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Abstract

The paper aims at comparing forecast ability of VAR/VEC models with
a non-changing covariance matrix and two classes of Bayesian Vector Error
Correction – Stochastic Volatility (VEC-SV) models, which combine the VEC
representation of a VAR structure with stochastic volatility, represented by the
Multiplicative Stochastic Factor (MSF) process, the SBEKK form or the MSF-
SBEKK specification.
Based on macro-data coming from the Polish economy (time series of
unemployment, inflation and interest rates) we evaluate predictive density
functions employing of such measures as log predictive density score, continuous
rank probability score, energy score, probability integral transform. Each
of them takes account of different feature of the obtained predictive density
functions.
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1 Introduction
The vector autoregression (VAR) models with error correction mechanism and
the changing conditional covariance matrix became popular in the analysis of
macroeconomic time series, as such models enable to take into account both the
long-run relationships (expressed by cointegrating relations) and the possibility of
the changing variability (measured by the conditional covariance matrix). There is a
growing literature discussing the forecast accuracy of Bayesian VAR models, possibly
with time-varying parameters or with constant conditional mean but with the time-
varying covariance structure or with other features and restrictions (see, e.g. Rossi,
Sekhposyan 2014, Clark, Ravazzolo 2015, Berg 2017, Abbate, Marcellino 2017), but
there is still not many papers comparing the forecast ability of vector error correction
(VEC) models. Therefore the paper aims at comparing the forecast ability obtained
within the set of Bayesian Vector Error Correction - Stochastic Volatility (VEC-SV)
models, which combine the VEC representation of a VAR structure with stochastic
volatility, represented by either the Multiplicative Stochastic Factor (MSF) process or
the MSF-SBEKK specification. Additionally, similar to Pajor andWróblewska (2017),
we extend this set by Bayesian VEC models with non-changing covariance matrix. We
also take into account VEC-SBEKK specifications, so the comparison is conducted
within a slightly larger set then the one considered by Pajor and Wróblewska (2017).
The predictive Bayes factors, the energy score and the continuous rank probability
score are employed to compare the predictive ability of the studied models. To assess
the calibration of the obtained forecast densities we apply the probability integral
transform.
The paper is organized as follows. In Section 2 the basic framework is set and
the Bayesian models are formulated. In Section 3 we outline the Bayesian forecast
principles. Section 4 depicts the density forecast accuracy measures which are
employed in Section 5, devoted to an empirical study, in which we use a standard
set of the Polish macroeconomics variables (including the unemployment, inflation
and interest rates). Section 6 concludes.

2 Bayesian VEC-SV models
Similar to Pajor and Wróblewska (2017) we consider the set of a linear n-variate
and k-order vector autoregressive (VAR(k)) process with deterministic terms and a
stochastic volatility (SV) structure. Three alternative structures for matrix Σt are
analysed - Multiplicative Stochastic Factor (MSF), SBEKK and hybrid MSF-SBEKK
(type I; see Osiewalski and Pajor 2009).
Equation (1) displays the VAR-SV process in the vector error correction (VEC) form,
i.e. Vector Error Correction with Stochastic Volatility (VEC-SV) process:
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∆xt = Π̃xt−1 +
k−1∑
i=1

Γi∆xt−i + ΦDt + εt, t = 1, 2, . . . , T, (1)

εt|ψt−1, qt, θ ∼ N (0,Σt) , (2)
where xt is an n× 1 random vector, {εt} is a vector white noise with some covariance
matrix Σ (i.e. {εt} ∼ WN(0,Σ)), Π̃ and Γi are n × n matrices of real coefficients
(i = 1, . . . k−1), matrixDt is comprised of deterministic variables such as the constant
and centred seasonal dummies, Φ is a parameter matrix, qt is the vector of latent
variables, θ is a vector of parameters, ψt−1 denotes the past of the process {xt} up to
time t− 1, and Σt = Σ(qt, ψt−1). Moreover, Π̃ = αβ̃′, with α and β̃′ being some n× r
matrices, where r < n is the number of cointegration relationships (if they exist).
The initial conditions x−k+1, x−k+2, . . . , x0 are assumed to be known.
The Multiplicative Stochastic Factor structure for matrix Σt is as follows:

Σt = qtΣ, (3)

with ln qt = φ ln qt−1 + σqηt, {ηt} ∼ iiN(0, 1), and εt⊥ηs, for t, s ∈ Z.
Henceforth, this specification will be referred to as the VEC-MSF (VEC with
Multiplicative Stochastic Factor) process. In the VEC-MSF process the same qt
factor drives the dynamics of each element of Σt, so although conditional covariances
vary over time, the conditional correlations remain constant. Such assumption may
be empirically to restrictive, that is why we consider the MSF-SBEKK structure as
an alternative MSV specification (see Osiewalski 2009, Osiewalski and Pajor 2009).
We assume the so-called type I hybrid MSF-SBEKK process for matrix Σt:

Σt = qtΣ̃t, (4)

Σ̃t = (1− a− b)Σ + b
(
εt−1ε

′
t−1
)

+ aΣ̃t−1, (5)
with ln qt = φ ln qt−1 + σqηt, {ηt} ∼ iiN(0, 1), and εt⊥ηs, for t, s ∈ Z, a, b ∈ R.
Matrix Σ̃t is square, of order n and follows the scalar BEKK(1,1) structure. The
specification is further referred to as VEC-MSF-SBEKK. The presence of the scalar
BEKK(1,1) structure in the conditional covariance matrix allows us to model time-
varying conditional correlations without introducing more latent processes. Note that
for b = 0 and a = 0 we obtain the VEC-MSF structure. In the limiting case when
σq → 0 and φ = 0, the VEC-MSF-SBEKK model becomes the VEC-SBEKK one. As
regards the initial conditions for Σ̃t, we assume ε0 = 0, Σ̃0 = s0,ΣIn, where s0,Σ > 0
and In denotes the identity matrix of size n.
Equation (1) can be decomposed and written as:

∆xt = α[β̃′,Φ′1]
[
xt−1

D
(1)
t

]
+
k−1∑
i=1

Γi∆xt−i + Φ2D
(2)
t + εt =

= αβ′z1,t + Γ′z2,t + Γ′sz3,t + εt,

(6)
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where β′ = [β̃′,Φ′1], z1,t = [x′t−1, D
(1)
t

′
]′, z2,t = (∆x′t−1,∆x′t−2, . . . ,∆x′t−k+1)′,

z3,t = D
(2)
t , Γ = [Γ1,Γ2, . . . ,Γk−1]′, and Γs = Φ′2.

To simplify the notation we write the basic model (6) in a matrix form:

Z0 = Z1Π′ + Z2Γ + Z3Γs + E, (7)

where
Π = αβ′, Z0 = [∆x1,∆x2, . . . ,∆xT ]′ = [z0,1, z0,2, . . . , z0,T ]′, Z1 = [z1,1, z1,2, . . . , z1,T ]′,
Z2 = [z2,1, z2,2, . . . , z2,T ]′, Z3 = [z3,1, z3,2, . . . , z3,T ]′, E = [ε1, ε2, . . . , εT ]′.
The conditional distribution of xt (given the past of the process, ψt−1, the
parameters and the latent variable vector qt) is n-variate Normal with the mean
µt = xt−1 + Π̃xt−1 +

∑k−1
i=1 Γi∆xt−i + ΦDt and the covariance matrix Σt:

p (xt|ψt−1, α, β,Γ,Γs, qt,Σ, θΣ, q0,Σ) = fN,n (xt|µt,Σt) , (8)

where θΣ and q0,Σ are the vectors of the stochastic volatility parameters: in the VEC-
MSF model θΣ = (φ, σ2

q )′ and q0,Σ = ln q0, in the VEC-MSF-SBEKK model we have
θΣ = (φ, σ2

q , a, b)′ and q0,Σ = (ln q0, s0,Σ)′, whereas in the VEC-SBEKK specification
θΣ = (a, b)′ and q0,Σ = s0,Σ. The vector q0,Σ is treated as an additional vector of
parameters and is estimated jointly with other parameters. The density of the data
(given the parameters) is the mixture (over q = (q1, q2, . . . , qT )′) distribution:

p (x|α, β,Γ,Γs,Σ, θΣ, q0,Σ) =
∫
p (x|α, β,Γ,Γs,Σ, θΣ, q0,Σ, q) p (q|θΣ, q0,Σ) dq, (9)

where x = [x1, x2, . . . , xT ]′ denotes the full data set. The two densities on the right
hand side of (9) are given as:

p (x|α, β,Γ1,Γs,Σ, θΣ, q0,Σ, q) =
T∏
t=1

fN,n (xt|µt,Σt) ,

and

p (q|θΣ, q0,Σ) =
T∏
t=1

q−1
t fN,1

(
ln qt|φ ln qt−1, σ

2
q

)
.

The Bayesian model is defined by the joint density of the vector of observations, latent
variables and parameters:

p (x, q, θ) = p (x|q, θ) p (q|θ) p (θ) =

= p (θ)
[
T∏
t=1

fN,n (xt|µt,Σt)
][

T∏
t=1

q−1
t fN,1

(
ln qt|φ ln qt−1, σ

2
q

)]
,

(10)

where θ = (vecα′, vecβ′, vecΓ′, vecΓ′s, vechΣ′, θ′Σ, q0,Σ)′ is the parameter vector, q
denotes the latent variable vector and p(θ) the density of prior distribution. The
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density (10) is also conditioned by certain initial observations, which are omitted from
the notation. To complete the Bayesian models, we specify the prior distribution of
the parameter vector θ. We assume that certain blocks of the parameters are a priori
independent, and that the stability condition is imposed on the parameters of the
VEC process:

p(θ) = p(α|β)p(β)p(Γ)p(Γs)p(Σ)p(θΣ)p(q0,Σ)I[0,1](|λ|max), (11)

where I[a,b](.) denotes the indicator function of the interval [a, b] and λ is the vector
of the eigenvalues of the companion matrix, i.e. the matrix which makes it possible
to write the analysed process in the VAR(1) form. As proposed by Koop et al. (2010)
two parameterisation for matrix Π are considered:

αβ′ = (αMΠ)
(
αMΠ

−1)′ ≡ AB′,
where MΠ is an r × r symmetric positive-definite matrix, A and B are unrestricted
matrices, α = A(B′B)1/2, and β = B(B′B)−1/2, so β has orthonormal columns, and
it is an element of the Stiefel manifold Vr,m (represented by the matrix space of m×r
matrices with orthonormal columns). The data inform only about the cointegration
space, which is the element of the Grassmann manifold Gr,m−r, i.e. the space of
r-dimensional hyperplanes in Rm. Additionally, we normalise the columns of β to
have positive first elements (using a diagonal matrix whose elements are equal to
either 1 or -1).
The prior distributions are the same as in Pajor and Wróblewska (2017) and are
presented in section 4 (for the discussion see also Koop et al. 2010, Osiewalski, Pajor
2009 and Pajor, Osiewalski 2012).

3 Bayesian forecasting
The Bayesian forecast is based on the predictive distribution which is the conditional
on the data distribution of the future values of the analysed series.
The joint density function of the observed data, the possible future
values (xf = (xT+1, xT+2, . . . , xS)′), the forecasted latent variables
(qf = (qT+1, qT+2, . . . , qS)′), the parameters and the latent variables up to time T
can be decomposed as follows:

p
(
x, q, xf , qf , D, θ

)
= p (xf , qf |x, q,D, θ) p (x, q|θ) p (θ) , (12)

where D is the matrix with deterministic variables in the forecast period
D = (DT+1, DT+2, . . . , DS)′, x = (x1, x2, . . . , xT )′ – the matrix of observable
n-dimensional variables and q = (q1, q2, . . . , qT ) – the vector of latent variables. The
joint density is also conditioned by initial values, but we omit them from our notation.
The predictive distribution is obtained as the average of the sampling predictive
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density over the parameters and latent variables space, with the use of the posterior
density as the weight function:

p
(
xf , qf |xo, D

)
=
∫
p
(
xf , qf |xo, q,D, θ

)
p (q, θ|xo) dqdθ, (13)

xo contains the ex post observed values of x. If one is interested in predicting the
future values of x, the predictive distribution of xf is obtained:

p
(
xf |xo, D

)
=
∫
p
(
xf , qf |xo, q,D, θ

)
p (q, θ|xo) dqdθdqf , (14)

where

p
(
xf , qf |xo, q,D, θ

)
=
[

S∏
t=T+1

fN,n (xt|µt,Σt)
][

S∏
t=T+1

q−1
t fN,1

(
lnqt |φlnqt−1 , σ

2
q

)]
.

This predictive distribution summarises the whole information about the future values
of xf and takes into account uncertainty of the latent process and the parameters,
conditional on the data, sampling model and a prior distribution.

4 Forecast accuracy measures
As was previously outlined as a result of Bayesian prediction we obtain the whole
predictive density function, so we can compare predictive ability of the considered
models by evaluating these functions. We use three measures to assess the obtained
predictive densities. Each of them evaluates another feature of the forecast density.
We start by analysing predictive Bayes factors (see e.g. Geweke, Amisano 2010).
They can be used to compare models both in the modelled and forecasted periods. In
this paper we focus only on the forecast. The cumulative predictive Bayes factor in
favour of a model Mi over a model Mj in the period T + 1 through S, where S > T
reads as follows:

Bij = p (xS |xT ,Mi)
p (xS |xT ,Mj)

=
S∏

t=T+1

PLMi
(t)

PLMj (t) , (15)

where PLMi(t) denotes the one-step-ahead predictive likelihood evaluated at time
t. The analysis of the predictive Bayes factors’ changes together with the path of
the series in the forecast period may help to capture the reasons why one model is
superior to the other.
As the log predictive density score is sensitive to outliers we also compute continuous
rank probability score (CRPS) which is robust to extreme values (see e.g. Berg
2017, Clark, Ravazzolo 2015, Gneting, Raftery 2007, Hersbach 2000, Stelmasiak,
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Szafrański 2016). The CRPS is intended to measure the distance between the occurred
cumulative distribution (I {x ≥ xs}) and the predicted one (P ):

CRPS (P, xs) =
∫ +∞

−∞
(P (y)− I {x ≥ xs})2

dx = EP |X − xs|−
1
2EP |X −X

′| , (16)

where xs denotes the realized value, X and X ′ are independent copies of a random
variable with cumulative distribution function P , (I {x ≥ xs}) equals zero for values
lower than the observed xs and 1 in other cases. Note that the lower the value of
CRPS the better the predictive ability of the model. The minimal value CRPS is
equal to 0 and is achieved in the case of the perfect deterministic forecast. The CRPS
is expressed in the same units as the predicted variables. To evaluate the obtained
predictive densities for each of the analysed variables we will use the mean of CRPS
values obtained within the whole forecast horizon:

CRPS
S

T+1 = 1
S − T

S∑
t=T+1

CRPS (P, xt). (17)

Note that in the case of the deterministic forecast CRPS reduces to the mean absolute
error.
If we are willing to assess the multidimensional predictive density the energy score
(ES) is recommended (see e.g. Gneiting, Raftery 2007):

ES (P, xs) = EP ‖X − xs‖β −
1
2EP ‖X −X

′‖β , (18)

where β ∈ (0, 2), X and X ′ are independent copies of a random vector with
distribution P , ‖.‖ denotes the Euclidean norm. In this paper ES is used with β = 1.
Note that for one-dimensional X and β = 1 the energy score equals the continuous
rank probability score. Similarly to CRPS, we will present the mean of ES values
obtained within the whole forecast horizon:

ES
S

T+1 = 1
S − T

S∑
t=T+1

ES (P, xt), (19)

We make use of the above outlined measures to compare different forecast densities,
whereas to assess the calibration of the forecast densities we employ probability
integral transform (PIT), which is based on the evaluated predictive distribution
obtained within model Mi and the observations (see e.g. Gneiting et al., 2007,
Geweke, Amisano 2010, Mitchell, Wallis 2011, Rossi, Sekhposyan 2014, Berg, Henzel
2015, Berg 2017):

PIT1(t;Mi) = P (xt|xt−1,Mi) , (20)

where the subscript 1 corresponds to the horizon of prediction, which is settle to one,
xt−1 is a vector containing observations up to time t − 1, xt denotes the realization
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of the forecasted value and P is a cumulated distribution function.
If the evaluated predictive density is consistent with the true one, then
{PIT1 (t;Mi)}St=T+1 are independent (note that when the forecast horizon h is longer
than 1, then, by construction, PITh are dependent at least up to the lag h− 1) and
uniformly distributed: {PIT1 (t;Mi)}St=T+1 ∼ iiU(0, 1). The visual inspection of the
obtained PIT histograms can give some suggestions about deficiencies of the predictive
density. Hump-shaped histograms indicate for over-dispersed distributions, U-shaped
for too narrow and the triangle-shape are connected with biased ones (Gneiting et al.
2007). Following Rossi and Sekhposyan (2014) we employ Kolmogorov-Smirnov (KS)
and Anderson-Darling (AD) tests to formally check whether there are any violations
of uniformity, and the Ljung-Box test to examine autocorrelation of PITs. KS test
measures the difference between the empirical cumulative distribution of PITs and
cdf of uniform distribution U(0,1):

KS =
√
S − T max

j=1,...,S−T
max

{∣∣z∗j − j/(S − T )
∣∣ , ∣∣z∗j − (j − 1)/(S − T )

∣∣} , (21)

so this statistic treats all the points equally, whereas AD test places more weight on
the tails of the empirical distribution:

AD = − (S − T )− 1
S − T

S−T∑
j=1

(2j − 1) ln
(
z∗j
(
1− z∗S−T+1−j

))
. (22)

In the above presented statistics z∗j denotes the values of PIT1(t;Mi) in ascending
order.
Both statistics (KS and AD) have non-standard distributions.
The statistics of the Ljung-Box test of autocorrelation of lag length L̃ reads as follows:

Q = (S − T ) (S − T + 2)
L̃∑
l=1

(
ρ2
l

S − T − l

)
∼as χ2 (L̃) , (23)

where ρ2
l is the serial coefficient of PITs at lag l.

Although the main aim of the paper is to compare density forecast accuracy of the
analysed set of models, we also present the weighted trace mean squared forecast error
(WTMSFE) which assesses the accuracy of the point forecast based on the predictive
mean (Carriero et al. 2011). We will calculate the mean of WTMSFE values obtained
within the whole forecast horizon as:

WTMSFE
S

T+1 = 1
S − T

S∑
t=T+1

WTMSFE (x̂t+1 , xt), (24)

where x̂t+1 denotes the one-step-ahead point forecast of the vector xt,
WTMSFE (x̂t+1 , xt) = tr

[
(x̂t+1 − xt)′W (x̂t+1 − xt)

]
with W set as a diagonal

matrix of weights accounting for different volatilities of the predicted variables. As
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weights, we take the inverse of variance in the forecasted period (see also Carriero et
al. 2011).
Note that the predictive mean is the optimal point forecast for the researchers with
the quadratic loss function and in such a case the root mean squared error is an
appropriate measure for discriminating among models (see e.g. Weiss 1996, Berg,
Henzel 2015).

5 Results of forecast comparison
In this section the above presented methods are employed to assess the forecast
accuracy of inflation of consumer prices (∆pt) unemployment rate (Ut) and short-term
interest rates (rt) performed within the so called small model of monetary policy (see
e.g. Primiceri 2005). This is the same model as was considered for the data from the
Polish economy by Pajor and Wróblewska (2017) presenting within sample Bayesian
comparison of different VEC-MSF specifications. The aim of this research is to assess
forecast ability of these competing specifications and compare the obtained results to
the ranking displayed by Pajor and Wróblewska (2017). For this reason we focus on
the very same dataset. The modelled data cover the period from 1995Q1 to 2012Q4.
The forecast evaluation is performed for 16 quarters ranging from 2013Q1 to 2016Q4.
The analysed series are seasonally unadjusted and their seasonality is modelled and
forecasted in a deterministic manner, i.e. using zero-mean seasonal dummies. The
prior structure is the same as in Pajor and Wróblewska (2017), see also Koop et al.
(2010), Osiewalski and Pajor (2009), Pajor and Osiewalski (2012) for the discussion.
Similar to Pajor and Wróblewska (2017), the first three years of modelled data are
used as a training sample to determine the hyperparameters of the prior distribution
for the cointegration space (the Johansen procedure in the model with two lags and
2 cointegrating vectors β has been used, which further have been utilized to calculate
P0.5 = ββ′ + 0.5β⊥β′⊥). The next 5 quarters (1998Q1 – 1999Q1) are sacrificed as
initial conditions. Eventually, there are 55 modelled observations (see Figure 1).
The imposed priors are as follows:

1. the matrix normal distribution for B: p (B| r) = fmN (B| 0, Ir, P0.5),
which leads to the matrix angular central Gaussian (MACG) distribution
for β: p (β| r) = fMACG (β|P0.5) (see e.g. Chikuse 2002), E (B) = 0,
V (vec B) = Ir ⊗ P0.5,

2. the matrix normal distribution for A: p (A| ν, r) = fmN (A|0, νIr, In) with
inverse gamma distribution for ν: p (ν) = fIG (ν| 3, 2), so E (ν) = 1, V (ν) = 1
and E (A) = 0, V (vec A|ν) = νIr ⊗ In = νIrn,

3. the matrix normal distribution for Γ: p (Γ| h) = fmN (Γ|0, In, hIl) with inverse
gamma distribution for h: p (h) = fIG (h| 3, 2), l = n (k − 1), E (h) = 1,
V (h) = 1, E (Γ) = 0, V (vec Γ|h) = In ⊗ hI l = hIln,
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Figure 1: The analysed macro-data series (1995Q1 – 2016Q4)
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Figure 1: The analysed macro-data series (1995Q1 – 2016Q4). 
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4. the matrix normal distribution for Γs: p (Γs| hs) = fmN (Γs|0, In, hsIls) with
inverse gamma distribution for hs: p (hs) = fIG (hs| 3, 2), ls denotes the
number of deterministic terms in Dt, E (hs) = 1, V (hs) = 1, E (Γs) = 0,
V (vec Γs|hs) = In ⊗ hsI ls = hsIlsn

5. the inverse Wishart distribution for Σ: p (Σ|In, n+ 2), so E (Σ) = In,

6. the normal distribution for ln q0: p (lnq0 ) = fN,1 (lnq0 |0, 1), so E (lnq0 ) = 0,
V (lnq0 ) = 1,

7. the normal distribution for φ, truncated by the restriction |φ| < 1:p (φ) ∝
fN,1 (φ|0.8, 0.2) I(−1,1) (φ),

8. the inverse gamma distribution for σ2
q : fIG

(
σ2
q |1.1, 0.04

)
, so E

(
σ2
q

)
= 0.4,

9. the uniform distribution over the unit simplex for a and b: p (a, b) ∝
I(0,1) (a+ b),

10. the exponential distribution for s0,Σ: p (s0,Σ) = fExp(s0,Σ|1), so E (s0,Σ) = 1,
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We analyse the set consisting of 96 non-nested specifications. Along with the number
of latent processes driving covariances (l = 0 in the VEC and the VEC-SBEKK
models, l = 1 in the VEC-MSF and VEC-MSF-SBEKK forms), the models can differ
in the VAR order (k ∈ {2, 3, 4, 5}), the type of incorporated deterministic term (d = 4
denotes a constant restricted to the cointegration space, d = 3 – an unrestricted one)
and the cointegration rank (r can be equal to 1 or 2). Additionally, we consider VAR
models for the first differences of the analysed processes (r = 0) and VAR models for
the levels of these processes (r = 3).
We start the analysis of models forecast accuracy by recalling the results of models
comparison presented in Pajor and Wróblewska (2017).

Table 1: The most probable models

VAR order deterministic cointegration model P (M(k,d,r,type)|x)
(k) term (d) rank (r)

2 3 0 VEC-MSF-SBEKK 0.98737
2 3 0 VEC-MSF 0.01116
2 4 1 VEC-MSF 0.00130
3 3 0 VEC-MSF-SBEKK 0.00005
2 4 1 VEC-MSF-SBEKK 0.00004
2 3 2 VEC-MSF 0.00003
5 3 0 VEC-MSF-SBEKK 0.00003
2 3 1 VEC-MSF 0.000014
2 4 2 VEC-MSF 0.000003
3 3 0 VEC-MSF 0.000002

Source: Pajor and Wróblewska (2017)

As can be noticed models with changing covariance structure gathered almost all the
posterior probability. According to economic theory we could expect at least one
cointegrating relation among the analysed series, but in this set of Bayesian models,
these ones built for first differences of the original data are ranked first. The most
probable model with one cointegrating relation took the third place.
We begin the evaluation of the predictive densities by discussing the obtained values of
predictive likelihood. Table 2 displays the log predictive likelihood for the considered
forecast period (log(P (xf |x,M(k,d,r,type))), and the log predictive Bayes factors in
favour the model with the highest value of the predictive likelihood (i.e. the
specification with two lags, two cointegrating relations, a constant restricted to the
cointegration space and the MSF-SBEKK covariance structure) over some chosen
models (log(B1i)).
Among the models ranked first in Table 2 there are only those with changing
covariance-matrix and with two cointegrating vectors. Pajor and Wróblewska (2017)
found the changing covariance structure also very important in the modelled period,
but contrary to the economic theory and prior expectations the model without
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Table 2: The log predictive Bayes factor (2013Q1 – 2016Q4)

VAR determin. cointegration model log
(

P
(

xf |M(k,d,r,type)
))

log(B1i)order (k) term (d) rank (r)

2 4 2 VEC-MSF-SBEKK −5.471 0
2 4 2 VEC-MSF −5.861 0.393
2 3 2 VEC-MSF-SBEKK −5.917 0.445
2 3 2 VEC-MSF −6.016 0.544
2 3 1 VEC-MSF -6.111 0.64
2 4 1 VEC-MSF-SBEKK −6.126 0.655
2 4 1 VEC-MSF −6.248 0.776
2 3 0 VEC-MSF −6.577 1.11
3 3 0 VEC-MSF-SBEKK −6.718 1.247
2 3 0 VEC-MSF-SBEKK −6.724 1.25
2 3 3 VEC-MSF −7.127 1.655
3 3 0 VEC-MSF −7.233 1.762
2 4 2 VEC-SBEKK −7.672 2.201
2 4 1 VEC-SBEKK −7.878 2.407
2 3 2 VEC-SBEKK −8.205 2.733
5 3 0 VEC-MSF-SBEKK −8.772 3.301
2 3 1 VEC-SBEKK −11.287 5.816
2 4 2 VEC −12.72 7.245
2 4 1 VEC −12.79 7.315
2 3 2 VEC −13.05 7.574
3 3 0 VEC −13.33 7.858

Source: own calculations based on 100 000 accepted draws

cointegrating relations gathered almost all the posterior probability. They also showed
that when the priors for the cointegration space is settled with taking into account
the cointegration rank of the analysed specification, models with one cointegrating
vector are ranked first. The possible reason for this observed sensitivity for the prior
assumptions is the shortness of the analysed time-series. It should be emphasised that
models with long run relationships turned out to have the best predictive likelihood, so
including the economic relationships into the model helps to achieve better prediction,
in the sense of the predictive probability densities evaluated at the realized return.
Basing on the results presented in Table 2, we can also asses which of the two
considered model features turned out to be more important in this forecast exercise –
changing covariance structure or cointegrating relations. The models with a constant
covariance matrix are ranked last in Table 2, so the changing covariance structure
turned out to be more important than economic relationships. Even the model with
two cointegrating relations, but with constant covariance matrix, according to the
rules proposed by Kass and Raftery (1995) is strongly rejected by the data, as its
log Bayes factor equals 7.2. Contrary, log Bayes factors for the best specifications
without cointegrating relations but with changing covariances are a little bit higher
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than one.
Table 3 displays models with the lowest values of the mean of energy score calculated
for one-step-ahead forecasts in the considered evaluation period. Among them there
are only models with time varying covariances. The first model with a constant
covariance matrix (M(2,4,1,V EC)) is ranked on the 40th position with the mean energy
score 17.3% higher than the ES of the best model (M(2,4,2,V EC−MSF−SBEKK)).
Summing up to the results presented in Tables 2 and 3, we can conclude that
accounting for the changing covariance matrix, even with very simple structure as
MSF, is more important than the number of long-run relationships. Additionally, the
models with lower lag length are preferred.

Table 3: The energy score (mean in the period 2013Q1 – 2016Q4) and the percentage
loss to the best model,
plES = 100

(
ES

T+16
T+1

(
M(k,d,r,type)

)
/ ES

T+16
T+1

(
M(2,4,2,V EC−MSF−SBEKK)

)
− 1
)

VAR determin. cointegration model ES
T +16
T +1

(
M(k,d,r,type)

)
plESorder (k) term (d) rank (r)

2 4 2 VEC-MSF-SBEKK 0.4059 0.00
2 3 2 VEC-MSF 0.4070 0.25
2 4 2 VEC-MSF 0.4082 0.56
2 3 1 VEC-MSF 0.4111 1.28
2 4 1 VEC-MSF-SBEKK 0.4120 1.49
2 4 1 VEC-MSF 0.4127 1.68
2 3 0 VEC-MSF 0.4168 2.67
2 3 2 VEC-MSF-SBEKK 0.4191 3.25
2 3 1 VEC-MSF-SBEKK 0.4210 3.72
3 4 2 VEC-MSF 0.4217 3.88
4 3 0 VEC-MSF 0.4230 4.20
3 3 0 VEC-MSF 0.4231 4.23
4 3 0 VEC-MSF-SBEKK 0.4252 4.75
2 3 0 VEC-MSF-SBEKK 0.4266 5.10
4 3 2 VEC-MSF 0.4270 5.20
4 4 2 VEC-MSF-SBEKK 0.4271 5.22
4 3 0 VEC-SBEKK 0.4274 5.30
...

...
...

...
...

...
2 4 1 VEC 0.4762 17.30

Source: own calculations based on 100 000 accepted draws

Following Geweke and Amisano (2010) we present (Figure 2) the cumulative log
predictive Bayes factors in favour of the M(2,4,2,V EC−MSF−SBKK) model over three
models: M(2,4,2,V EC−MSF ), which is ranked on the third place according to the
energy score, M(2,3,0,V EC−MSF−SBEKK), which is the winner of the Bayesian model
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comparison within the modelled time and M(2,4,2,V EC), so the one with the highest
log predictive likelihood among all models with the non-changing error covariance
matrix.

Figure 2: Cumulative log predictive Bayes factors in favour of the
M(2,4,2,V EC−MSF−SBKK) model
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It can be noticed that the superiority of the M(2,4,2,V EC−MSF−SBKK) model over
the model with constant error covariances raises quickly and almost steadily in the
whole forecast period, whereas although at the endpoint the data weakly favour the
M(2,4,2,V EC−MSF−SBKK) model over M(2,4,2,V EC−MSF ), at some data-points during
the evaluation period (especially at the beginning) the log predictive density of the
letter model is higher. The predominance of M(2,4,2,V EC−MSF−SBKK) model over
the model with the same covariance structure, but without long-run relationships
also rises, but not-constantly and the speed of these changes is much lower than that
one observed in the case of the M(2,4,2,V EC) model. The presented discussion of the
observed time changes in the cumulative log predictive Bayes factors also confirms
the importance of the changing covariance structure for the quality of the predictive
distributions.
The results in Table 4 indicate that models with time-changing conditional covariances
yield point forecasts that are more accurate than forecasts from models with constant
conditional covariances. In general, WTMSFE of point forecast obtained within
models with the MSF structure is the lowest, whereas the mean of WTMSFE of
forecast from the VEC models without stochastic volatility is 19.5% higher than
WTMSFE of forecast from the VEC-MSF models. For forecast from the VEC-MSF-
SBEKK and the VEC-SBEKK models the means of WTMSFE are, accordingly, 3%
and 4.5% higher. These results reinforce the conclusion of the importance of SV
structures for the forecast ability of the analysed models.
Tables 2, 3 and 4 display almost the same models, but with a slightly different order.
The main difference concerns the importance of the number of cointegrating relations.
It turned out that for the point forecast accuracy the exact number of long-run
relations is less important than for the accuracy of the density forecast. However, it
is important to emphasize that according to the results presented in tables 2 through
4 the VAR models built for the levels of the analysed series performed the worst.
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Table 4: The weighted trace mean squared forecast error (mean in the period 2013Q1
– 2016Q4) and the percentage loss to the best model, plWTMSFE =
= 100

(
WTMSFE

T+16
T+1

(
M(k,d,r,type)

)
/WTMSFET+16

T+1
(
M(2,3,1,V EC−MSF )

)
− 1
)

VAR determin. cointegration model W T MSF E
T +16
T +1 (M.) plW T MSF Eorder (k) term (d) rank (r)

2 3 1 VEC-MSF 0.6198 0.000
2 3 0 VEC-MSF 0.6258 0.962
2 4 2 VEC-MSF 0.6344 2.356
2 4 1 VEC-SBEKK 0.6364 2.681
4 3 0 VEC-SBEKK 0.6385 3.016
2 4 1 VEC-MSF-SBEKK 0.6503 4.908
3 4 1 VEC-MSF-SBEKK 0.6516 5.119
2 3 2 VEC-MSF 0.6563 5.882
2 4 2 VEC-SBEKK 0.6608 6.615
2 3 0 VEC-MSF-SBEKK 0.6613 6.698
2 4 1 VEC-MSF 0.6632 4.334
3 3 1 VEC-MSF 0.6634 4.414
2 4 2 VEC-MSF-SBEKK 0.6643 4.467
4 3 0 VEC-MSF-SBEKK 0.6670 4.791
2 3 0 VEC-SBEKK 0.6673 4.973
3 3 1 VEC-SBEKK 0.6792 9.579
...

...
...

...
...

...
2 3 0 VEC 0.7389 19.208

Source: own calculations based on 100 000 accepted draws

Using the log predictive likelihood and the energy sore we have evaluated the three-
dimensional forecast density, now we are going to examine the one-dimensional
forecast densities – for each variable separately. We employ the continuous rank
probability score and the probability integral transform.
Table 5 displays ten models with the lowest CRPS for the analysed variables and the
percentage loss to the best model.
The inclusion of stochastic volatility and long-run relationships improves density
forecast accuracy of unemployment rate and interest rate. In the case of
unemployment rate MSF seems to be sufficient structure of a changing covariance
matrix, whereas allowing for time-varying conditional correlations is essential for the
forecasting performance of the compared models in the case of interest rate. The exact
number of cointegrating relations is less important, but on average for density forecast
of both the unemployment rate and the interest rate models with two cointegrating
vectors perform better than those with only one vector. It is interesting that in
this forecast exercise the models without the latent process and without long-run
relationships generally obtained lower CRPS values.
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Table 5: The continuous rank probability score (mean in the period
2013Q1 – 2016Q4) and the percentage loss to the best model MB

(k,d,r,type),

plCRPS = 100
(
CRPS

T+16
T+1

(
M(k,d,r,type)

)
/CRPS

T+16
T+1

(
MB

(k,d,r,type)

)
− 1
)

VAR determin. cointegration model CRP S
T +16
T +1

(
M(k,d,r,type)

)
plCRP Sorder (k) term (d) rank (r)

in
fl
at
io
n

4 3 0 VEC-SBEKK 0.3226 0.00
2 3 0 VEC 0.3272 1.45
4 3 0 VEC-MSF-SBEKK 0.3314 2.73
2 3 2 VEC-MSF 0.3319 2.90
2 4 2 VEC-MSF-SBEKK 0.3321 2.96
3 3 0 VEC-MSF 0.3322 3.00
2 3 0 VEC-MSF 0.3325 3.08
4 3 0 VEC 0.3332 3.30
2 4 1 VEC 0.3333 3.34
2 4 1 VEC-MSF-SBEKK 0.3335 3.39

u
n
em

p
lo
ym

en
t
ra
te

2 4 2 VEC-MSF 0.1161 0.00
4 3 2 VEC-MSF 0.1163 0.20
2 3 2 VEC-MSF 0.1177 1.42
2 3 1 VEC-MSF 0.1178 1.44
4 4 1 VEC-MSF 0.1189 2.38
2 3 2 VEC-MSF-SBEKK 0.1211 4.30
2 4 1 VEC-MSF 0.1212 4.39
4 4 2 VEC-MSF-SBEKK 0.1213 4.46
4 4 2 VEC-MSF 0.1221 5.19
4 3 2 VEC-MSF-SBEKK 0.1231 6.05

in
te
re
st

ra
te

2 4 2 VEC-MSF-SBEKK 0.1183 0.00
2 4 1 VEC-MSF-SBEKK 0.1187 0.37
2 3 2 VEC-MSF-SBEKK 0.1251 5.77
2 3 0 VEC-MSF-SBEKK 0.1256 6.20
3 4 1 VEC-MSF-SBEKK 0.1267 7.12
3 4 2 VEC-MSF-SBEKK 0.1269 7.29
2 3 1 VEC-SBEKK 0.1273 7.67
4 4 2 VEC-MSF-SBEKK 0.1280 8.25
2 4 2 VEC-SBEKK 0.1282 8.41
2 3 1 VEC-MSF-SBEKK 0.1283 8.50

Source: own calculations based on 100 000 accepted draws

Generally models with lower lag length perform better, whereas the type of the
deterministic term is negligible.
Figures 3 through 5 display histograms of PIT values obtained in models which are
ranked first according to Bayesian model comparison within the modelled sample, log
predictive density score, ES and CRPS.
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Altogether we take a closer look on the results obtained within models with two
lags which differ in the number of long-run relations (r = 0, r = 1, r = 2) with
a constant restricted to the cointegrating relations and four considered types of
covariance structures. PITs enable us to assess whether these winning models calibrate
the predictive densities correctly. We follow Rossi and Sekhposyan (2014) and divide
the unit interval into 5 equally sized bins and show the fraction of the PITs which
follow into each bin. In the ideal case of PITs uniformity each bin should contain
p̂ = 0.2 of the obtained values, which is depicted by the solid lines. The broken lines
represent the 2.5th and 97.5th percentiles of the distribution of p̂. They are constructed
with the use of a normal approximation (p̂±1.96

√
p̂ (1− p̂)/16). Additionally, Figures

3 through 5 report results for the Kolmogorov-Smirnov (KS) and Anderson-Darling
(AD) tests. Table 6 displays p-value for autocorrelation test of PIT and PIT 2.

Table 6: p-value for autocorrelation test of PIT and PIT2 for selected models (lags: 4)

model inflation unemployment interest
PIT PIT2 PIT PIT2 PIT PIT2

k = 2, d = 3, r = 0

VEC-MSF-SBEKK 0.87 0.72 0.007 0.001 0.51 0.25
VEC-SBEKK 0.77 0.62 0.004 0.001 0.54 0.40
VEC-MSF 0.61 0.55 0.01 0.001 0.58 0.36

VEC 0.72 0.59 0.02 0.01 0.01 0.01

k = 2, d = 4, r = 1

VEC-MSF-SBEKK 0.73 0.61 0.005 0.001 0.43 0.20
VEC-SBEKK 0.72 0.59 0.002 0.0002 0.48 0.33
VEC-MSF 0.57 0.50 0.01 0.002 0.53 0.31

VEC 0.73 0.61 0.01 0.004 0.006 0.005

k = 2, d = 4, r = 2

VEC-MSF-SBEKK 0.77 0.68 0.004 0.001 0.55 0.25
VEC-SBEKK 0.81 0.65 0.001 0.0002 0.46 0.26
VEC-MSF 0.54 0.48 0.01 0.002 0.56 0.34

VEC 0.71 0.60 0.01 0.004 0.006 0.005

Source: own calculations

In the case of inflation all the PIT histograms are essentially uniform, which is
formally confirmed by the results of both tests – KS and AD. The hypotheses of
non-autocorrelation of PIT and PIT2 cannot be rejected for all 9 analysed models.
The PIT histograms for forecasts obtained within models M(2,3,0,V EC−MSF−SBKK)
and M(2,3,0,V EC−MSF ) are almost equal to the histogram of uniform distribution.
For unemployment rate, all the considered models with a stable covariance matrix
give significantly over-dispersed forecast densities. Moreover, there is a significant
autocorrelation in PIT and PIT2, so the PITs cannot be traded as realisations of
independent distributions. This results indicate that none of the obtained forecast
densities is correctly specified.
Turning to the interest rate, the outcomes of the Ljung-Box test suggest that the
forecast densities from models with a constant covariance matrix are not correctly
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specified. The PIT histograms and the KS and AD tests indicate that in models
without long-run relationships forecasts are in general over-dispersed and placed
too much weight to lower values of the interest rate. The distance between the
PIT histogram for the model M(2,4,1,V EC−MSF−SBEKK) and the density of uniform
distribution is the smallest. Note that is the model ranked second according to CRPS.
The observed over-dispersion on forecast densities obtained within models with a non-
changing covariance structure is not surprising as in such case models try to encompass
changing variances by dispersing the distributions.

6 Concluding remarks

In this paper we have compared from the forecasting perspective the set of VAR
possibly cointegrated models with changing conditional covariances, built for inflation,
unemployment rate and interest rate from the Polish economy. With the use of
log predictive density score, continuous rank probability score and energy score the
predictive densities have been evaluated and the models have been ranked. The
weighted trace mean squared forecast error has been employed to asses point forecast
accuracy. According to these measures the most important feature for the predictive
ability of the model is allowing for changing covariance matrices, the number of long-
run relationships is less important. Besides, the models with lower lag order perform
better. These outcomes are in accordance with the results of within-sample Bayesian
model comparison performed by Pajor and Wróblewska (2017).
Additionally, the probability integral transform has been employed to assess the
calibration of the forecast densities. According to the results, the forecast density
for inflation is well calibrated contrary to not well calibration of the unemployment’s
forecast densities, whereas in the case of interest rate the forecast densities
obtained within models with long-run relationships and changing in time conditional
correlations are quite well calibrated. There is a visible cyclical pattern in the
unemployment series, in which case the structure of VAR/VEC models is probably
not sufficient to include this feature.
We conclude and emphasise that, from the macroeconomic forecasting perspective,
taking into account the possibility of time-changing conditional covariances improves
both point and density forecast ability of the vector autoregression models both with
and without cointegrating relations. For the point forecast accuracy, the SV structures
are much more important than the proper assessment of the exact number of long-
term relationships. For the density forecast ability, the impact of the SV structures is
also visible, but generally models with two cointegrating relations perform better than
the others. In the small monetary model we expect one or two long-run relations,
and their inclusion improves the quality of forecasts (even for one horizon), because
through adjusting to them the series corrects their trajectories at every single point
of time.
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