
10.24425/acs.2019.129378
Archives of Control Sciences

Volume 29(LXV), 2019
No. 2, pages 205–226

Cellular particle swarm optimization
with a simple adaptive local search strategy

for the permutation flow shop scheduling problem

JUAN C. SECK-TUOH-MORA, JOSELITO MEDINA-MARIN, ERICK S. MARTINEZ-GOMEZ,
EVA S. HERNANDEZ-GRESS, NORBERTO HERNANDEZ-ROMERO and VALERIA VOLPI-LEON

Permutation flow shop scheduling problem deals with the production planning of a number
of jobs processed by a set of machines in the same order. Several metaheuristics have been
proposed for minimizing the makespan of this problem. Taking as basis the previous Alternate
Two-Phase PSO (ATPPSO) method and the neighborhood concepts of the Cellular PSO al-
gorithm proposed for continuous problems, this paper proposes the improvement of ATPPSO
with a simple adaptive local search strategy (called CAPSO-SALS) to enhance its performance.
CAPSO-SALS keeps the simplicity of ATPPSO and boosts the local search based on a neigh-
borhood for every solution. Neighbors are produced by interchanges or insertions of jobs which
are selected by a linear roulette scheme depending of the makespan of the best personal posi-
tions. The performance of CAPSO-SALS is evaluated using the 12 different sets of Taillard’s
benchmark problems and then is contrasted with the original and another previous enhancement
of the ATPPSO algorithm. Finally, CAPSO-SALS is compared as well with other ten classic
and state-of-art metaheuristics, obtaining satisfactory results.

Key words: flow shop, particle swarm optimization, local search strategy, hybrid search
method, cellular automata, scheduling

1. Introduction

Flow Shop Scheduling Problem (FSSP) has represented a relevant research
area for over sixty years due to its simplicity and combinatorial nature [14],
which makes the problem a common place to prove new algorithms for discrete
optimization. The FSSP can be easily understood and implemented in a computer
program to be analyzed. However, since its discrete nature, there is a combinato-
rial explosion of possible solutions for a linear increment in the number of jobs

J. Seck-Tuoh-Mora (corresponding author), J. Medina-Marin, E.S. Martinez-Gomez, E.S. Hernandez-
Gress, N. Hernandez-Romero, and V. Volpi-Leon are with Engineering Department, Autonomous University
of Hidalgo State, Carr. Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma, Hidalgo 42184, Mex-
ico. E-mails: {jseck, jmedina}@uaeh.edu.mx, ericksmage@gmail.com, {nhromero, volpi}@uaeh.edu.mx

This work was partially supported by National Council for Science and Technology (CONACYT) with
project number CB-2014-237323.

Received 23.05.2018.



206
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

to be scheduled. Thus, FSSP is relevant for theoretical reasons as a well-known
case of an NP-complete problem. Besides, a large number of automated manu-
facturing systems follow the behavior of a flow shop. Therefore, research in this
area and variations of the FSSP are important to control and optimize current
manufacturing systems [2].

The FSSP consists of finding the optimal order of n jobs to be processed
by m machines. Every job has the same sequence of operations passing from
machine 1 up to machine m. All jobs are independent and available at time 0,
each machine can only process on job at the same time, and preemption, failure
and set-up times are not considered. The most common objective in a FSSP is to
minimize the completion time of the last job in the last machine, better known as
makespan Cmax [21, 26]. Many methods have ben proposed to solve the FSSP.
Exact methods are limited to be applied for FSSPs with a few number of jobs
and machines because of the complexity in the number of possible solutions and
high calculation time. In recent years, many metaheuristic methods have been
published in order to solve larger FSSP instances with hundreds of jobs and
dozens of machines. Besides, there is a trending on proposing and implementing
new algorithms able to compute high quality solutions for large FSSP instances
in a reasonable time.

One of the most popular and applied metaheuristcs is the particle swarm
optimization (PSO) algorithm. PSO is an optimization method that simplifies
the local and global principles observed in the behavior of different groups of
animals (like birds of fish) to solve complex problems (food search or escape from
predators). The PSO algorithm is implemented using very simple rules that update
velocity and position of solutions (or particles) based on uncomplicated linear
equations [8]. PSO is very popular nowadays because many researchers have
worked with it in order to improve its exploration and exploitation capabilities to
solve complex and particular optimization problems [11, 16] and [1].

One adaptation from the original PSO is the one where the concept of cellular
automata (CA) neighborhood is taken to enhance the local search of particles.
This modification is known as Cellular Particle Swarm Optimization (CPSO) [28].
CPSO has been applied in different practical problems as the optimization of a
milling process [10] and the layout of truss structures [12]. In the theoretical
and the previous practical cases, CPSO has demonstrated stronger robustness
and obtained better optimal values than original PSO. Other result obtained with
an hybrid PSO and CA algorithm is presented in [15] for the optimal design of
adaptive infinite impulse response filters. In that work, the suggested algorithm
is different from CPSO in the sense of using a differential evolution method to
produce the neighborhood of every particle instead of a random search. The most
common application of PSO is in continuos problems, but discrete versions have
been proposed as well to optimize combinatorial problems. In the latter case, the
equations of PSO are modified to work with discrete elements. However, up to



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 207

our knowledge, a hybrid process of PSO and CA has not yet been investigated for
the optimization of FSSPs.

Several papers have been delivered to solve the FSSP based on PSO algorithm
[5,17,19,24,25,31,33] obtaining good results, but these algorithms have two main
drawbacks: these are still suffering from the problem of premature convergence
and easily trapped into local optimum, or are complemented with complicated
and complex local search methods. In order to refrain the decrement of swarm
diversity conserving the simplicity of the method, a two point crossover operator
and a repulsive process is introduced in the Alternate Two Phases PSO (ATPPSO)
algorithm, which can make the solutions fly toward some promising areas [34].
Nevertheless, ATPPSO has a drawback: the lack of local search ability.

Based on the above consideration, the motivation of the current study is the
application of a novel hybrid optimization technique based on the combination
of ATPPSO, CA and a simple local search (CAPSO-SALS) in the makespan
minimization for FSSPs. In particular, the solutions in the ATPPSO take a fixed
number of neighbors generated by interchange or insertion of jobs selected by a
linear operator, in order to improve their position. This hybridization improves
the performance of the original ATPPSO in the makespan minimization.

The original ATPPSO has been improved by a local search mechanism in [34],
known as I-ATPPSO. In I-ATPPSO, several operators have been added to the
original ATPPSO to enhance its performance, specially the local search is realized
by a mutator operator based on the variable neighborhood search [9]. However,
this mutator has a quadratic complexity with regard of the number of jobs to be
scheduled. In this sense, the simple local search in CAPSO-SALS has a linear
complexity, which provides and advantage over the I-ATPPSO algorithm.

The paper is organized as follows: Section 2 describes the preliminaries of
the FSSP. Section 3 explains the basics of PSO, CPSO and the original ATPPSO
applied to FSSPs. Section 4 exposes the simple adaptive local search method
used to improve the original ATPPSO in this paper. Section 5 presents the
CAPSO-SALS algorithm proposed in this paper to minimize the makespan in
FSSPs. Section 6 shows the sensitivity analysis, comparison of CAPSO-SALS
with the original ATPPSO and I-ATPPSO and computational results comparing
CPSO-SALS with other ten classic and state-of-art metaheuristic methods, ob-
taining sa- tisfactory results. The last section gives the concluding remarks of the
paper.

2. Flow shop scheduling problem

The flow shop scheduling problem consists of the assignment of a set of
n jobs W = {J1, . . . , Jn}, each job Ji is composed by a set of operations
Ji = {Oi,1, . . . ,Oi,m} processed by a set of machines U = {M1 . . . Mm}. Eve-



208
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

ry operation Oi, j has associated a value Ti, j that represents the processing time of
operation Oi, j ; for 1 ¬ i ¬ n and 1 ¬ j ¬ m.

Each machine can process only one job at a time. It is assumed that the
machine sequence is identical for all jobs, and the job sequence is the same
for all machines.Therefore, a job schedule is represented as a permutation π =
{π(1), . . . , π(n)} of W . The completion time of the operation Oi, j is indicated
by Ci, j . The model of the flow shop scheduling problem can be defined in the
following way:

Cπ(1),1 = Tπ(1),1 ,

Cπ(1), j = Cπ(1), j−1 + Tπ(1), j ,

Cπ(i),1 = Cπ(i−1),1 + Tπ(i),1 ,

Cπ(i), j = max{Cπ(i−1), j, Cπ(i), j−1} + Tπ(i), j ,

(1)

where i ∈ {2, . . . , n} and j ∈ {2, . . . ,m}. The makespan is defined as Cmax =
Cπ(n),m or time on machine m for all the jobs. The objective in this paper is
the minimization of Cmax. For simplicity, the makespan of π will be described
by C(π).

3. Particle swarm optimization

PSO is a continuous evolutionary algorithm initialized with a population
of random solutions or particles, and searches optimal values by updating the
population in generations. Each particle is conformed by a candidate solution x,
its fitness, a velocity v and a memory xb of the best candidate solution encountered
by the particle with its recorded fitness. Each particle seeks in the search space
with a velocity dynamically adjusted according to the own memory and the
information of its colleagues. Thus, particles evolve towards better search areas.
The velocity of a particle is calculated by:

vt+1 = wvt + φ1
(
xt

b − xt
)
+ φ2

(
xt
g − xt

)
(2)

and the solution is updated by:

xt+1 = xt + vt+1, (3)

where w is the inertia weight, φ1 and φ2 are uniform distributed random numbers
that determine the weight between the attraction to particle xb which is the best
particle position, and xg which is the overall best particle.

Cellular particle swarm optimization (CPSO) is a variant of PSO proposed by
Shi, Liu, Gao and Zhang [28], particles in CPSO improve their positions using



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 209

a scheme similar to cellular automata. The concept of cellular automata was first
proposed by Von Neumann and Ulam [3]. The operation of a cellular automaton
raises from homogeneously interconnected cells evolving synchronously at dis-
crete time steps obeying one common transition function [20]. Thus, a large array
of simple elements can generate complex behaviors interacting locally with its
neighbors. Particles in the swarm (or smart-cells) communicate with cells outside
the swarm in order to improve their fitness value, the best cell in the neighborhood
will be selected as the new smart-cell. That neighborhood concept will be used
in the algorithm proposed in this paper for the FSSP.

3.1. Alternate two phases particle swarm optimization

The hybrid alternate two phases particle swarm optimization (ATPPSO) is a
variant of the classical PSO where discrete versions of Eqs. 2 and 3 are proposed
to handle permutations [34]. In ATPPSO, velocity and state of every particle are
updates as follows:

vt+1 = vt ⊗ πg + ⊗πb , (4)
πt+1 = πt ⊗ vt+1, (5)

where ⊗ is the attractive crossover operation depending on the best global position
πg and the personal best position πb of a solution π.

The attractive crossover operator generates a new solution by combining two
other sequences. To obtain a permutation of jobs as a new solution, a pair of
crossing point is randomly selected in the first particle. The jobs inside crossing
point are copied into the solution. Then the remaining places are filled up by
taking in order each valid (unrepeated) job from the second particle (Fig. 1).
However, because the velocities of particles approach to zero when velocity and
current position have the same permutation, the attractive crossover is easily
trapped in local optima.

Figure 1: Example of the attractive crossover for permutations
of 8 jobs, the resultant sequence is showed in the middle.

In order to overcome this problem, a repulsive process ⊙ is defined (Eq. (6)), in
which each particle is repelled away from its personal worst position and attracted



210
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

to its personal best position simultaneously, to escape from local optima.

vt+1 = vt ⊙ πw + ⊗πb . (6)

Similar to the attractive crossover operator, first, a pair of crossing random
points is selected along the first parent and the jobs inside their crossing points
are copied into the solution. Then, the remaining places are filled up by taking in
the reverse order each unrepeated job from the second particle (Fig. 2).

Figure 2: Example of the repulsive crossover for permutations
of 8 jobs, the resultant sequence is illustrated in the middle.

4. Simple adaptive local search

Taking the ideas behind CPSO and ATPPSO, this paper proposes a hybrid
algorithm called CAPSO-SALS, where the ATPPSO is complemented by a simple
adaptive local search. The ATPPSO algorithm has been also improved with a local
search in [34], where a tabu list and a mutation operator is implemented to increase
the diversity of the swarm and improve the exploitation capacity. We believe that
ATPPSO can be improved in an easier way obtaining similar results.

The ATPPSO algorithm utilizes three populations, the set of particles (here-
after called smart-cells), their best positions and their worst positions. Following
the idea of CPSO [28], the ATPPSO procedure will be enhanced alternating the
particle swarm process with a simple adaptive local search (SALS) based on a
linear criterion to improve the population of best positions independently. This
process will enhance the ATPPSO behavior when new velocities are calculated
following Eq. (4) and (6).

Following the influence of CPSO, the local search will be implemented by
neighborhoods for the best position of every smart-cell. If the best position of a
smart-cell has a not-so-good makespan with regard of the others, it is possible
that it may be in a local minimum, so its neighborhood will be generated with high
probability of changing the first jobs to escape from local minima (Fig. 3 (A)). On
the other hand, if the best position of a smart-cell has a good makespan compared
to the rest of best positions, that position will have a greater probability to be



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 211

modified in the last jobs in order to produce a neighborhood of new solutions and
exploit the current position in a finer way (Fig. 3 (B)).

Figure 3: Neighbors generated by the local search. (A) If the best position of a smart-cell
has a not-so-good makespan, the first jobs have more probability to be selected to produce
new solutions. (B) If the best position of a smart-cell has a good makespan, the last jobs
would be chosen to produce new solutions.

There are several local search methods based on job interchanges and in-
sertions, such as a variable neighborhood search, exhaustive search, simulated
annealing, age of solutions, selecting jobs not already scheduled, using a pool of
new solutions or a roulette wheel scheme [7, 18, 22, 35]. Thus, interchanges and
insertions are the most common and successful operators used in the optimization
of FSSPs, therefore the local search proposed in this paper will be based on these
operators (Fig. 4).

Based on the makespan of the best position of a smart-cell, an initial job
is selected following a linear roulette wheel scheme. Two random positions are
generated taking two different values from 1 to n; the job in the first position is
interchanged or inserted in the second position to obtain a new neighbor. This
process is described in detail below.

For any smart-cell π ∈ Π, let τ be the best position reached by π during the
process, let τg be the best position for all smart-cells and let τw be the worst of



212
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

Figure 4: Interchange (A) and insertion (B) operators used in
the local search neighborhood.

the current best positions in the optimization process. The normalized fitness of
every τ is defined as:

P(τ) =
C(τw) − C(τ)
C(τw) − C(τg)

. (7)

In this case, P(τg) = 1, P(τw) = 0 and 0 ¬ P(τ) ¬ 1 for every other best
position of a smart-cell.

There will be a greater probability of changing the last job places in τg, a
greater probability of changing the first job places in τw, and all the job places have
the same probability to be changed in the local search process when P(τ) = 1/2.
In the last case, if we have to optimize the scheduling of n jobs, we are going
to select one initial job place from 1 to n − 1 and from this initial spot, select
at random another subsequent job place and make an interchange or insertion.
Therefore, the probability of selecting each job place is 1/(n − 1).

We can define a factor −1 ¬ ϵ ¬ 0 to regulate the probability of choosing an
initial job place in τ to produce new solutions in its neighborhood. To control de
probability of selecting an initial job place according to the normalized fitness
P(τ), we define Ω = −1 + 2P(τ) as a ponderation of ϵ . In this case:

P(τ) = 0 → Ω = −1,
P(τ) = 1/2 → Ω = 0,
P(τ) = 1 → Ω = 1.

(8)

The probability of choosing the job at the first place of τ is defined as:

α =
1 + Ωϵ
n − 1

. (9)

Notice that α is bigger when P(τ) is low to encourage the selection of the
first job places in τ, and it is lower for high values of P(τ) to aim the choice of



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 213

the last job places in τ. The remaining probability to select from job in place 2
until place n − 1 is given by:

β = 1 − α(n − 1). (10)

Equation (10) indicates that every job place has at least α probability to be
chosen and the residual probability β will be divided proportionately from places
2 until n − 1. Observe that β will be positive for best solutions τ with good
makespan values, and it will be negative for best positions with not-so-good
makespan values. With this, the step size for the rest of job places is defined as:

γ = β/Fib(n − 2), (11)

where Fib(n − 2) is the Fibonacci number to calculate the corresponding pro-
portional probability to be accumulated from place 2 to n − 1. The probability of
every job place 1 ¬ i ¬ n − 1 to be selected as the initial one to search locally
new solutions is calculated as:

δ(i) = α + γ ∗ (i − 1). (12)

Figure 5 illustrates the behavior of δ for every job place depending of the
value Ω associated with the makespan of τ. Finally, the cumulative probability
of choosing the job place i as the initial one is given by:

∆(i) =
i∑

k=1
δ(k). (13)

Figure 5: Probability to select every job place in the local search. (A) If τ has a good
makespan, the last job places have more probability to be selected to produce new
solutions. (C) If P(τ) = 1/2, all jobs could be chosen with equal probability. (C) If τ has
a not-so-good makespan, the first job places would be chosen to obtain better solutions.

A random number r ∈ (0, 1) is generated to decide the initial job place i to be
selected in τ such that r < ∆(i). Once i has ben chosen, another job place j > i is
calculated at random. With these job places i and j, an interchange or an insertion
is made to obtain the new neighbor of τ according to the current iteration number
mod ms, where ms is fixed at the beginning of the optimization process.



214
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

5. Cellular Alternate PSO with Simple Adaptive Local Search (CAPSO-SALS)

In this section we explain how ATPPSO is complemented by neighborhoods
for every best solution of each smart-cell, where neighbors are generated using
the adaptive linear local search described above.

Figure 6: Flowchart for CAPSO-SALS algorithm



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 215

The parameters of the proposed algorithms are: Q number of iterations, q
number of particles, l number of neighbors per best solution of each smart-cell, ma
to select the attractive or repulsive part of ATPPSO, ϵ to regulate the probability
of choosing an initial job place, and ms to determine if interchanges or insertions
are made to obtain the new neighbors of every best position (Algorithm 1).

Algorithm 1 CAPSO-SALS algorithm
1: //Initialization
2: Set the control parameters: Q, q, ma , l, ϵ , ms

3: initialize Π with q random permutations
4: for t = 1 to Q do
5: //ATPPSO part
6: for i = 1 to q do
7: if t%ma = 0 then
8: vt+1

i
= vt

i
⊗ πtg ⊗ πti

9: else
10: vt+1

i
= vt

i
⊙ πtg ⊗ πti

11: end if
12: πt+1

i
= πt

i
⊗ vt+1

i
13: end for
14: //Cellular Automata part
15: for i = 1 to q do
16: //Create the neighborhood of πi
17: for j = 1 to l do
18: Generate a random number r ∈ (0, 1)
19: k = 1
20: while r < ∆(k) according to Eq. 12 do
21: k = k + 1
22: end while
23: Generate two random positions p1 < p2 ∈ [k, n]
24: if t%ms = 0 then
25: Generate a new solution ηi, j inserting job from position p1 to position p2 in πi
26: else
27: Generate a new solution ηi, j interchanging jobs from positions p1 to p2 in πi
28: end if
29: end for
30: //Evolution rule of CPSO
31: Select ηi as the neighbor in {ηi,1 . . . ηi,l } with minimum makespan
32: if C(ηi ) < C(τi ) then
33: τi = ηi
34: end if
35: //Update best solution if needed
36: if C(τi ) < C(πg) then
37: πg = τi
38: end if
39: end for
40: end for
41: Return πg



216
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

5.1. Computational complexity analysis

The time complexity of the proposed method is briefly analyzed. CAPSO-
SALS consists of four main steps: initialization, attractive two-phase PSO, cellular
local search with adaptive local search, and halting judgment. Note that the
CAPSO-SALS has q best positions, and each one generates l new particles by
adaptive linear local search. Let Q be the maximum iteration number. Initialization
step contains a loop (q times) to generate permutations of n jobs, so its time
complexity is O(qn). For attractive two-phase PSO, there is a loop (q times)
performing three permutation crossovers, so its time complexity is O(q3n). For
adaptive linear local search, there is a triple loop (q, l and n times), after the
last loop, an interchange or an insertion is performed (O(n)). Therefore, its time
complexity is O(ql2n). For halting step, its time complexity is O(1). Therefore,
the time complexity of the proposed method is O(Qqln).

The parameter l could be fixed in advance. So, when the swarm size or
number of jobs is large, the contribution of l can be neglected. Then the compu-
tational complexity of CAPSO-SALS is O(Qqn), so our algorithm has the same
computational complexity as the original ATPPSO. This complexity is lower
than the one reported by new algorithms using improved local search methods
whose complexity is O(Qqn2); for instance, the immunity-based hybrid genetic
algorithm [2] or the particle swarm optimization with expanding neighborhood
topology [19].

From experimental results, we could see that CAPSO-SALS outperforms
ATPPSO and the most effective methods reported in [2] and [19] on most sets of
problems, so we could say it is efficient. Moreover, since the rapid development
of computer, the quality of solutions is more important when problems are solved
in convenient time.

6. Simulation results and comparison

6.1. Sensitivity analysis

A sensitivity analysis for CAPSO-SALS has been performed by varying dif-
ferent factors such as number of smart-cells q, number of iterations Q, value
moda to apply the repulsive crossover of ATTPSO, number of neighbors l for
every smart-cell, value ϵ to regulate de probability of choosing an initial job for
the adaptive linear local search and value mods to select an interchange or an
insertion for the adaptive local search.

In order to calibrate the algorithm, all possible combinations of the previous
factors are tested with different levels as defined in Table 1. The total number of
combinations is 26 = 64.



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 217

Table 1: Levels of parameters for the sensitivity analysis

Factors q Q ma l ϵ ms

Levels 200 2000 2 6 −0.75 2
300 2500 4 10 −0.25 3

Our optimization program has been executed on a Mac OS environment using
Intel Core Xeon, 3.5 GHz, 32G RAM memory, and the codes were developed
using MATLAB 7.14 and optimized by mex command. Our algorithm is analyzed
with a random set of 10 FSSP instances, each one with 20 jobs and 5 machines
produced using processing times uniformly distributed between 1 and 99 [29].
For each parameter combination we observe the value for the average makespan
obtained over 30 runs.

Figure 7 plots at once the average makespan and the corresponding execution
time (in secs.) obtained in the sensitivity analysis. From these solutions, one
notices that a bigger number of neighbors increases the execution time, when a
larger number of smart-cells and iterations is considered.

Figure 7: Sensitivity analysis for the CAPSO-SALS algorithm

From these solutions, the selected combination of parameters, which produces
a minimum makespan and execution time, is the following one: number of smart-
cells q = 200, number of iterations Q = 2000, moda = 4 for the repulsive
crossover, number of neighbors l = 6, probability of choosing an initial job for
the adaptive local search ϵ = −0.25, and mods = 3 for executing an insertion in
the local search.



218
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

6.2. Performance comparison of the ATPPSO and CAPSO-SALS

For evaluating the proposed CAPSO-SALS contrasted with the original
ATPPSO method, we use the best and average makespan for selected instances
of the last 4 FSSP sets from the Taillard set problems defined in the OR
Library http://people.brunel.ac.uk/mastjjb/jeb/orlib/flowshopinfo.html and com-
monly employed to compare new optimization methods. In these instances, there
are 12 sets and these are: 20 × 5 (i.e. 20 jobs and 5 machines), 20 × 10, 20 × 20,
50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 10, 200 × 20 and
500 × 20. There are 10 problems inside every size set.

An improvement of the ATPPSO called I-ATPPSO has been also presented
in [34]. This algorithm implements more complex control operators than CAPSO-
SALS. For instance, I-ATPPSO employs a tabu list, an activity threshold measure
and a variable neighborhood search realized by a mutation operator which is
greedy in CPU time consumption (O(n2)).

Table 2 shows the statistics of the best and the average makespan values of the
proposed CAPSO-SALS algorithm, the ATPPSO and the I-ATPPSO methods. We
take the last 12 results for the specific Taillard instances reported in [34] because
these ones represent the most difficult examples to optimize. These problems
goes from 100 to 500 jobs and 10 to 20 machines. For a fair comparison, in
these instances the number of iterations in the CAPSO-SALS algorithm has been
defined in 6000 for every run, and 20 runs for each problem as it has been
calculated in [34]. The best results are presented in bold.

Table 2: Performance of ATPPSO, I-ATPPSO and CAPSO-SALS

Problem Size Optimal ATPPSO iATPPSO CAPSO-SALS

ta081 100 × 20 6202 6471/6527.3 6375/6445.5 6369/6413.1
ta085 100 × 20 6314 6514/6577.5 6448/6520.9 6461/6493.3
ta090 100 × 20 6434 6641/6690.6 6577/6604.7 6558/6588.2
ta091 200 × 10 10862 10950/11000.2 10885/10920.4 10892/10901.6
ta095 200 × 10 10524 10537/10620.5 10537/10562.8 10533/10568
ta0100 200 × 10 10675 10747/10846.2 10685/10744.5 10694/10738.9
ta0101 200 × 20 11195 11571/11644.2 11488/11549.4 11463/11543.3
ta0105 200 × 20 11259 11636/11734.2 11518/11574.2 11583/11621
ta0110 200 × 20 11288 11730/11783 11655/11707.5 11643/11701.4
ta0111 500 × 20 26059 26961/27011.9 26670/26783.4 26621/26742.2
ta0115 500 × 20 26334 26984/27102.9 26739/26851.9 26740/26866
ta0120 500 × 20 26457 27144/27246.5 26900/27017.7 26956/27077.2

It can be observed in Table 2 that CAPSO-SALS outperforms the original
ATPPSO in best and average values for all the instances, proving that CAPSO-
SALS represents an improvement over the ATPPSO method. Besides, CAPSO-



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 219

SALS obtains 6 minimum makespan and 8 better averages than I-ATPPSO. For
the three problems with 500 jobs and 20 machines, I-ATPPSO shows a better
performance than CAPSO-SALS. This can be explained by the large number
of jobs, provoking that the initial probability of Eq. (9) be too small to define
a significative difference. Further investigation may use a selective sensitivity
analysis to obtain a better performance of CAPSO-SALS for this particular case.

Table 2 confirms our idea concerning the utility to hybrid cellular automata
concepts with an adaptive local search to improve the ATPPSO method. However,
the neighborhood concept from cellular automata has a linear processing cost.
This is explained by the number of additional operations induced by the fixed
neighbors for every smart-cell.

This better performance is mainly due to the effectiveness of the proposed
adaptive local search, which produces changes in the scheduling by interchanges
and insertions. Last jobs have more probability to be moved if a solution is
closer to the best global solution in order to improve the exploitation of good
search regions. On the other hand, worst solutions that may be trapped in a local
minimum have a greater probability to change the position of the jobs in the first
positions. Thus, the algorithm can explore regions in the search space with new
information.

It can be can concluded that CAPSO-SALS is better in performance than
ATPPSO and has a similar efficiency that I-ATPPSO with a lower complexity
due to the simplicity of its local search strategy.

6.3. Comparative results of the proposed hybrid algorithm against other metaheuristics

For evaluating the proposed CAPSO-SALS we use the average error ratio E.
In the literature, E is often used to evaluate the performance of algorithms applied
to deal with FSSPs. The error ratio is calculated as follows:

E =
Cmax − Best

Best
%, (14)

where Cmax is the best makespan obtained for the algorithm and Best is the
known minimum makespan for the problem. We compare the proposed hybrid
CAPSO-SALS to 10 between the most frequently referred and recent state-of-
the-art metaheuristics in the related sche- duling literature for the FSSP.

In Table 3, a comparison with those algorithms is performed, presenting the
average quality of the error ratio defined in Eq. 14 for the ten instances of every
Taillard set problem. Those values are obtained by the solutions of the proposed
algorithm (CAPSO-SALS) and the other 10 algorithms from the literature. Those
are: and artificial chromosomes with genetic algorithm (ACGA) of Chang et
al. [4], an ant colony optimization algorithm (ACS) [32], a discrete differential
evolution (DDE) algorithm [23], a combinatorial particle swarm optimization
(ComPSO) of Jarboui et al. [13], the genetic algorithm of Reeves (GAReev) [27],



220
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

a hybridization of genetic algorithm with variable neighborhood search (GA-
VNS) of Zobolas et al. [35], a modified genetic algorithm (MGGA) of Tang et
al. [30], a particle swarm optimization with expanding neighborhood topology
(PSONET) of Marinakis et al. [19], a self-guided genetic algorithm (SGGA) of
Chen et al. [6], and an immunity-based hybrid genetic algorithm (VacGA) of
Bessedik et al. [2]. With the aim to compare them, we have used the data from
Marinakis et al. [19] and Bessedik et al. [2]. The results, averaged by instance
size are shown in Table 3.

Table 3: Average E over the optimum solution or lowest known upper bound for Taillard’s
instances obtained by the methods compared.

Problems CAPSO-SALS ACGA ACS DDE ComPSO GA Reev

20 × 5 0 1.08 1.19 0.46 1.05 0.53
20 × 10 0 1.62 1.7 0.93 2.42 1.79
20 × 20 0 1.34 1.6 0.79 1.99 1.40
50 × 5 0 0.57 0.43 0.17 0.9 0.19
50 × 10 0.74 2.79 0.89 2.26 4.85 2.11
50 × 20 3.1 3.75 2.71 3.11 6.4 3.60
100 × 5 0.02 0.44 0.22 0.08 0.74 0.16
100 × 10 0.54 1.71 1.22 0.94 2.94 0.80
100 × 20 2.63 3.47 2.22 3.24 7.11 3.32
200 × 10 0.62 0.94 0.64 0.55 2.17 –
200 × 20 3.34 2.61 1.3 2.61 6.89 –
500 × 20 2.58 – 1.68 – – –
Average 1.13 1.84 1.28 1.37 3.40 1.54

Problems GA-VNS MGGA PSONET SGGA VacGA
20 × 5 0 0.81 0 1.1 0.08
20 × 10 0 1.4 0.07 1.9 0.93
20 × 20 0 1.06 0.08 1.6 0.07
50 × 5 0 0.44 0.02 0.52 0.08
50 × 10 0.77 2.56 2.11 2.74 2.34
50 × 20 0.96 3.82 3.83 3.94 3.69
100 × 5 0 0.41 0.09 0.38 0.14
100 × 10 0.08 1.5 1.26 1.6 1.44
100 × 20 1.31 3.15 4.37 3.51 3.43
200 × 10 0.11 0.92 1.02 0.8 –
200 × 20 1.17 3.95 4.27 2.32 –
500 × 20 0.63 – 2.73 – –
Average 0.4 1.82 1.65 1.85 1.35

From Table 3, there are a number of important conclusions about CAPSO-
SALS. The algorithm finds the optimum in the first set for all instances. This



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 221

happens in the same way only with the GA-VNS algorithm. Both algorithms have
as local search phase a neighborhood generation; in the case of CAPSO-SALS
based on neighbors generated by interchanges and insertions, and for GA-VNS
applying a more complex VNS algorithm. We can conclude that the combination
of a population based algorithm (like PSO in the proposed algorithm and a genetic
algorithm in GA-VNS) with a very strong local search technique increases both the
exploration and exploitation abilities of the algorithm. Comparing our proposed
hybrid algorithm with others in Table 3, the results showed that CAPSO-SALS
has yielded a lower average in 9 out of the other 10 algorithms used for the
comparisons. This difference is up to 300% in the case of another particle swarm
optimization variant (ComPSO). These results shows as well that CAPSO-SALS
provides better results than PSONET and VacGA, which were recently proposed
in literature.

Algorithms which deal directly with discrete values, like genetic algorithms
or ant colony systems, may have in general an advantage when are compared
with discrete versions of PSO algorithm. However, the proposed CAPSO-SALS
performs better than the six out of seven versions of those approaches (only
GA-VNS performs better). The most important comparison is versus two PSO
algorithms and the DDE algorithm. This happens because for these three strate-
gies, as in the proposed algorithm, a discretization from the basic equations
that characterize these methods should be implemented. The results of the pro-
posed algorithm in almost every average results of all sets are better than the
other three implementations. The average results of DDE for the sets of 200
jobs are better from the proposed algorithm (0.55 vs 0.62 and 2.61 vs 3.34),
but the average value is better in CAPSO-SALS (1.13 vs 1.37) and the DDE
algorithm has no results for the difficult set of 500 jobs. Compared to ComPSO
and PSONET, the proposed algorithm presents better average results for all the
sets, only PSONET have obtained the same performance for the first set. This
fact shows that the proposed CAPSO-SALS is very efficient for the solution of
this kind of problems.

For the largest set of 500 jobs, there are only four algorithms reporting results
and CAPSO-SALS is in third place according to the corresponding E. How-
ever, it outperforms the other recent PSO approach (PSONET). This extensive
experimentation shows that the proposed CAPSO-SALS algorithm is an easy
and innovative improvement for PSO based methods solving FSSPs, which has
competitive performance as far as simple approaches are concerned.

In Table 4, the average CPU times in seconds of the proposed algorithm
and of other two recent algorithms for each of the 12 sets are presented. It can
be observed that the proposed algorithm is slightly faster than the other two
algorithms for the instances of 20 machines, and in the average it needs 103.45 s
to find the best in an instance, while the other two algorithms need between
93.38 s and 105.04 s.



222
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

Table 4: Average CPU times (in seconds) of CAPSO-SALS and
other two recent algorithms (PSONET and VacGA) from literature
in Taillard benchmark instances for the FSSP.

Problems CAPSO-SALS PSONET VacGA

20 × 5 6.55 3.45 36.4
20 × 10 8.95 15.25 35.6
20 × 20 14.35 24.52 36.2
50 × 5 15.22 6.15 56.3
50 × 10 21.13 23.55 96.7
50 × 20 34.29 44.25 103.2
100 × 5 30.79 22.85 150.4
100 × 10 42.73 60.35 210.2
100 × 20 67.63 131.15 220.4
200 × 10 88.39 124.18 –
200 × 20 136.68 255.42 –
500 × 20 360.83 409.54 –
Average 103.45 93.38 105.04

7. Conclusion

In this paper, we have proposed the improvement of the alternate two phases
PSO called CAPSO-SALS. This algorithm is a hybridization of the ATPPSO
algorithm with concepts of cellular automata and a simple adaptive local search
for the flow shop scheduling problem under the makespan minimization criterion.
The algorithm uses a flexible local neighborhood topology where the size of the
neighborhood is fixed since the beginning of the optimization process. The main
challenge was to present a simple algorithm combining the advantages of the
exploration abilities of the ATPPSO algorithm with the exploitation abilities of a
local neighborhood structure by means of an adaptive local search.

The parameters of the CAPSO-SALS has been calibrated by an extensive de-
sign of experiments. The algorithm has been tested in 120 benchmark instances
that are usually used in the literature. CAPSO-SALS has given better results in
general when it was compared with the original ATPPSO algorithm and similar
solutions to I-ATPPSO algorithm that has a more complex local search process.
CAPSO-SALS produced very good results as well against other algorithms re-
cently reported in literature. The results are very promising and show that the
CAPSO-SALS is competitive with other successful methods.

Furthermore, the CAPSO-SALS could be modified to take into account more
realistic aspects of the problem such as sequence-dependent setup times (SDST
flow shop), unrelated parallel machines at each stage (general hybrid flow shop),
or the existence of due dates. Other perspective is the application of the CAPSO-



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 223

SALS algorithm for the solution of other NP-hard combinatorial optimization
problems.

The performance of the CAPSO-SALS could be further improved with the
NEH heuristic, or applying a selective sensitivity analysis for particular cases of
FSSPs. We will study the effect of these options on the CAPSO-SALS in the
future.

References

[1] A. Banks, J. Vincent, and C. Anyakoha: A review of particle swarm op-
timization. Part II: Hybridisation, combinatorial, multicriteria and con-
strained optimization, and indicative applications. Natural Computing, 7(1),
(2008) 109–124.

[2] M. Bessedik, F.B.S. Tayeb, H. Cheurfi, and A. Blizak: An immunity-based
hybrid genetic algorithms for permutation flowshop scheduling problems.
The International Journal of Advanced Manufacturing Technology, 85(9-
12), (2016), 2459–2469.

[3] A.W. Burks: Essays on cellular automata. University of Illinois Press, 1970.

[4] P.C. Chang, S.H. Chen, C.Y. Fan, and V. Mani: Generating artificial
chromosomes with probability control in genetic algorithm for machine
scheduling problems. Annals of Operations Research, 180(1), (2010), 197–
211.

[5] C.L. Chen, S.Y. Huang, Y.R. Tzeng, and C.L. Chen: A revised discrete par-
ticle swarm optimization algorithm for permutation flow-shop scheduling
problem. Soft Computing, 18(11), (2014), 2271–2282.

[6] S.H. Chen, P.C. Chang, T. Cheng, and Q. Zhang: A self-guided genetic
algorithm for permutation flowshop scheduling problems. Computers &
Operations Research, 39(7), (2012), 1450–1457.

[7] X. Dong, M. Nowak, P. Chen, and Y. Lin: Self-adaptive perturbation and
multi-neighborhood search for iterated local search on the permutation flow
shop problem. Computers & Industrial Engineering, 87, 176–185 (2015)

[8] K.L. Du and M. Swamy: Particle swarm optimization. In: Search and Op-
timization by Metaheuristics, pp. 153–173. Springer, 2016.

[9] K. Fleszar and K.S. Hindi: An effective vns for the capacitated p-median
problem. European Journal of Operational Research, 191(3), (2008), 612–
622.



224
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

[10] L. Gao, J. Huang, and X. Li: An effective cellular particle swarm
optimization for parameters optimization of a multi-pass milling pro-
cess. Applied Soft Computing, 12(11), (2012), 3490–3499. https://doi.org/
10.1016/j.asoc.2012.06.007, http://www.sciencedirect.com/science/article/
pii/S1568494612002785.

[11] E. García-Gonzalo and J. Fernández-Martínez: A brief historical re-
view of particle swarm optimization (pso). Journal of Bioinformatics and
Intelligent Control, 1(1), (2012), 3–16.

[12] S. Gholizadeh: Layout optimization of truss structures by hybridizing cel-
lular automata and particle swarm optimization. Computers & Structures,
125 (2013), 86–99. http://dx.doi.org/10.1016/j.compstruc.2013.04.024.
http://www.sciencedirect.com/science/article/pii/S0045794913001557

[13] B. Jarboui, S. Ibrahim, P. Siarry, and A. Rebai: A combinatorial particle
swarm optimisation for solving permutation flowshop problems. Computers
& Industrial Engineering, 54(3), (2008), 526–538.

[14] S.M. Johnson: Optimal two-and three-stage production schedules with
setup times included. Naval Research Logistics (NRL), 1(1), (1954), 61–
68.

[15] P. Lagos-Eulogio, J.C. Seck-Tuoh-Mora, N. Hernandez-Romero, and
J. Medina-Marin: A new design method for adaptive iir system identification
using hybrid cpso and de. Nonlinear Dynamics, 88(4), (2017), 2371–2389.

[16] S. Lalwani, R. Kumar, and N. Gupta: A review on particle swarm op-
timization variants and their applications to multiple sequence alignment.
Journal of Applied Mathematics and Bioinformatics, 3(2), (2013), 87.

[17] C.J. Liao, C.T. Tseng, and P. Luarn: A discrete version of particle swarm
optimization for flowshop scheduling problems. Computers & Operations
Research, 34(10), (2007), 3099–3111.

[18] R. Liu, C. Ma, W. Ma, and Y. Li: A multipopulation pso based memetic al-
gorithm for permutation flow shop scheduling. The Scientific World Journal,
2013 (2013).

[19] Y. Marinakis and M. Marinaki: Particle swarm optimization with ex-
panding neighborhood topology for the permutation flowshop scheduling
problem. Soft Computing, 17(7), (2013), 1159–1173.

[20] H.V. McIntosh: One Dimensional Cellular Automata. Luniver Press, 2009.



CELLULAR PARTICLE SWARM OPTIMIZATION
WITH A SIMPLE ADAPTIVE LOCAL SEARCH STRATEGY

FOR THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM 225

[21] T. Morton and D.W. Pentico: Heuristic scheduling systems: with applica-
tions to production systems and project management, vol. 3. John Wiley &
Sons, 1993.

[22] Q.K. Pan and R. Ruiz: Local search methods for the flowshop scheduling
problem with flowtime minimization. European Journal of Operational
Research, 222(1), (2012), 31–43.

[23] Q.K. Pan, M.F. Tasgetiren, and Y.C. Liang: A discrete differential evolu-
tion algorithm for the permutation flowshop scheduling problem. Computers
& Industrial Engineering, 55(4), (2008), 795–816.

[24] Q.K. Pan, M.F. Tasgetiren, and Y.C. Liang: A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem. Com-
puters & Operations Research, 35(9), (2008), 2807–2839.

[25] Q.K. Pan, L. Wang, M.F. Tasgetiren, and B.H. Zhao: A hybrid discrete
particle swarm optimization algorithm for the no-wait flow shop scheduling
problem with makespan criterion. The International Journal of Advanced
Manufacturing Technology, 38(3–4), (2008), 337–347.

[26] M.L. Pinedo: Scheduling: theory, algorithms, and systems. Springer, 2016.

[27] C.R. Reeves: A genetic algorithm for flowshop sequencing. Computers &
Operations Research, 22(1), (1995), 5–13.

[28] Y. Shi, H. Liu, L. Gao, and G. Zhang: Cellular particle swarm optimiza-
tion. Information Sciences, 181(20), (2011), 4460–4493, Special Issue on
Interpretable Fuzzy Systems, http://dx.doi.org/10.1016/j.ins.2010.05.025.
http://www.sciencedirect.com/science/article/pii/S0020025510002288.

[29] E. Taillard: Benchmarks for basic scheduling problems. European Journal
of Operational Research, 64(2), (1993), 278–285.

[30] L. Tang and J. Liu: A modified genetic algorithm for the flow shop se-
quencing problem to minimize mean flow time. Journal of Intelligent Man-
ufacturing, 13(1), (2002), 61–67.

[31] M.F. Tasgetiren, Y.C. Liang, M. Sevkli, and G. Gencyilmaz: A particle
swarm optimization algorithm for makespan and total flowtime minimiza-
tion in the permutation flowshop sequencing problem. European Journal of
Operational Research, 177(3), (2007), 1930–1947.

[32] K.C. Ying and C.J. Liao: An ant colony system for permutation flow-shop
sequencing. Computers & Operations Research, 31(5), (2004), 791–801.



226
J.C. SECK-TUOH-MORA, J. MEDINA-MARIN, E.S. MARTINEZ-GOMEZ,
E.S. HERNANDEZ-GRESS, N. HERNANDEZ-ROMERO, V. VOLPI-LEON

[33] M. Yu, Y. Zhang, K. Chen, and D. Zhang: Integration of process planning
and scheduling using a hybrid ga/pso algorithm. The International Journal
of Advanced Manufacturing Technology, 78(1–4), (2015), 583–592.

[34] C. Zhang, J. Ning, and D. Ouyang: A hybrid alternate two phases particle
swarm optimization algorithm for flow shop scheduling problem. Computers
& Industrial Engineering, 58(1), (2010), 1–11.

[35] G. Zobolas, C.D. Tarantilis, and G. Ioannou: Minimizing makespan in
permutation flow shop scheduling problems using a hybrid metaheuristic
algorithm. Computers & Operations Research, 36(4), (2009), 1249–1267.




