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Abstract
The study aimed to examine the use of Geomagnetic Anomaly Detection (GAD) to locate the buried
ferromagnetic pipeline defects without exposing them. However, the accuracy of GAD is limited by the
background noise. In the present work, we propose an approximate entropy noise suppression (AENS)
method based on Variational Mode Decomposition (VMD) for detection of pipeline defects. The proposed
method is capable of reconstructing the magnetic field signals and extracting weak anomaly signals that are
submerged in the background noise, which was employed to construct an effective detector of anomalous
signals. The internal parameters of VMD were optimized by the Scale–Space algorithm, and their anti-noise
performance was compared. The results show that the proposed method can remove the background noise
in high-noise background geomagnetic field environments. Experiments were carried out in our laboratory
and evaluation results of inspection data were analysed; the feasibility of GAD is validated when used in the
application to detection of buried pipeline defects.
Keywords: Buried Pipeline, Defect Recognition, Geomagnetic Anomaly Detection, Variational Mode De-
composition, Approximate Entropy.
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1. Introduction

Buried pipelines provide one of the most efficient means of transporting oil and gas, and many
countries have attached great importance to the non-destructive testing and safety evaluation of
in-service pipelines [1, 2]. After the pipelines were laid and operated, due to the influence of
corrosion, third-party damage, natural disasters, and other factors, some defects would inevitably
be formed, which requires timely detection of defects through various types of testing methods
and evaluation of their impact on pipeline safety. Non-destructive testing (NDT) techniques
commonly employed in routine pipeline testing are Ultrasonic Testing (UT) and Magnetic Flux
Leakage testing (MFL) [3–6], which are In-Line Inspection (ILI) [7]. The ILI should overcome
the influence of pipeline running pressure, flow, deformation and pipeline cleanliness on the
detection accuracy, whereas the conventional internal detection technology applies only to the
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formed macro defects, and it is not effective for stress concentration and early diagnosis of damage
in ferromagnetic materials [8, 9].

However, most of the buried pipelines have characteristics that restrict the pigging, so detecting
the pipeline defects is an urgent problem to be solved in the non-excavation state. Some external
detection techniques currently available include Eddy Current (EC) methods [10, 11], Guided
Wave Testing (GWT) [12–14], Transient Electromagnetic Method (TEM) [15], and Radiography.
The above means are external electromagnetic excitation detection methods, which increase the
difficulty of on-site detection.

The Metal Magnetic Memory (MMM) mean [16], which is known as the Magneto-Mechanical
Memory method [17], has been employed to close-range ferromagnetic pipeline defect detection
by measuring the residual magnetic field [18, 19] above a pipeline. The essence of the residual
magnetic field is the external manifestation of stress concentration which leads to an amplifica-
tion of magnetic field change, and the magnetization effect induced by stress induction cannot
establish a corresponding exact formula between the stress and the RMLF [20, 21]. The buried
pipelines can be detected using a non-contact magnetic detection technique, where the ILI is
difficult to implement [22]. Magnetic anomaly detection (MAD) is a good mean for detecting and
locating ferromagnetic targets, particularly ferromagnetic buried pipelines [23–27]. The Mag-
netic Tomography Method (MTM) [28, 29] is a passive NDT method, which can detect defects
in buried pipelines’ bodies by measuring magnetic field anomalies caused by mechanical stress
areas of ferromagnetic components. The method can detect defects at the locations far from the
pipe and can measure the geometry of the defects.

The leakage magnetic field caused by damage of pipe, however, is affected by various factors
such as interference of surrounding magnetic object, signal towers, and high-voltage lines. The
non-parametric detection methods have also been studied for MAD, such as high-order crossing
method [30] and minimum entropy detector [31]. Since both methods do not need actual assump-
tions about the target signal, which guarantees them a convenient implementation. However, low
signal-to-noise (SNR) may assign certain restrains on their detection performance. Therefore,
low SNR and the absence of earlier knowledge of the target signal challenge the behavior of
MAD. In order to solve the signal processing problem, the Stochastic Resonance (SR) algorithm
was proposed as a novel detector [32]. However, the method cannot recognize the target signal
and the noise signal in passive magnetic detection. The MAD is suitable for detecting magnetic
objects of a dipole structure. The detection distance is 2–3 times the maximum size of the mag-
netic dipole when the detected target can be considered as a point dipole source [22]. Using the
magnetic dipole model, Li et al. predicted the Ground Leakage Magnetic Field (GLMF) above
the buried pipeline by simulation [33]. However, it was found that GLMF was lower than the
original prediction when changing the pipe material used in the model [34]. The vertical compo-
nent of the magnetic anomaly signal and its analytic signal were used to detect buried pipelines,
which provided an effective method for direction calculating and horizontal locating of buried
pipelines [35].

Geomagnetic detection is an effective passive detection method. By measuring the anomaly
of the Earth’s weak magnetic field, some of their characteristics can be determined in addition to
the existence of hidden objects [36]. Soil, water, canopy, and many other types of materials have
almost no effect on geomagnetic field. The current challenge in geomagnetic testing is that the
detection of weak signals requires expensive instruments. Otherwise, the processing of acquired
signals would be very difficult.

We tried to find a more effective mean for GAD to make up for the shortcomings of existing
detection methods. This study aimed to examine the use of GAD to locate defects of buried ferro-
magnetic pipelines without exposing them. An approximate entropy noise suppression (AENS)
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method for geomagnetic anomaly signal detection based on VMD is proposed and applied to
ferromagnetic pipeline defect detection. VMD is a new algorithm that decomposes signals into
different modes [37], which is an optimized version of the Empirical Mode Decomposition (EMD)
[38] algorithm for analysing nonlinear and non-stationary signals [39]. The VMD algorithm is
successfully used to filter the pipeline defect signal by the de-trended fluctuation analysis [40].
Since the geomagnetic signal is a kind of nonlinear and non-stationary signal, it is critical to
study the bandwidth estimation based on the modal instantaneous frequency and instantaneous
amplitude spectrum. The VMD can be used to accurately decompose the geomagnetic signal
into different modes. In the paper, we propose a novel geomagnetic anomaly detector based on
VMD algorithm to improve the detection performance of geomagnetic pipelines. In the actual
detection process, the measured magnetic signal can be decomposed into a set of Intrinsic Mode
Functions. We identified the defect location in a ferromagnetic pipe as GAD, which is considered
to be a series of dipole source.

The article is organized as follows. We briefly introduce the optimized VMD algorithm and
construct a detector based on VMD in Section 2. The geomagnetic signal is pre-processed by the
Scale–Space and approximate entropy noise suppression methods. In Section 3, the experiment
design is presented. The method of reliability was verified by laboratory experiments and field
measurements. Section 4 contains the discussion. Finally, Section 5 concludes the paper.

2. Detector construction based on improved VMD

2.1. Improved VMD algorithm

2.1.1. Basic algorithm of VMD

The VMD is a novel adaptive signal processing algorithm, which assumes that the signal is
superimposed by many modal functions. Each modal function is an amplitude modulated and
frequency modulated signal with different central frequencies. A variational method is used to
minimize the sum of estimated bandwidths of each eigenmode function. The eigenmode func-
tions are demodulated to the corresponding baseband, and finally, the eigenmode functions and
corresponding central frequencies are extracted. In the VMD algorithm, the intrinsic eigenmode
function (IMF) is defined as an Amplitude Modulation-Frequency Modulation signal expressed as:

uk (t) = Ak (t) cos (ϕ(t)) , (1)

where: uk (t) is the modal function; Ak (t) is the instantaneous amplitude of uk (t); ϕ(t) is the
instantaneous phase of uk (t); ωk is the instantaneous frequency of uk (t):

ωk = ϕ
′(t) =

dϕ(t)
dt
. (2)

The steps should be executed to construct a variational model,
– First, we use Hilbert transform to obtain the analytic signal of each modal function uk (t),

thereby obtaining the unilateral spectrum of the signal.[
δ(t) +

j
πt

]
∗ uk (t). (3)

– Next, each modal function modulates the spectrum of each eigenmode function to the
corresponding baseband by exponential correction around the respective estimated central
frequency. [(

δ(t) +
j
πt

)
∗ uk (t)

]
e−jωk t . (4)
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– Finally, the bandwidth of each eigenmode function is estimated by Gaussian smooth de-
modulation of the signal to obtain the bandwidth of each segment. Thus, the program
process is executed by convex optimization problem:

min
{uk }, {ωk }

k





∂t

[(
δ(t) +

j
πt

)
∗ uk (t)

]
e−jωk t







2

2

 ,
s.t.

∑
k

uk = x(t),
(5)

where {uk } = {u1, . . . , uK } and {ωk } = {ω1, . . . , ωK } are all modes and their central frequencies.
x(t) is the input signal. The augmented Lagrangian represented by:

L (uk (k), ωk, λ) = α
∑
k






∂t
[(
δ(t) +

j
πt

)
∗ uk (t)

]
e−jωk t







2

2
+







x(t) −
∑
k

uk (t)








2

2

+

⟨
λ(t), x(t) −

∑
k

uk (t)
⟩
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(6)

where: α is a penalty factor, and λ is a Lagrange multiplier. The saddle point is obtained by the
Alternate Direction Method of Multipliers. From the Fourier domain solution, all of the obtained
central frequencies and modes are updated in the reverse direction. The k-th iteration is updated
using:

ûn+1
k (ω) =

x̂(ω) −
∑
i,k

ûi (ω) +
λ̂(ω)

2

1 + 2α (ω − ωk )2 . (7)

Wiener filtering is the key part of the VMD algorithm, so it has strong robustness. The update
of a central frequency ωk is at the centre of its corresponding mode power spectrum, which can
be given as follows:

ωn+1
k =

∞∫
0

ω |ûk (ω) |2 dω

∞∫
0

|ûk (ω) |2 dω

. (8)

The focus of this paper is not to show the VMD algorithm in detail. Nevertheless, the paper
will delve into the effects of the initial setting of the mode central frequency on the decomposition
and the optimal selection of α.

2.1.2. Parameter-less Scale–Space segmentation strategy

In earlier studies, researchers used to estimate the value of K roughly out of their experience,
which inevitably brought instability to the results of the analysis. In order to produce a precise
calculation, a mathematical method named Scale–Space is brought forward to calculate K [41].
In this method, the Fourier spectrum is decomposed into wavelet packets with the ability to
accommodate different situations [42]. The paper uses a sampled Gaussian kernel to implement
a Scale–Space representation:

L(x, t) =
+M∑

n=−M
f (x − n)g(n; t), (9)
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where: the function f (x) is defined in an interval [0, xmax]; the kernel function is g(n; t) =
1
√

2πt
e−n

2/2t ; t is a scale parameter. Set M = C
√

t + 1 with 3 ≤ C ≤ 6, and with M large enough

for the approximate error of the Gaussian to be negligible. L(x, t) is represented by convolution
and can preserve detailed information that is longer than

√
t.

By convolution iteration, the different parameter
√

t determines the spectral segmentation
position by detecting all local minimum values of L(x, t). We use a histogram to determine the
modes of interest by finding the local minimum that defines a Scale–Space curve (SSC). The
key issue in finding the modes of interest is the determination of a threshold T of Scale–Space
dimension, thereby the SSC of length larger than T is within a mode of interest. At this time,
the determination of the threshold is converted into a clustering problem of two types of data on
the set L, so we obtain the threshold T using the K-means method that can adaptively divide the
Fourier spectrum.

We use a simulation signal to verify the effectiveness of the Scale–Space segmentation
strategy. The simulation signal consists of four amplitude-modulated signals and random white
noise. The corresponding mathematical expressions are as follows:

x(t) = x1(t) + x2(t) + x3(t) + x4(t) + xnoise , (10)

x1(t) = cos(100πt),

x2(t) = 3e−4t cos(300πt),

x3(t) = sin (cos(500πt)) ,

x4(t) = 0.5 cos(800πt).

(11)

The signal spectrum is shown in Fig. 1. Obviously, the signals of different frequencies can be
accurately divided, as shown in Fig. 1a. Furthermore, we use the scale–space method to optimize
VMD for calculation, as shown in Fig. 1b. The spectrum of signal components obtained by VMD
is consistent with each input signal. The simulation results show that the performance of VMD
algorithm can be effectively improved by using the Scale–Space segmentation strategy.

a) b)

Fig. 1. Analysis of Signal Spectrum using the Scale–Space Segmentation Strategy. a) Segmentation
results obtained with the scale–space method; b) signal spectra based on the scale–space and VMD.

2.1.3. Approximate entropy noise suppression

Approximate entropy (ApEn) is a measure that quantifies the predictability or regularity of
a time series data [43]. ApEn considers a time sequence of points in a time series, so it is the
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preferred measure of randomness or regularity. A given time series is {x(i), i = 1, 2, . . . , N }. Next,
we define for each i:

Cm
i (r) =

1
N − m + 1

∑
j=1
θ (r − d (x(i), x( j))) , (12)

where m and r are the values of mode dimension and the vector comparison distance, respectively.
θ(x) = 1 for x > 0, θ(x) = 0; otherwise, it represents standard Heavyside function, and is the
maximum distance between any two modes.

Then, we define ϕm(r) as:

ϕm(r) =
1

N − m + 1

N−m+1∑
i=1

log Cm
i (r). (13)

Finally, the ApEn is:
ApEn(m, r) = ϕm(r) − ϕm(r + 1). (14)

ApEn is a dimensionless scalar, whose magnitude depends on m and r . Therefore, the paper
proposed a method of extracting the “noise-suppressed” feature of the geomagnetic signal by
combining the correlation function and ApEn theory, i.e., Approximate Entropy Noise Suppression
(AENS). The specific feature extraction process is as follows:

– First, the autocorrelation function of the geomagnetic signal is calculated. The correlation
function value is taken as the calculation sequence of ApEn, and the sequence length of the
geomagnetic signal used in ApEn is longer than that of the correlation signal.

– Finally, the ApEn of the selected function is calculated to obtain the measurement of signal
complexity.

We calculated the ApEn of the autocorrelation function of geomagnetic signals from the
experimental data. The data of pipeline defect signals used for calculation contain 100,000
sampling points, as shown in Fig. 2a. When calculating the ApEn, the sample data are divided
into 100 segments, and each segment has 1000 sampling points corresponding to an ApEn of the
autocorrelation function. The results show that the ApEn of geomagnetic signals is between 0.43
and 0.55, as shown in Fig. 2b.

a) b)

Fig. 2. A sample geomagnetic signal and ApEn of the autocorrelation function. a) The geomagnetic detection
signal for pipeline defects; b) the ApEn of autocorrelation function value of the geomagnetic signal.

2.2. Geomagnetic anomaly detection model

It is difficult to extract target signal under the condition of low SNR. However, the traditional
signal processing means are based on the assumption that both the signal to be measured and
the noise signal are sampled at the same time. The sampled signal is directly de-noised, and the
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eigenvalues are extracted. The de-noising process needs a long time to fit the strong noise, and the
results occasionally have unacceptable errors. Therefore, extracting a weak geomagnetic anomaly
signal is the key to detect pipeline damage under strong background geomagnetic interference.
The geomagnetic anomaly detection model based on VMD is presented in Fig. 3. The algorithm
flowchart is as follows:

– the target signal is pre-processed by the Scale–Space segmentation, and the mode number
K used in VMD is determined;

– calculate the correlation coefficient between the geomagnetic anomaly signalbased on the
approximate entropy value and the original signal, and determine the value of constraint
parameter α;

– construct pipeline defect geomagnetic anomaly signal detector based on VMD;
– use VMD detector to de-noise and reconstruct signals.
– assess whether the result satisfies the Scale–Space segmentation and approximate entropy

de-noising algorithm or not;
– finally, if the result does not meet the requirements, repeat steps 1–4 to complete the entire

de-noising process; if it is satisfactory, the reconstructed signal is recorded as the final
de-noising result.

Fig. 3. A flowchart of the Geomagnetic Anomaly Detector Construction based on the improved VMD algorithm.

3. Results and analysis

3.1. VMD algorithm analysis

The VMD algorithm is applied to analyse subtlechanges of magnetic anomaly signals. The
correctness of the results will be affected by the selection of VMD input parameters. Therefore,
this section discusses the selection of values of two key parameters, i.e., the mode number K
and the constraint constraint α. The VMD algorithm can only perform well when the balancing
parameter of α and the mode number K are properly set.

3.1.1. Number of mode components K

The Scale–Space algorithm is applied to geomagnetic anomaly signals, and the spectrum of
signals is divided into seventeen segments, as shown in Fig. 4a. Therefore, the number K is set to
seventeen. It is noteworthy that the larger K will bring trouble to the calculation, so the number
of modes should be reduced.

The spectrum analysis on pipeline defect signal shows that the signal energy concentrates
mostly within the band of smaller than 5 Hz. Concerning this fact, the defect signal is identified
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into four modal components in order to obtain a certain signal, as shown in Fig. 4b. The energy
outside 5 Hz can be considered as 0. In conclusion, a band-pass filter designed to the pass signals
only smaller than 5 Hz is chosen, and the number of mode components K is set to 4.

a) b)

Fig. 4. Segmentation results obtained with the scale–space method. a) Seventeen modes; b) four modes.

3.1.2. Constraint parameter α

The problem that the balance constraint parameters cannot be given accurately in the process
of variational mode decomposition is discussed, i.e., the bandwidth of signal mode component
is inversely proportional to the value of α. As the balance constraint parameter decreases, the
bandwidth of each mode component increases; thus, the phenomenon of central frequency over-
lapping and mode aliasing is apt to occur. With bigger α the mode bandwidth will be narrower.
Therefore, the anti-noise performance of the VMD algorithm will be improved, but the amount
of calculation will increase.

As to the GAD in this paper, it depends largely on whether the central frequency of the
extracted mode component is correct or not, so it is important to select a balance point of α. The
experimental data were used to analyse the anti-noise performance at different α values, so as to
select an appropriate value of α. It has been generally recognized that when α exceeds 5000, the
numerical error in mode separation would be too large to ignore [44]. Therefore, the scope of α
is limited by [100, 5000]. The calculation is carried out in ascending order of α from 100 to 5000
at the pace of 100, some results of calculation are chosen to list here when α is at key values. It
must be pointed out that, in Figs. 5c–5e, when α is larger than 2500, the CFs of noise are almost
the same as the original signals, which indicated good anti-noise performance. However, α larger
than 2500 cannot be of being employed because the reconstructed signal deviates seriously from
the true value.

Furthermore, the Approximate Entropy (ApEn) and Kendall coefficients (KCs) are used as the
criteria to measure the effect of signal filtering. ApEn is a measure of the signal volatility after
filtering, and KC is a measure of the correlation between the reconstructed signal and the original
signal. The quality of the reconstructed signal is directly proportional to KC and inversely to
ApEn. Fig. 6. shows that both ApEn and KC decrease gradually when the value of α is between
100 and 5000. The ApEn is greater than 0.55 (The value is calculated in 2.1.3) for values of α
from within the range of 100–1500, which should be discarded.

Therefore, the value of constraint parameter α should be set to 2000 to ensure the correct
value of central frequency, as shown in Table 1.
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a) b)

c) d)

e) f)

Fig. 5. The original signal and the signal reconstructed at different values of α. a) α = 1000; b) α = 1500;
c) α = 2000; d) α = 2500; e) α = 3000; f) α = 5000.

Fig. 6. Variation of Kendall Coefficient and Approximate Entropy with the value of α. The left vertical axis
presents Kendall coefficient values, whereas the right one – Approximate Entropy values.
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Table 1. The variation trend of Kendall Coefficient and Approximate Entropy values with values of α.

Index 1 2 3 4 5 6 7 8 9 10 11

Value of α 50 500 1000 1500 20001 2500 3000 3500 4000 4500 5000

Kendall Coefficient 0.930 0.929 0.930 0.927 0.925 0.910 0.908 0.827 0.816 0.811 0.808

Approximate Entropy 0.663 0.636 0.625 0.524 0.482 0.468 0.473 0.306 0.294 0.306 0.287

1 The appropriate value of α for geomagnetic signals.

3.2. Experimental results

3.2.1. Experimental data

Firstly, a simplified geomagnetic anomaly detection model for buried pipeline defects is
established, as shown in Fig. 7a. The experimental system consists of a sensor array, a module of
data acquisition, a module of signal conditioning and power supply, a satellite positioning system,
as shown in Fig. 7b.

a) b)

Fig. 7. The laboratory experiment of pipeline inspection. a) A schematic diagram of the experimental setup;
b) the experimental system.

The experimental pipe is made of Q235 steel material with a wall thickness of 3 mm, and
a diameter of 75 mm. We fabricated six defects at different locations of the pipe to study the
magnetic anomaly signals of different defects, as shown in Fig. 8.

Fig. 8. Locations of defects in the pipeline.

The shapes of these six defects are axial crack, transverse crack, square groove, through hole,
blind hole, and 45-degree crack in turn, as shown in Fig. 9. The lift-off is five times the pipeline
diameter.
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a) b)

c) d)

e) f)

Fig. 9. Images of defects in the ferromagnetic pipeline. a) The size of the axial crack is 30 mm × 1 mm × 1 mm;
b) The size of the axial crack is 1 mm×20 mm×1 mm; c) the size of the axial crack is 12 mm×20 mm×1 mm;
d) the diameter of the through hole is 10mm; e) the diameter and depth of the blind hole are 10 mm and 1 mm;

f) the size of the 45-degree crack is 1 mm × 20 mm × 1 mm.

The experimental data used inthe paper consist of two different data sets, as shown in Fig. 10a
and Fig. 11a. The first set of signals contains the experimental data detected without artificial
excitation interference, so that we can obtain a high-SNR signal. The testing conditions simulate
the real field environment. The second group of signals are the test data after adding a 1 kHz
interference signal artificially to obtain a low-SNR signal. In order to save the analysis space, the
second set of data analysed only 0–100 cm signals. We analysed the second group of signals,
which verified the effectiveness of the APNS algorithm.
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3.2.2. Results of data analysis

Figures 10a, 10b present the original pipeline defect signal and gradient energy index, re-
spectively. Based on these two figures, the defect location and damage degree on the pipeline
cannot be identified. Therefore, we process the original signal using VMD and the gradient energy
detector. Fig. 10c shows the component of geomagnetic anomaly signal extracted by VMD. We
use the VMD detector to perform Energy Index processing on the signal, and locations of six
defect signals can be seen very clearly on the pipeline, as shown in Fig. 10d.

a)

b)

c)

d)

Fig. 10. Detection of defects in a buried ferromagnetic pipeline in the geomagnetic environment. a) The original
detection signal of a pipeline defect; b) A pipeline defect signal processed by the gradient energy detector; c) The
component of geomagnetic anomaly signal extracted by the VMD detector; d) Corresponding positions of six

defects in the pipeline.
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Table 2 shows the actual and calculated locations of pipeline defects. The results show that
the relative error is less than 2% for the pipeline with a length of 200 cm.

Table 2. Error analysis of pipeline defect locations.

Defect Type
Axial Transverse Square Through Blind 45-Degreek
Crack Crack Groove Hole Hole Crack

Actual Position / cm 15 50 75 95 150 190

Calculated Interval Position / cm 17–19 43–57 75–80 88–96 147–152 192–196

Calculated Midpoint Position / cm 18.0 50.0 77.5 92 149.5 194

Absolute Error / cm 3.0 0.0 2.5 3 0.5 4

Relative Error / % 1.50 0 1.25 1.50 0.25 2.00

In the second experiment, we added 1 kHz Gauss noise to acquire low-SNR signals. Fig. 11
shows the first half length of the pipeline, i.e., 0–100 cm. Fig. 11a describes the signal obtained
by the magnetic sensor, in which the signal is practically hidden in artificially added noise.
The location of pipeline defect and the degree of damage cannot be identified without the VMD
detector, as shown in Fig. 11c. Therefore, we have input the signal with noise to the VMD detector
(Fig. 11b), and the output signal, i.e., Energy Index, is shown in Fig. 11d. The pipeline defect
can be represented at the output of VMD detector, which proves the effectiveness of the VMD
detector. It is estimated that the SNR of signal after filtered by VMD detector is approximately
eight times that of the input (here, we define the SNR as a ratio of signal amplitude to noise
amplitude), which also indicated that the effectiveness of detection.

a) b)

c) d)

Fig. 11. Detection of defects in a buried ferromagnetic pipeline after adding noise. a) The original
detection signal of a pipeline defect; b) the component of geomagnetic anomaly signal extracted by the
VMD detector; c) t pipeline defect signal processed by the gradient energy detector; d) corresponding

positions of four defects in the pipeline.

Table 3 shows the actual and calculated locations of pipeline defects. The results show that
the relative error is less than 2% for the pipeline with a length of 100 cm.
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Table 3. Error analysis of pipeline defect locations.

Defect Type Axial Crack Transverse Crack Square Groove Through Hole

Actual Postion / cm 15 50 75 95

Calculated Interval Position /cm 16–19 41–58 78–80 88–99

Calculated Midpoint Position /cm 17.5 49.5 79.0 93.5

Absolute Error / cm 2.5 0.5 4.0 1.5

Relative Error / % 1.25 0.03 2.00 0.75

4. Discussion

By observing the original experimental data of the first and second sets, we cannot directly
determine the pipeline damage degree and its corresponding location from the original data. The
first experiment shows that a pipeline defect signal is detected in the geomagnetic environment.
Although signal fluctuations can be observed from the first set of raw data, we still cannot identify
pipeline defects. In the second group of experiments, a pipeline defect signal was completely
submerged in artificially added noise. To further describe the performance of VMD detector, we
transform the original signal into a receiver operating characteristic (ROC) curve. Therefore,
we can reconstruct target signals for magnetic field signals of any pipeline direction, magnetic
moment direction, and any signal-to-noise ratio value. The future research can include testing the
performance of the proposed detector, i.e., using synthetic target signals and acquired magnetic
noise to obtain ROC curves.

The OBF detector and its modified model proposed in [45] are greatly influenced by the shape
of the target signal, while the VMD detector is immune to that effect and can provide an adaptive
approximation testing for a class of abnormal signals. The reason is that the VMD detector is
not designed according to the specific features of the detected magnetic signal. However, the
initial parameters of VMD detector proposed in this paper can be optimized to accommodate
various types of abnormal signals, such as peak and pass-band signals. In the future work, we
will concentrate effort on making VMD detectors more suitable for magnetic anomaly signals of
any shape.

5. Conclusions

In the article, a novel feature signal extraction algorithm based on improved VMD is proposed
for GAD of defects in a buried ferromagnetic pipeline. We have applied VMD to calculate the
z-axis component of the pipeline’s magnetic signal measured by a total-field magnetic sensor
along a direction of straight track in the geomagnetic background. The VMD results in obtaining
the geomagnetic anomaly signal component, which is then employed as GAD to construct an
“energy” detector. This method is not only convenient to extract the time-frequency characteristics
of magnetic anomaly signals but also conducive to the coupling analysis of magnetic field signals
between different frequency bands. The results of applying VMD-GAD in the experiments showed
that the peak of the coupling strength appeared when the frequency band was narrower than 5 Hz,
and pipeline defects could be located by using a specified frequency band signal with an error
not exceeding 2%. While the measured signal is submerged in the environment, the output signal
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of the VMD detector is visible. The high detection accuracy and low computational complexity
make the proposed detector attractive for detection of defects in buried ferromagnetic pipelines.
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