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Abstract: The article focuses on the fractional-order backward difference, sum, linear
time-invariant equation analysis, and difficulties of the fractional calculus microcontroller
implementation with regard to designing a fractional-order proportional integral derivative
(FOPID) controller. In opposite to the classic proportional integral derivative (PID), the
FOPID controller is defined by five independent parameters. Hence, it is more customizable
and, potentially, more precise on condition that the values of fractional integration and
differentiation orders are properly selected. However, a number of operations and the time
required to calculate the output signal continuously increase. This can be a significant
problem considering the limitations of a microcontroller, including memory size and a
constant sampling time of the set-up analog-to-digital (ADC) converters. In the article,
three solutions are considered, and results obtained in the experiments are presented.
Key words: fractional calculus, Grünwald-Letnikov fractional-order backward differ-
ence/sum, FOPID, hardware implementation

1. Introduction

The fractional calculus [1, 2] has become more and more effective, and hence popular math-
ematical tool in the synthesis and analysis [3] of dynamic systems in numerous fields of science
including signal processing, control, biomedical and electrical engineering [4–8]. In control ap-
plications, achieving better models of real objects and developing more sophisticated and precise
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control procedures requires advanced computational tools. This statement also applies to the
analysis of fractional-order system dynamics. The main concern brought by the implementation
of these strategies is associated with a problem of the constantly, linearly growing over time
number of multiplications and additions, known as the growing calculation tail [8]. This may
be a source of considerable errors in real-time microcontroller-based applications that perform
critical operations during a constant sampling time and save results in a limited memory [6].
Several approaches to implementing fractional-order operators have been proposed. Two popular
are the Oustaloup approximation [9] and the Laguerre impulse response approximation (LIRA)
[10]. Applications of the former were discussed among others in the works [5, 11–13] regarding
non-integer order digital filters. The method allows one to approximate non-integer filters with
a wider spectrum than LIRA; however, it is considered sensitive to the process of discretization
at high sampling frequencies and may cause system instability. A step towards implementing
Oustaloup approximation algorithms in a fractional-order PID controller [14] was made by Tepl-
jakov in his praised work on a fractional-order modeling toolbox - FOMCON [15]. In the project,
a performance comparison between an 8-bit AVR microcontroller and 32-bit ARM Cortex-M4
microcontroller, similar to the one used in the authors’ research, was also conducted.

In the following paper, an approach based on the Grünwald-Letnikov definition of the differ-
integral and the Short Memory Principle optimization technique introduced by Podlubny [2] is
considered. Usefulness of this method has been verified, among others, in air and plant heating
control and robotic arm movement optimization in [4, 6, 8].

The structure of the paper is organized as follows: in Section 2, mathematical preliminaries
including the Grünwald-Letnikov definition of the discrete fractional-order backward difference
and a sum based on the oblivion function [2, 16] are introduced. Two solutions for the previ-
ously described problem are highlighted. In Section 3, the discrete fractional-order proportional-
integral-derivative (FOPID) controller is considered [14]. An analysis of the implementation
difficulties was conducted using the chosen Cortex-M7-based hardware testing platform. The
methodology and the obtained results are described in Section 4. In Section 5, accuracies of the
classic and fractional-order PID controllers [17] are compared. The impact of the difficulties on
a control process is also discussed.

2. Grünwald-Letnikov definition of fractional-order backward
difference/sum

Let us use the following notation Nc = {c, c+1, c+2, . . .}, then N := N0 = {0, 1, 2, 3, . . .}.
The discrete function of a variable k ∈ N and a given fractional-order v, matching the inequality
0 < v ≤ 1, is defined by its values a(v) (k) (1):

a(v) (k) =


1 for k = 0

(−1)k
v(v − 1) . . . (v − k + 1)

k!
for k = N1

. (1)

The above formula is called the oblivion function and is a basis for evaluating the fractional-
order backward difference and fractional-order backward sum. A recursive equivalent of Equa-
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tion (1) is defined by:

a(v) (k) =


1 for k = 0

a(v) (k − 1)
(
1 − v + 1

k

)
for k = N1

. (2)

The coefficients calculated for various positive v orders are presented in Fig. 1(a).

(a) (b)

Fig. 1. a(v) (k) coefficients for positive values of order v ∈ {0, 0.1, . . . , 0.9} (a) and for negative values
of order µ ∈ {0, −0.1, . . . , −0.9} (b)

Using the oblivion function one can calculate fractional-order backward difference of an order
v ∈ R+ (3):

GL
∆

(v)
h

f (t) =
∞∑
k=0

a(v) (k) f (t − kh) for t, h ∈ R. (3)

where f (t) is the discrete-time real-valued function defined by its consecutive samples f (kh)
and h denotes the sampling time. The fractional-order backward sum is described by a similar
equation, with the difference that the fractional-order takes a negative value, e.g. µ = −v. A plot
of µ-order coefficients is shown in Fig. 1(b). One may also generalize Equations (1), (2) by
evaluating the v order for each time instance kh as a result of a uniquely defined discrete function
v(k). This generalization is referenced as the variable-, fractional-order backward difference/sum
[8, 18].

The one-sided Z– transform of the mentioned difference takes the following form (4):

z
{
GL
∆

(v)
h

f (t)
}
=

(
1 − z−1

)v
. (4)

The left-sided Grünwald-Letnikov derivative is then defined by Formula (5) [19]:

GLD(v)
h

f (t) = lim
h→0+

GL∆
(v)
h

f (t)

hv
for t, h ∈ R+ . (5)
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Assuming that the sampling time h is constant and as small as possible, (5) can be simplified to:

GLD(v)
h

f (t) ≈
GL∆

(v)
h

f (t)

hv
for t, h ∈ R+ . (6)

If a positive value of the order v is replaced in Equations (3), (5), (6) by a negative value of µ
then the definitions of the Grünwald-Letnikov fractional-order sum and integral are considered.

The definitions are characterized by the growing number of calculations at every step. If M
represents the number of operations performed by a microcontroller in the first step then in the
k-th step k M operations should be executed. The issue arises when the time required to perform
these operations is longer than the desired sampling period h (tkM > h). One of the possible
solutions is to assume that for a specific value of L for which tLM ≥ h and k > L, the number of
operations is limited to LM . Formula (1) then takes the form of:

a(v) (k) =



0 for k < 0

1 for k = 0

(−1)k
v(v − 1) . . . (v − k + 1)

k!
for 0 < k ≤ L

(−1)L
v(v − 1) . . . (v − L + 1)

L!
for k > L

. (7)

The second solution is based on the assumption that for small order values the coefficients
drop rapidly to zero, as shown in Fig. 1, and further operations can be skipped on condition that
a required precision of results has been reached:

a(v) (k) =



0 for k < 0

1 for k = 0

(−1)k
v(v − 1) . . . (v − k + 1)

k!
for 0 < k ≤ L

0 for k > L

. (8)

3. Fractional-order PID controller

The fractional-order PID controller for a closed-loop system (CLS) [14] is described by
Equation (9):

y(kh) = KPu(kh) + KI

(
GL
0 ∆

(µ)
h

)
u(kh) + KD

(
GL
0 ∆

(v)
h

)
u(k h), (9)

where KP , KI , and KD are the proportional, integral and derivative gains, µ < 0, v > 0 are
the fractional orders, and u(kh) and y(kh) are the input (error) and output signals, respectively.
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Applying Formula (3) results in the form:

y(kh) = KP[1 0 . . . 0]



u(kh)

u(kh − h)
...

u(0h)


+ KI

[
1 a(µ) (1) . . . a(µ) (k)

] 

u(kh)

u(kh − h)
...

u(0h)


+

+ KD

[
1 a(v) (1) . . . a(v) (k)

] 

u(kh)

u(kh − h)
...

u(0h)


.

(10)

The discrete transfer function of (10) is obtained by the one-sided Z–-transform (assuming zero
initial conditions):

Y (z)
U (z)

=
KP (1 − z−1)−µ + KI + KD (1 − z−1)v−µ

(1 − z−1)−µ
. (11)

In an ideal controller, the degree of the numerator is higher than the degree of the denominator.
In real applications, the differentiator strongly amplifies noise that is always present in a signal,
so usually, the differentiator with inertia, acting as a discrete filter, is used. The transfer function
then takes the form:

Y (z)
U (z)

= KP +
KI

(1 − z−1)−µ
+

KD (1 − z−1)v

(1 − z−1)v + a0
. (12)

4. Hardware testing platform

For the analysis of fractional-order operator implementation, a hardware testing platform
based on the ARM Cortex-M7 STM32F746ZG microcontroller [20] was prepared. Key features
and peripherals of the device are listed in Table 1.

Table 1. Hardware platform parameters

Parameter name Symbol Value

CPU main clock frequency FCPU up to 216 MHz

Memory Flash, SRAM 1 024 MB (Flash) + 320 KB (SRAM)

Converters ADC, DAC 3 × 12-bit 2.4 MSPS ADC, 2 × 12-bit DAC

Power supply VDD 1.8–3.6 V (3.3 V set)

Other features floating point unit real-time accelerator,
DSP instructions

Several limitations must be taken into consideration when implementing the mentioned algo-
rithms. First of all, the desired precision of numbers must be determined. For the fractional order
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v =∈ (0, 1] and k → ∞, a(v) (k) coefficients get closer to zero and for large values of k, the co-
efficients might not be represented properly in a microcontroller memory. The GCC compiler for
STM32F746ZG supports two ANSI C floating-point types: a single-precision 4-bytes float type
and a double-precision 8-bytes double type [21]. Ranges are [1.17549435e−38, 3.40282347e+38]
with 8 decimal points and [2.22507385850720138e−308, 1.79769313486231571e+308] with 17
decimal points respectively. The maximum positive value of the type is important for implementa-
tion of Formula (1) due to the growing factorial value and a possible risk of overflow. Otherwise,
recursive Formula (2) needs to be used.

Choosing the more precise floating-point type implies consuming more memory which is
the second important limitation to consider. If a(v) (k) coefficients are not defined directly in
a program source code, and thus not saved in a Flash section of memory, they need to be
calculated at runtime and saved in RAM. In 320KB of the STM32F746ZG SRAM, up to 40 960
double type coefficients could be stored; however, the section is always shared by other parts of
the program including the stack, heap, initialization routines, and other data. An exemplary C-
language program for evaluating double type a(v) (k) coefficients using recursive Formula (2) on
the STM32F746ZG revealed that up to 8 084 coefficients could be calculated correctly, consuming
64 672 bytes of RAM.

The second hardware implementation problem, mentioned in Section 2, is the growing time
of CPU calculations which in some circumstances can exceed the sampling time of the ADC
converter. The maximum frequency of the ADC domain clock in the STM32F746ZG is fADC =

36 MHz [20], and the single 12-bit conversion takes cADC = 15 cycles to complete. Hence, the
shortest possible sampling time can be estimated using Formula (13):

T smin =
1

fADC
cADC =

1
36 MHz

15 = 0.417 µs. (13)

Usually, one of the available general-purpose timers is used to extend the time and to synchro-
nize the conversions. To configure a timer one must know the exact time of critical operations
performed during an ADC interrupt service routine (ISR). The ARM Cortex peripheral called
Data Watchpoint and Trace (DWT) [20] allows one to measure the number of CPU cycles between
two lines of the program. Knowing the CPU frequency, one can determine the time of specifics
sets of operations (14):

tdiff =
cafter_ − cbefore_diff

fCPU
. (14)

This was tested with a C program running the algorithm of a discrete fractional-order differ-
entiator (6) for 11 different coefficients lengths between 1 and 5 000. The results are presented
in Fig. 2.

For k = 3 000 coefficients already stored in the memory, the number of cycles required to
calculate the response was equal to cdiff = 189 345, and lasted for (15):

tdiff =
cdiff

fCPU
=

189 345
216 MHz

= 0.87 ms. (15)

The time between subsequent ADC conversions has to be longer than the sum of tdi f f and
hmin, so in this example, the timer configured to generate interrupt signals at 1 kHz fulfilled the
condition.
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Fig. 2. The number of CPU cycles required to
calculate the Grünwald-Letnikov derivative as

a function of the buffer length k

To increase the overall microcontroller performance, one may consider rewriting critical
sections of a program using inline assembly code. If a chosen device supports single instruc-
tion, multiple data (SIMD) extensions, then basic operations including multiply and accumulate
(MAC) are executed in one clock cycle, significantly reducing time of complex algorithms. The
performance of STM32 devices, using the optimized DSP instructions, was compared in the
sheet [22].

5. Fractional-order PIµDv implementation

In order to implement discrete PID and PIµDv controllers [14], a plant had to be defined first.
To indicate limitations of the microcontroller, unit step response of the controlled system had to
have relatively wide transient characteristics. A DC motor, in general, is an example of a device
that can meet that criterion; thus, the 6 V-powered DC motor with an encoder was used for the
reference [23]. The unit step was simulated by turning the motor power supply on and measuring
the number of encoder impulses every ten milliseconds. A graph of the normalized rotations per
second is presented in Fig. 3 (thick red line).

Fig. 3. Speed curve of the DC motor (thick
red), step response of the defined transfer func-
tion (blue), and the measured microcontroller

response (purple)
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Based on the diagram, an exemplary 1st-order dynamic plant with inertia was defined, de-
scribed by transfer function (16):

G(s) =
kM

T, M s + 1
=

0.98
0.075s + 1

, (16)

where kM is the gain of the plant and TM is the time constant. Using Tustin’s method [24] for the
sampling time h = 0.01 s, the above can be transformed into:

G(z) =
0.1223z−1

1 − 0.8752z−1 , (17)

which is the equivalent of the difference equation:

y[n] = 0.1223x[n − 1] + 0.8752y[n − 1]. (18)

The simulated 1st-order dynamic plant was implemented in a C program for the ARM Cortex-
M3 core STM32L152RCT6 [25] microcontroller with ADC and DAC converters configured. The
obtained unit step response is presented in Fig. 3 (thick purple line).

A general discrete PID controller is described by the following Formula (19):

u[kh] = K p(e[kh] +
h
TI

k∑
i=0

e[ih] +
e[kh] − e[kh − h]

h
TD, (19)

where h is the sampling time, KP is the proportional gain, and TI and TD are the integral and
derivative times respectively. The implemented controller was tuned using the Ziegler-Nichols
method [26]. Parameters are presented in Table 2.

Table 2. PID controller parameters for the modeled system

Parameter name Value

KP 2

TI 0.028

TD 0.007

Both the Matlab simulation and C program implementation of the controller were carried out.
The target setpoint value of the regulator was set programmatically to 1 (corresponding to 1 V on
the DAC output). The output of the STM32F746ZG DAC converter (PID) was connected directly
to the input of the STM32L152RCT6 ADC converter (1st-order plant), and the STM32L152RCT6
DAC output as the negative feedback to the STM32F746ZG ADC (see Fig. 4). The converters
were in sync with 100 Hz peripheral timers. Maximum (3.3 V) and minimum (0 V) control
signal limits were also applied. Characteristics of the simulation and measured device output are
presented in Fig. 5(a).

In a typical PID implementation, a total number of calculations performed at each step is
constant. This is the outcome of Algorithm 1 where only two additional variables are saved in
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Fig. 4. Connected STM32F746ZG (PID) and
STM32L152RCT6 (plant) microcontrollers

memory. The first variable errors_sum represents the sum of all previous errors multiplied by the
sampling time (the integral term), while the second previous_error keeps the value of the error
from the last step (the derivative term)

Algorithm 1. Classic discrete PID controller

In the fractional-order PID controller, according to Equation (10), both derivative and integral
terms are sums of products of errors e(k) and the corresponding backward difference coefficients,
divided by the v-power of the sampling time h. As mentioned in Section 4, this may cause an
undefined behavior of a microcontroller program if calculations are not properly limited.

To analyze the problem thoroughly, the fractional-order PID (FOPID) algorithm was imple-
mented on the STM32F746ZG and several iterations of memory consumption and performance
tests were executed. Fractional order values v = 0.94 and u = −1.0 were selected to minimize
integral of the squared error (ISE criterion). The sampling time was set to h = 0.01 s (100 Hz).
The a(v) (k) and a(µ) (k) coefficients of type float were calculated during the initialization rou-
tine and stored in SRAM in variable-length arrays. The maximum possible length of the arrays
equaled 10 200.

The computation time of the FOPID controller output signal as a function of the array length
is shown in Fig. 6.

If a chosen sampling frequency fs is too high for the desired buffer length, e.g. f s = 1 kHz
for 4 000 samples, the controller program will skip upcoming ADC conversions, and, therefore,
generate a wrong control signal. Calculation time can increase even further when the varying
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(a) (b)

Fig. 5. Simulated and measured plant responses for (a) classic discrete PID controller and (b) fractional-order
discrete PIµDv controller

Fig. 6. Time of FOPID output calculations as
a function of the array length

fractional order v(·) in a variable-, fractional-order PID (VFOPID) controller is considered [8].
The oblivion coefficients are then recalculated in each ISR.

Depending on the selected fractional-order values, the application of solution (7) may cause
a major problem related to shifting errors stored in memory. When the error buffer limit is
reached, the first value, being also the largest at the start of the control, is overridden resulting
in a temporary rapid drop of the signal, caused mainly by the integral term of the FOPID. An
example of this issue registered for a buffer length of 30 is presented in Fig. 7.

At the expense of more complex implementation, the fractional-order PID control provides
more tuning parameters; hence, much more flexibility in designing a controller best suitable for a
particular system. Measured responses for three different control signals: unit step, classic PID and
fractional-order PID are presented in Fig. 8. For the mentioned fractional-order values v = 0.94
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Fig. 7. Shifting error values in the discrete
FOPID implementation

and µ = −1.0, integral of the squared error (ISE) for the simulation time of 1 s was slightly
reduced compared to the classic PID defined by the same set of KP , TI , TD and h parameters.
Moreover, for −0.9 > µ > −1 rise time of the plant response was even faster; however, a non-zero
steady state error was then produced.

Fig. 8. Dynamic system responses for different
control signals

This problem may be eliminated with a VFOPID controller in which the value of the µ-
order gradually approaches −1. The stability criterion for the controller, tuned using the same
parameters as the classic PID, is defined similarly [8]:

v(k) =


f (k) for 0 ≤ k < L < ∞
1 for k > L

. (20)

Choosing the valid µ and v values remains an open problem and strictly depends on properties
of the considered closed-loop system.
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6. Conclusions

Applying fractional calculus to the field of control engineering introduces more degrees of
freedom [4] which, for accurately selected and adaptive values of fractional orders, provides the
ability to design more precise and robust control algorithms. However, in order to eliminate the
steady-state error present in a FOPID, an integer integration order value is eventually required.
One must also be aware of facing additional difficulties when it comes to the microcontroller
implementation, including memory size limits and the growing number of calculations. Some
optimized algorithms affecting the controller accuracy might be necessary. The first possible
approach would be to limit the number of operations or skip further calculations if the obtained
results reach the desired precision. Depending on the selected fractional orders, the controller may
then react sensitively on every rapid setpoint change. The second approach would be to increase
the performance of a microcontroller by implementing a program using an inline assembly
code and optimized DSP instructions. The question is particularly important when a variable-,
fractional-order PID is considered.
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