 
obtained with RSM program (see Table 1), are less 
accurate when compared to the results obtained with the 
TMF method. Higher RSM accuracy requires huge 
Hamiltonian matrix sizes, representing the studied 
device, and thus either the simulation time becomes 
uneconomical or the computer system memory 

WFM   (TMF) RSM 

Mini
band 

(ν) 

Energy levels  
the centre of 
minibands 

E  [eV] 


1T [eV] 

Energy levels  
of the 

quantum 
states  
[eV] 

a 0.0146651 -1.342*10-6 0.014 
b 0.029119 4.627*10-5 0.028 
c 0.0339153 -8.128*10-5 0.033 
d 0.0508985 1.269*10-4 0.049 
e 0.0622459 -1.307*10-4 0.061 

� (15)

In the real space method, the self-energies ∑R,
RS(z, z', kk, E) are 

evaluated as [27]

.
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which the Wannier functions )(zW  extend. The 
parameter B in equation (13) replaces the relation 

)'( 2
0

222 qkkqB z +++=  where q0 is the Debye length and qz 
is the component of the Bloch vector in the growth 
direction. The self-energies in the Keldysh equation 
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In the real space method, the self-energies 
( ) ,

| |,,',R

RS
Ekzz  are evaluated as [27] 
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where 0
112 2/)(  −−

 −= rloEe and the self-energies 

( ),
| |,,',

RS
Ekzz  are described by [26] 
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To determine the Green’s functions, RG (E) and 
G (E), the quantum transport equations (7), (9) and the 

equations for the self-energies are solved iteratively, 
until a self-consistent solution for these equations is 
reached. Computations stop upon reaching the assumed 
convergence. The convergence test was carried by 
comparing differences in the k-integrated Green’s 
functions Im{ i

R
i

R EGEG )()( 1  −+ } with the carrier 

density Im{ ii EGEG )()( 1


+
 −  }, evaluated in two 

successive iteration steps, with a given tolerance value. 

5. Simulations and discussion 

Both methods were tested using a standard PC, 
equipped with an Intel XEON 3.33 GHz. The analysis 
of simulations starts with comparing of the minibands 
parameters, calculated for the typical THz-QCL 
structure [23] (structure A) in the thermodynamic 
equilibrium. The numerical results are presented in 
Table 1, which shows the values of energy for the five 
lowest energy levels of the quantum states, obtained 
directly from the RSM. The other 3 columns of this 
table present basic parameters of the minibands 
computed with the TMF method under the applied 
WFM. Similarly to the approach presented elsewhere 
[13], a five Wannier states base were used and 
interactions were limited to three adjacent structural 
periods. Therefore, in TMF part of Table 1, the values 
of the energy levels for five lowest centers of the 
minibands and the corresponding values of 

1T , 
representing the coupling between Wannier-states of 
miniband ν, are presented. Knowing that   25.01


MBWT  , 

where  
MBW  is the bandwidth ν, one can get more 

information about the SL band structure using WF 
rather than RSM, where the single states from only one 
period of SL can be observed. 

Additionally, in order to ensure the effectiveness of 
the calculations with the RSM, we must make sure that 
the Hamiltonian matrix size in this method is not too 
large. 
Table 1. Minibands and quantum states basic parameters, 
computed with RSM and WFM. 

In our case, it is related to the discretization of the SL 
structure by a = 0.6 nm. For comparison, Bloch 
functions determined with the TMF have an accuracy of 
a = 0.1 nm, therefore, the values of the energy levels 
obtained with RSM program (see Table 1), are less 
accurate when compared to the results obtained with the 
TMF method. Higher RSM accuracy requires huge 
Hamiltonian matrix sizes, representing the studied 
device, and thus either the simulation time becomes 
uneconomical or the computer system memory 

WFM   (TMF) RSM 

Mini
band 

(ν) 

Energy levels  
the centre of 
minibands 

E  [eV] 


1T [eV] 

Energy levels  
of the 

quantum 
states  
[eV] 

a 0.0146651 -1.342*10-6 0.014 
b 0.029119 4.627*10-5 0.028 
c 0.0339153 -8.128*10-5 0.033 
d 0.0508985 1.269*10-4 0.049 
e 0.0622459 -1.307*10-4 0.061 

,� (16)

where γ  = e2Elo(ε1–1 ¡ εr
–1)/2ε 0 and the self-energies ∑<,

RS(z, z', 
kk, E) are described by [26]
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which the Wannier functions )(zW  extend. The 
parameter B in equation (13) replaces the relation 
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222 qkkqB z +++=  where q0 is the Debye length and qz 
is the component of the Bloch vector in the growth 
direction. The self-energies in the Keldysh equation 

( )E,k,, ||WF   can be written as [12] 
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In the real space method, the self-energies 
( ) ,

| |,,',R

RS
Ekzz  are evaluated as [27] 
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where 0
112 2/)(  −−

 −= rloEe and the self-energies 

( ),
| |,,',

RS
Ekzz  are described by [26] 
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To determine the Green’s functions, RG (E) and 
G (E), the quantum transport equations (7), (9) and the 

equations for the self-energies are solved iteratively, 
until a self-consistent solution for these equations is 
reached. Computations stop upon reaching the assumed 
convergence. The convergence test was carried by 
comparing differences in the k-integrated Green’s 
functions Im{ i

R
i

R EGEG )()( 1  −+ } with the carrier 

density Im{ ii EGEG )()( 1


+
 −  }, evaluated in two 

successive iteration steps, with a given tolerance value. 

5. Simulations and discussion 

Both methods were tested using a standard PC, 
equipped with an Intel XEON 3.33 GHz. The analysis 
of simulations starts with comparing of the minibands 
parameters, calculated for the typical THz-QCL 
structure [23] (structure A) in the thermodynamic 
equilibrium. The numerical results are presented in 
Table 1, which shows the values of energy for the five 
lowest energy levels of the quantum states, obtained 
directly from the RSM. The other 3 columns of this 
table present basic parameters of the minibands 
computed with the TMF method under the applied 
WFM. Similarly to the approach presented elsewhere 
[13], a five Wannier states base were used and 
interactions were limited to three adjacent structural 
periods. Therefore, in TMF part of Table 1, the values 
of the energy levels for five lowest centers of the 
minibands and the corresponding values of 

1T , 
representing the coupling between Wannier-states of 
miniband ν, are presented. Knowing that   25.01


MBWT  , 

where  
MBW  is the bandwidth ν, one can get more 

information about the SL band structure using WF 
rather than RSM, where the single states from only one 
period of SL can be observed. 

Additionally, in order to ensure the effectiveness of 
the calculations with the RSM, we must make sure that 
the Hamiltonian matrix size in this method is not too 
large. 
Table 1. Minibands and quantum states basic parameters, 
computed with RSM and WFM. 

In our case, it is related to the discretization of the SL 
structure by a = 0.6 nm. For comparison, Bloch 
functions determined with the TMF have an accuracy of 
a = 0.1 nm, therefore, the values of the energy levels 
obtained with RSM program (see Table 1), are less 
accurate when compared to the results obtained with the 
TMF method. Higher RSM accuracy requires huge 
Hamiltonian matrix sizes, representing the studied 
device, and thus either the simulation time becomes 
uneconomical or the computer system memory 

WFM   (TMF) RSM 

Mini
band 

(ν) 

Energy levels  
the centre of 
minibands 

E  [eV] 


1T [eV] 

Energy levels  
of the 

quantum 
states  
[eV] 

a 0.0146651 -1.342*10-6 0.014 
b 0.029119 4.627*10-5 0.028 
c 0.0339153 -8.128*10-5 0.033 
d 0.0508985 1.269*10-4 0.049 
e 0.0622459 -1.307*10-4 0.061 

.� (17)

To determine the Green’s functions, GR(E) and G<(E), the 
quantum transport equations (7, 9) and the equations for the 
self-energies are solved iteratively, until a self-consistent solu-
tion for these equations is reached. Computations stop upon 
reaching the assumed convergence. The convergence test was 
carried by comparing differences in the k-integrated Green’s 
functions Im{G R

αα(E)i + 1 ¡ G R
αα(E)i} with the carrier density 

Im{G<
αα(E)i + 1 ¡ G<

αα(E)i}, evaluated in two successive itera-
tion steps, with a given tolerance value.

5.	 Simulations and discussion

Both methods were tested using a standard PC, equipped with 
an Intel XEON 3.33 GHz. The analysis of simulations starts 
with comparing of the minibands parameters, calculated for 
the typical THz-QCL structure [23] (structure A) in the ther-
modynamic equilibrium. The numerical results are presented 
in Table 1, which shows the values of energy for the five lowest 
energy levels of the quantum states, obtained directly from 
the RSM. The other 3 columns of this table present basic pa-
rameters of the minibands computed with the TMF method 
under the applied WFM. Similarly to the approach presented 
elsewhere [13], a five Wannier states base were used and in-

teractions were limited to three adjacent structural periods. 
Therefore, in TMF part of Table 1, the values of the energy 
levels for five lowest centers of the minibands and the cor-
responding values of T1

ν, representing the coupling between 
Wannier-states of miniband ν, are presented. Knowing that 
T1
ν ¼ 0.25 W ν

MB , where W ν
MB  is the bandwidth ν, one can get 

more information about the SL band structure using WF rather 
than RSM, where the single states from only one period of SL 
can be observed.

Table 1 
Minibands and quantum states basic parameters, computed with 

RSM and WFM

WFM (TMF) RSM

Miniband
(ν)

Energy levels 
the centre of 
minibands Eν

[eV]

T1
ν

[eV]
Energy levels 

of the quantum 
states 
[eV]

a 0.0146651 –1.342*10‒6 0.014

b 0.0291190 –4.627*10‒5 0.028

c 0.0339153 –8.128*10‒5 0.033

d 0.0508985 –1.269*10‒4 0.049

e 0.0622459 –1.307*10‒4 0.061

Additionally, in order to ensure the effectiveness of the cal-
culations with the RSM, we must make sure that the Hamilto-
nian matrix size in this method is not too large. 

In our case, it is related to the discretization of the SL struc-
ture by a = 0.6 nm. For comparison, Bloch functions deter-
mined with the TMF have an accuracy of a = 0.1 nm, there-
fore, the values of the energy levels obtained with RSM 
program (see Table 1), are less accurate when compared to the 
results obtained with the TMF method. Higher RSM accuracy 
requires huge Hamiltonian matrix sizes, representing the 
studied device, and thus either the simulation time becomes 
uneconomical or the computer system memory insufficient. 
Note that the calculations of the allowed minibands with the 
TMF method, with the required accuracy of dE = 1 meV in 
the energy range ∆E = 200 meV, took about 6 minutes for 
a program running under Windows 7 system on the PC de-
scribed above.

For calculating the Green’s functions (GF), due to the WFM, 
we must first construct the quantum states based on the MLWF, 
as described elsewhere [19]. Time needed to compute MLWF, 
with the same hardware system, was tens minutes (according 
to the selected method finding MLWF [20]) for the case of 15 
Wannier functions localized within an area of 20 periods of the 
SL, with an accuracy of a = 0.1 nm. Because the high accuracy 
for energy levels, was not of much importance, the RSM gained 
an advantage at the start of the SL simulation.

To make a reliable comparison for GF results, the energy 
discretization step of 1 meV within the range 200 meV for 
both WFM and RSM was assumed. Computations for struc-
ture A were performed for T = 25 K. The initial results of the 
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Im G<
ii, k = 0(E)

NEGF computations are presented in Fig. 3a, where the sum 
of the diagonal elements Im GR

ii, k = 0(E)  and Im G<
ii, k = 0(E)  are 

presented as the functions of the energy parameter E without the 
electric field. In the right Fig. 3b, the examples of such func-
tions, calculated in the Wannier basis are shown, whereas the left 
one, the example computed with the RSM may be observed. For 
these computations, were assumed the constant values of param-
eter η (i.e., η = 1 meV). In this case, the GF calculation time 
was short for both methods. Precisely, it was equal to 73 s, and 
186 s, for the WFM and RSM (by a = 0.6 nm), respectively. 
Still, with the increased computation accuracy in the RSM, 
the GF calculations for a = 0.2 nm lasted 5200 s, whereas 
for an attempt to perform the simulations with the accuracy 
of a = 0.1 nm, the computer system memory was insufficient.

The Green’s functions in the right Fig. 3a have five peaks, 
what corresponds to the same number of quantum states occur-
ring in the structure for the considered range of energy. In the 
left Fig. 3a there are more peaks associated with the quantum 
levels. At first glance, it may seem similar to the less accurate 
WFM, though in this case the visible differences can be at-
tributed to the Hamiltonian in the WFM, which included five 
Wannier states per period, and thus we can observe five peaks of 
the Im GR

ii, k(E) . In contrast RSM allows to determine directly 
nine quantum states, what corresponds to the same number of 
peaks of the Im GR

ii, k(E)  function. Herein, the number of peaks 
is a consequence of the considered energy range. The WFM 
allows to include in the Hamiltonian an arbitrary number of 
quantum states. In paper [13] the authors proposed four ground 
states and one excited state (a total number of five states) to be 
taken into account and they showed that this number of states 
is enough for the correct transport simulation.

Apart from the differences in the number of peaks for  
Im GR

ii, k = 0(E) , their positions within the energy domain, ob-
tained with both methods, are very similar for all first five 

states. It supports sufficient accuracy of the simulations with 
the RSM for the mesh size a = 0.6 nm.

The functions Im G<
ii, k = 0(E)  represented in Fig. 3a with 

magenta lines show minor differences, as the assumed con-
stant parameter η yielded similar self-energies values Σ< for 
both methods. For the RSM, a linear change in the Fermi level 
along the SL structure was assumed, whereas for the WFM it 
was designed as a step function for each state.

The sum of the diagonal elements Im G<
ii, k = 0(E)  is re-

ferred to as 1D-DOS function. By summing up the k parameter, 
3D-DOS function can be obtained according to the relation 
N3D(E) = ∑ν, k Im GR

ii, k(E) . It was shown in Fig. 3b, where 
3D-DOS functions computed with the WFM and the RSM are 
presented. It can be observed that these methods are conver-
gent in the initial range of energy, although a small difference 
is noticeable above 60 meV. It was attributed to the greater 
number of the Im GR

ii, k(E)  peaks for the RSM, as described in 
the previous paragraph.

The occupation functions per period calculated according to 
equation n3D(E) = 2∑ν k Im G<

ii, k(E)  are shown in the inset A of 
Fig. 3b. As expected, the results obtained with the WFM and 
the RSM show a good convergence, and the agreement between 
the results of Im G<

ii, k = 0(E)  is demonstrated.
Interesting results were achieved with the electric field ap-

plied to the SL structure. In the right Fig. 4a, the Im GR
ii, k = 0(E)

and Im G<
ii, k = 0(E)  functions calculated with the WMF were 

shown and in the left one the same functions computed with the 
RSM was shown. When analyzing the results, it should be kept 
in mind that the Hamiltonian in WFM contained three adjacent 
superlattice periods, whereas the RSM Hamiltonian covered 
only one period. Applying the multi-quantum well model to 
RSM provides for the partial influence of the adjacent periods 
to be taken into account in NEGF calculations, what does not 
allow peaks representing the states of the neighboring periods to 

Fig. 3. Results of simulations for structure A: a) examples of the sum of the diagonal elements Im GR
ii, k = 0(E)  and Im G<

ii, k = 0(E)  as a function 
of the energy parameter E without the electric field; to the right – examples of these functions evaluated in the Wannier basis (WFM); to the 
left – examples calculated with the real space method (RSM); b) total density of states N3D(E) and occupation functions n3D(E) (inset A) in one 

period of the non-polarized structure, computed with WFM and RSM
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be seen between the peaks of GF. For WFM, however, the situ-
ation is different as in the GF charts, the mixed peaks from the 
states of the three neighboring periods are observed (the func-
tion plotted in green). Therefore, with the electric field applied 
in Fig. 4a, one can see a lot more peaks function 1D DOS calcu-
lated using the WFM, than for the same function calculated with 
the RSM. However, we can select peaks of the 1DOS functions 
from a single period (see the function plotted in black) and then 
compare 1DOS features for both methods. The positions of the 
peaks are slightly displaced, what may result from not including 
the impact of states of neighboring periods in the RSM.

Different methods for calculating self-energies Σ< for the 
biased structure cause discrepancies, which occur in the results 
of Im G<

ii, k = 0(E)  (see graphs in magenta in Fig. 4a. It has also 
led to different 3D occupation functions – n3D(E), presented in 
inset A of Fig. 4b. This figure shows also 3D-DOS functions 
N3D(E) obtained with the WFM and the RSM. A smaller number 
of 3D-DOS steps for the WFM, when compared to RSM can 
be seen there. It is attributed to fewer peaks of 1D-DOS for the 
WFM results (see Fig. 4a): the effect may be observed when 
the diagonal elements Im GR

ii, k = 0(E)  and the parameter k are 
summed up.

In further simulations, LO-phonon scattering processes were 
included by applying the Born approximation. The simulation 
efficiency for this case is representative for overall calcula-
tions including a self-consistent solution of the Dyson and the 
Keldysh equations procedure, as well as self-energy equations. 
Such simulations last longer. The higher the number of loop 
iterations is, the longer it takes to simulate, as the Hamilto-
nian matrix size is greater. On the other hand, some approach 
related differences are observed for the expressions (12‒17) 
while computing the self-energies with the RSM and the WFM 
methods. Two balanced factors contribute to the effectiveness of 
both methods. To investigate this issue, the computations were 

performed with the same PC. WFM iteration loop lasted 3250 s, 
whereas for RSM it lasted 2880 s. Although it was found a bit 
surprising, it was attributed to a larger number of numerical 
operations required for the WMF in comparison to the RSM 
while computing the ΣR and Σ<.

Such calculations can be simplified, as suggested elsewhere 
[12], by applying the constant momenta k typ and k′typ (and the 
corresponding energies Etyp and E′typ) to evaluate the scattering 
matrix elements V ph

α1β (k, k′). Although it diametrically accel-
erates simulation for the WFM, we did not use tricky ones. 
In the conclusion of this paragraph, it should be added, that 
RSM computations were performed with rather large mesh size 
(a = 0.6 nm), for a higher accuracy, computer system memory 
was insufficient.

The results of the simulations of the LO-phonon scattering 
process can be observed in Fig. 5. In this figure, the functions 
the N3D(E) and the n3D(E) (in inset A) obtained with the WFM 
and the RSM are shown. These results display differences 
between the methods, especially for the higher energy range, 
which were expected due to reasons similar to results in Fig. 4. 
The differences in the results for the RSM and the WFM, shown 
in Fig. 5a may have contributed to the differences in the results 
visible in Fig. 5b, where the k-resolved occupation functions 
n(E, kk) are presented.

The WMF allows to choose the base of the quantum states, 
to determine the Hamiltonian. This was shown by Lee et al. 
[13], who presented the use of three bases of quantum states 
in the QCL simulations. This allows to adjust the base of 
quantum states, with respect to targeted simulation results. For 
example, to analyze the spatial and energy location of quantum 
states for a biased SL structure, it is convenient to use the 
Wannier-Stark base.

The simulations obtained with the WFM in the Wanni-
er-Stark base are shown in the Fig. 6a,c and the results com-

Fig. 4. Results of simulations for structure A: a) examples of the diagonal elements Im GR
ii, k = 0(E)  and Im G<

ii, k = 0(E)  and (in magenta) as function 
of the energy parameter E, with bias (100 mV/period) applied; to the right – exemplary functions calculated in the Wannier basis (WFM) from 
three periods (in green) and one selected period (in black); to the left – the same exemplary functions calculated with RSM; b) total density 
of states states N3D(E) and 3D occupation functions n3D(E) (inset A) in one period of the polarized structure, computed with WFM and RSM

a) b)

z [nm]

Im G<
ii, k = 0(E) Im GR

ii, k = 0(E)–0.10

–0.05

0.00

0.05

0.10

0.15

60 70 80 90 100 110 120 130 140 150 160
E [eV]

N3D(E) = ∑ν , k Im GR
ii(E)

n3D(E) = ∑ν , k Im[G<
ii(E)]

m
ħ2

–0.05 0.00 0.05 0.10

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0



638

M. Mączka and G. Hałdaś

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

Fig. 5. Results of simulations for structure A: a) Total density of states – N3D(E) and 3D occupation functions n3D(E) (within A) as well as 
k-resolved occupation functions n(E, k|) (see chart b) in one period, calculated with WFM and RSM (LO-phonon process scattering on)
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Fig. 6. a) Wannier-Stark states in three periods of structure A calculated with the WFM; b) Wannier-Stark states in one period of structure A obtained 
directly from RSM; c) and d) spatial-resolved densities of electrons n(z, E) in structure A, calculated with the WFM and the RSM respectively
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puted directly from the RSM can be observed in Fig. 6b, d. 
The calculations were performed for a constant value of the 
parameter η (see equation (8)).

Undoubtedly, it is a big advantage of the WFM that con-
sidering three periods of the structure allows to illustrate the 
transport mechanisms within the QCL much clearer than the 
RSM. The conclusion is supported with Fig. 6a, where the cas-
cade of electrons flowing through the adjacent periods of the 
laser structure is shown.

On the other hand, Wannier–Stark states (WSS) are known to 
be the quantum states in a biased structure. The WFM requires 
quantum states to be constructed on the basis of the MLWF, 
as described earlier in this section. The obtained quantum 
states can be interpreted as the probability of finding electrons 
within the SL structure of energies, corresponding to specific 
minibands. This, however, is true for the non-biased structure. 
When the shape of the quantum states in the biased structure 
is determined, it is necessary to diagonalise the Hamiltonian 
in the energy representation, and then multiply the resulting 
transition matrix by Wannier base. Presented transformation of 
states may raise the questions about the accuracy of the final 
results, particularly with regard to the RSM, where WSS are 
obtained directly. Analyzing the data presented in Fig. 6. can 
prove helpful. It would appear that the results for both methods 
are very similar, particularly with regard to the shape and the 
position of each state within a single period; however, more 
detailed analysis shows slight differences in energy levels of 
WSS to occur. In the Fig. 6c, d, spatial-resolved densities of 
electrons n(z, E) simulated with both method, are shown. In the 
WFM, it was calculated according to the relation [33]

	 n(z, E) =  2
A

αβ k
∑ 1

2πi
G<

βα(k, E)WSα
*(z)WSβ(z) ,� (18)

where A is the total area in (x, y) -plane, WS *
α(z) and WSβ(z) are  

the Wannier-Stark states, which are the eigenstates of H ̂ 0. In 
the RSM, the formula for the electron density takes the fol-
lowing form [27]

	 n(z, E) =  –2i
aA k
∑ ∫

dE
2π

G<(z, z, k, E).� (19)

The results show that the larger area of simulations for the 
WFM (when compared to the RSM) allows to observe the 
possibilities of electron transitions between the periods of the 
structure more precisely.

We get the most benefits from using the WFM, when it is 
necessary to simulate a structure with many narrow potential 
barriers in one period. In Fig. 7, results of simulations for the 
SL structure used in QCL [24, 25] are shown. In Fig. 7a we can 
see the Wannier-Stark states in three periods of the SL calcu-
lated with the WFM. In Fig. 7b the Wannier-Stark states in one 
period of the SL obtained directly from the RSM are plotted. 
The higher potential barriers of the structure B than the struc-
ture A and its more complicated construction, required a much 
larger amount of memory for the RSM Hamiltonian. There-
fore the calculations presented in Fig. 7b lasted for a very long 
time, depending on the included processes of scattering. They 
can last from several hours to several days. After applying the 
WFM, the basic parameters of quantum states in the SL, were 
obtained after a short time (about a few minutes), additionally 
they concerned a larger SL area and contained more points of 
mesh for the one period.

Within this study, we also compared of I–V SL characteris-
tics, simulated with the described methods, to other literature 
data. Fig. 8 presents the measured data for the considered QCL 
structure [23] and our computations (WFM with Büttiker probes 

Fig. 7. Results of simulations for structure B: a) Wannier-Stark states in three periods of SL calculated with WFM; b) Wannier-Stark states in 
one period of SL obtained directly from RSM
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[21] and RSM with Born approximation), as well as the results 
obtained with Monte Carlo Method and WFM with Born ap-
proximation applied. Density of the current flowing through the 
SL structure, was defined for WFM as [13]

	 J =  2e
ħA

α, β, k
∑ ∫

dE
2π

£
H ̂ 0, z ̂
¤
α, βG<

α, β, k(E),� (20)

where the matrix H ̂ 0, z ̂  is formed in the Wannier-Stark base. 
In the RSM the current can be written as [26]

	J =  2e
ħA k
∑∫

dE
2π z1∙ z
∑

z2>z
∑2Re

(

tr
£
tz1; z2

G<(z2, z1, k, E)
¤)

,�(21)

where J  is the current crossing the plane between the layer z 
and z + 1, e is the electron charge, while the factors of 2 are 
for spin degeneracy. In the equation (20), we use a block matrix 
notation for t and G<, and tr{….} indicates a trace over the 
orbital indices in the nearest neighbor tight-binding models.

Results in the Fig. 8 show, that our numerical results did not 
significantly differ from the simulations published previously, 
but most importantly applying WFM with Büttiker probes al-
lowed us to get 50 points I-V characteristics in a few hours, 
whereas computing 20 points of the same characteristics with 
RSM lasted several days (in both cases, the same PC was em-
ployed).

6.	 Summary and conclusions

Software modules in C++ were developed to implement an 
effective method for semiconductor superlattices simulations, 
which is known as the Wannier function method. The efficiency 

Fig. 8. Current-voltage characteristics of the SL structure [23] obtained 
for different approaches. The measured current-voltage characteristics 

of the studied structure are plotted in blue solid line
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and the accuracy of the SL structure modeling have been tested 
with respect to the application implemented already, named as 
RSM. In this method due to the large size of the Hamiltonian 
matrix, these simulations were expected to take longer in com-
parison to the WFM. For modeling, a simple THz laser struc-
ture, with a mesh size of 0.6 nm for discretization of structure 
in the RSM, has proved to be sufficient to obtain convergent 
results from the WFM. Then a higher computation accuracy 
caused a significant decrease of the RSM effectiveness. As in 
the RSM Hamiltonian covers more stationary states data for 
the simulated structure than the Hamiltonian in the WMF, this 
method proved to be more convenient to use and more effective 
in terms of the computation time, only for the smaller number 
of mesh points, discretizing superlattice. As demonstrated by 
the numerical experiments, the maximum Hamiltonian matrix 
size should be of the order of several dozens, unless a very 
efficient computer hardware is available to perform SL simu-
lations. Hence, the WFM is recommended for SL simulations 
of complicated structures, as it takes shorter time to obtain re-
sults, and huge computer memory is not required. However, in 
this method, the transformation of quantum states from a spa-
tial to energy representation proves to be a simplification, due 
to which differences occur, when the results are compared to 
the RSM computations. It is especially true for higher voltage 
and upper energy ranges. Therefore, it seems reasonable to 
take proper care when interpreting results obtained with the 
WFM, particularly, when in the considered energy range GF 
peaks from three neighboring superlattice periods appear. On 
the other hand, inclusion three periods of the superlattice into 
the WFM allows to observe the effect of mixing the quantum 
states between the adjacent periods of the structure. We have 
also demonstrated certain SL parameters to be fast computable, 
provided that some specific simplifications in both RSM and 
WFM are applied. In this respect, WFM proved to open more 
opportunities for cascade-current observed in the device.
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