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In the world of Darwinian rivalry, where the fittest individuals 
take advantage of others, explaining acts of altruism poses 
one of the most fundamental problems in evolutionary 
biology. In a previous issue of Academia magazine (4/2015), 
Dr. Kinga Wysieńska-Di Carlo and Dr. Zbigniew Karpiński 
explored this issue from the perspective of sociologists;  
here it is viewed through the prism of mathematics.
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F rom the perspective of an individual, the best 
choice is not to cooperate, but simply to take ad-

vantage of the goods created by irrational altruists. If 
everyone cooperates, however, there are more goods 
to distribute. This paradox is fundamental for under-
standing situations referred to as social dilemmas.

Game theory is the study of models of interaction 
between individuals (players) who can choose between 
different strategies, or behaviors. The outcome of each 
game is defined in terms of benefits for the players 
(called payoffs), the value of which depends not only 
on a specific player’s strategy but also on the strategies 
chosen by other players. That is a fundamental char-
acteristic of game theory and one that differentiates 
it from classic optimization, which involves search-
ing for an optimal solution – that is, the best solution 
from the perspective of an individual – in response to 
unchanging external conditions. In game theory, each 
player’s actions has an impact on his surroundings, 
and vice versa. Individual rationality is fundamental-
ly based on the assumption that every player seeks to 
maximize his payoffs without showing concern for 
other players. When choosing a strategy, a player must 
take into account the behavior of his opponents and 
anticipate what they may expect of him. These consid-
erations prompted John Nash to introduce a certain 
kind of equilibrium: a set of strategies chosen by the 
players in a game, in which no player stands to benefit 
from changing his strategy, because any deviation will 
not increase his or her payoffs and may even diminish 
it. Thus, an unwritten agreement comes into effect and 
no one stands to benefit from any unilateral deviation. 
Such a “Nash equilibrium” offers a certain security, 
but does it ensure optimal payoffs for the players?

A classic example used to illustrate the essence of 
social dilemmas is the game called the Prisoner’s Di-
lemma, in which two suspects are placed in separate 
cells and questioned. Each suspect may testify against 
the other (defection, D) or keep silent (cooperation, 
C). If neither strikes a bargain with the police and 

they both choose cooperation as their strategy, their 
prison sentences will be reduced by three years. If one 
of them decides to cover for the other (cooperation), 
but the other makes a deal with the police (defection), 
the former will get a maximum sentence, whereas the 
latter will have his sentence reduced by five years. If 
they both choose to betray each other (each of them 
chooses to defect), they will each have their sentences 
reduced, but only by one year. We can abstractly rep-
resent the Prisoner’s Dilemma with the following ma-
trix, viewing the prison term reductions as payoffs: 

		  C	 D
	 C	 3	 0
	 D	 5	 1

Every player has two possible moves: to cooperate 
(C) or defect (D). For each pair of moves, the payoffs 
are listed in the cell at the intersection of the corre-
sponding row and column. As we can see from this 
matrix, each player benefits from betraying the other 
(choosing the bottom row, rather than the top row), 
with mutual defection constituting a Nash equilib-
rium. However, both players taken together would 
benefit more, both gaining a lighter sentence, if they 
both chose to cooperate. This illustrates a social di-
lemma in its most elementary form. What should we 
do? How can find a way out of the Nash equilibrium?

In the 1970s, John Maynard-Smith expanded on 
classic game theory by proposing evolutionary game 
theory. His formulation was quickly followed by spe-
cific dynamic models. Simply put, an evolutionary 
game is one that involves many players and repeated 
games. Players usually play games in pairs, for exam-
ple the Prisoner’s Dilemma. In consecutive rounds, 
the proportion of players who choose a given strategy 
changes depending on the payoff it brought in the 
previous round. Such behavior follows directly from 
the very essence of Darwin’s theory of evolution: the 
fittest individuals have more offspring, who inherit 
their traits strategies in the game. 

Robert Axelrod expanded upon the permissible 
strategies and staged computer tournaments accord-
ing to the aforementioned rules. The extension of the 
rules was necessary: if we allow only unconditional 
defection or unconditional cooperation, the popula-
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tion will be soon dominated by defectors. In turned 
out that a strategy called tit-for-tat proved to work 
quite well: both players cooperate in the first round 
and then they mimic the opponent’s previous action in 
the next round. In other words, they betray a defector 
and cooperate with an altruist. Tit-for-tat beats many 
other strategies. As we can easily observe, however, 
it still loses out to unconditional defection, but the 
conclusion is that cooperation should perhaps not be 
completely written off in the Darwinian world. 

Since that time, many new mathematical models 
have emerged that promote cooperation strategies, 
sometimes even very strongly. These include models 
based on reputation (cooperating with those who have 
gained their reputation by helping others), aspirations 
(when we are unsatisfied with the small payoffs we 
get by betraying defectors), and finally spatial games 
with local interactions. In the latter model, an indi-
vidual who cooperates is surrounded by cooperating 
neighbors, which fosters cooperation, and the group 
of defecting neighbors gets lower average payoffs than 
the group of cooperating altruists. 

Such models include additional mechanisms for 
promoting cooperation that were not present in the 
classic version of the Prisoner’s Dilemma and may 
have emerged in the course of evolution. Such mech-
anisms can be used in studies of the development of 
certain behaviors at a very general, philosophical level 
(or, in other words, from the mathematical perspec-
tive). In the vast majority of cases, studies of evolu-
tionary models are not linked to any biological or so-
cial data or psychological experiments. Payoffs are 
arbitrary (like the aforementioned reduced sentences 
in the Prisoner’s Dilemma) and bear no relation to 
reality. Nevertheless, game theory may serve as a tool 
in the study of certain aspects of natural and social 
sciences, if we calibrate payoffs using empirical data.

Another interesting application of evolutionary 
game theory involves studying the possibility of incor-
porating mechanisms for promoting cooperation into 
the process of crafting legislation and the functions 
of public institutions. In a social dilemma referred to 
as the Commons Dilemma (or the “Tragedy of the 
Commons”), cattle herders choose a strategy based on 
the cattle they have. The best strategy for each player, 
regardless of the strategies adopted by other players, 

involves keeping as many cows on the pasture as he 
or she can. Such behavior results in a Nash equilib-
rium in which the players’ payoffs (daily amount of 
milk) are far from maximum as a result of overgrazing. 
However, if we impose an adequately calculated tax 
for placing the maximum number of cows on the pas-
ture (thereby altering the matrix of payoffs), we will 
see that the altered Nash equilibrium in the modified 
game will secure maximum payoffs for all players 
despite the fact that they all have fewer cows on the 
pasture. Importantly, no one has to pay any taxes in 
this situation. Such a mechanism could be described 
as a kind of non-authoritarian coercion. As this ex-
ample illustrates, public institutions should strive to 
eliminate real-life social dilemmas by introducing 
legal regulations that lay the groundwork for Nash 
equilibriums involving optimal payoffs.

The notion of introducing such regulations 
prompts several questions. Can we really be better 
people than the theory of evolution says we are? Can 
we guide our behavior at this stage of development 
to mitigate the effects of evolution and its theoretical 
predictions? Finally, can we beat evolution or steer it 
in a desired direction?

In Darwin’s theory of evolution, which describes 
the origins and demise of species, individuals do not 
make rational decisions. They simply reproduce, at 
a faster or slower rate. When studying human behav-
ior, however, we must take into account the additional 
factor of free will, underpinning the rationality (or 
irrationality) of decisions. Instead of the thoughtless 
replications of Darwinian inheritance, therefore, we 
need to incorporate learning mechanisms into our 
scientific models. For that reason, the long-term be-
havior of biological and social evolutionary systems 
may be diametrically different.

How can mathematicians, by further developing 
game theory, help contribute to these fundamental de-
bates? Evolutionary game theory models are dynamic 
models in which the population of players changes ac-
cording to strictly defined rules. In order to describe 
Axelrod’s tournaments, for example, we could use a sys-
tem of differential equations in what are referred to as 
replicator dynamics, which describe the time evolution 
of the frequency of individual strategies. How fast the 
frequency of a given strategy changes is proportional to 
the difference between the average payoff of this strate-
gy and the average payoff of the entire population. And 
this is where Darwin’s theory again comes into play: if 
the payoff of a given strategy is greater than the aver-
age payoff of the population, its frequency rises. In the 
Prisoner’s Dilemma, the situation is clear: irrespective 
of the initial conditions (except for a population that 
consists exclusively of altruists), the population will be 
quickly dominated by defectors. In more complicated 
models, characterized by multiple strategies (such as tit-
for-tat) or other dynamic rules (such as ones based on 

In the Prisoner’s Dilemma,  
the population quickly becomes 
dominated by defectors, regardless 
of the initial conditions.
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imitating the opponent’s strategy), mathematicians ex-
amine the properties of such models, seeking to answer 
specific questions. In what classes of models and for 
what parameters do the stationary states (ones that do 
not evolve any further) constitute Nash equilibria? Are 
they stable systems, or in other words, will the model 
return to a stationary state after deviation? Are cyclical 
behaviors possible? Do certain strategies tend to die 
out? Can multiple strategies coexist?

It is usually assumed that any interactions take place 
momentarily and their results are immediate. In real-
ity, payoffs in evolutionary processes, which means 
changes in fitness, are delayed. In social interactions, 
people make decisions based on their knowledge of 
past events. Time delays may cause systems to oscillate 
around equilibrium points. Let us consider the replica-
tor dynamics for the asymptotically stable equilibrium 
that describes the coexistence of cooperation and de-
fection in a game called the Snowdrift. Let us imagine 
two travelers who cannot continue their journey by car, 
because the road is blocked by a snow. Let us assume 
the cost of removing the snow is 2 whereas the reward 
(for managing to reach home) is 4 . Each player can 
either cooperate by helping to remove the snow, or wait 
for the other traveler to do so. In this particular game, 
we obtain the following payoff matrix:

		  C	 D
	 C	 3	 2
	 D	 4	 0

In this particular game, the best response to co-
operation is defection and the best response to de-
fection is cooperation. We have demonstrated that if 
players react with a certain delay to information about 
the previous state of the model in social models, then 
oscillations around the equilibrium point may occur 
when delays are sufficiently long. In turn, in biological 
models, where past events affect changes in present 
fitness, the coexistence of both strategies is stable for 
any time delay. Examining the stability of equilibria 
and the creation of cycles in the mathematical models 
of social dilemmas is an extremely important direction 
of scientific endeavors.

The third inherent component of Darwin’s theory, 
after the aforementioned selection and inheritance, in-
volves random mutations. In order to deal with them, 
we need to introduce random (stochastic) elements 
into our models. We will then be studying stochastic 
processes – in the simplest case Markov chains, where 
the probability that the system will adopt a certain 
state depends on its state in the immediately preced-
ing moment, not on the entire history of the system. 
In such situations, we want to know how probabilities 
of specific states change and whether they tend to any 
specific values. We also want to know the probability 
of cooperation in the long run. Defection very often 

turns out to be stochastically stable. Again, we look 
for additional mechanisms fostering cooperation, this 
time in an uncertain world that is subject to stochastic 
fluctuations.

As mentioned earlier, cooperation may be promot-
ed by a certain spatial distribution of players. In spa-
tial games, we define this distribution by positioning 
players on the vertices of graphs that form so-called 
social networks. In this case, players play two-player 
games with their immediate neighbors and their pay-
offs are the sums of the payoffs from individual games. 
Recent studies show that Barabási-Albert graphs are 
especially conducive to cooperation. We form such 
graphs by adding new vertices to a network one at 
a time and connecting each of these new vertices to an 
already existing vertex by an edge, with a preference 
for existing ones that already have a high number of 
edges that come out of them. Such preferential at-
tachment of new connections makes popular vertices 
even more popular. After receiving payoffs, the players 
positioned on the vertices of the graph look at their 
neighbors and mimic the behavior of the individual 
with the best strategy in the previous round, while the 
probability that they will choose a worse strategy is 
very low. In the Prisoner’s Dilemma played according 
to these rules, almost all individuals cooperate after 
a sufficiently high number of rounds. Vertices with 
a very high number of connections, called hubs, play 
a major role in the strengthening of cooperation.

By introducing a fixed cost for the maintenance of 
a connection between neighbors into this dynamic, 
we used computer simulations to demonstrate that 
if the costs are sufficiently low, then almost everyone 
cooperates, but that there is a certain critical cost that 
will dramatically lower cooperation in the population 
to 20%. A further increase in costs does not result in 
cooperation being additionally lowered. What is more, 
for the critical-level cost, the share of cooperators in 
the population ranges from 20% to 100%. This is 
a phenomenon familiar from the statistical mechanics 
of many-body systems: a system at critical tempera-
ture may be simultaneously in two phases, a typical 
example being the coexistence of ice and water at the 
same temperature. The mathematical analysis of such 
“phase transitions” in social systems is a subject of 
very intensive research (also by the present author). 

By drawing conclusions from the models they con-
struct, mathematicians show what worlds are possible. 
As the case of evolutionary game theory illustrates, by 
engaging in interdisciplinary cooperation with biolo-
gists and social researchers, they can help to explore 
the nature of the reality we live in, reasons behind 
the occurrence of altruistic acts, and what needs to be 
done to encourage people to cooperate for the benefit 
of society at large.
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