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A SOURCE DISCRIMINATION METHOD OF MINE WATER-INRUSH BASED ON 3D SPATIAL 
INTERPOLATION OF RARE CLASSES 

ANALIZA DYSKRYMINACYJNA ŹRÓDEŁ WYCIEKÓW WODY DO KOPALNI NA PODSTAWIE 
TRÓJWYMIAROWEJ INTERPOLACJI DANYCH O ZDARZENIACH RZADKICH

When the distribution of water quality samples is roughly balanced, the Bayesian criterion model of 
water-inrush source generally can obtain relatively accurate results of water-inrush source identification. 
However, it is often difficult to achieve desired classification results when training samples are imbalanced. 
Sample imbalance is common in the source identification of mine water-inrush. Therefore, we propose 
a three-dimensional (3D) spatial resampling method based on rare water quality samples, which achieves 
the balance of water quality samples. Based on the virtual water sample points distributed by the 3D grid, 
the method uses the 3D Inverse Distance Weighting (IDW) method to interpolate the groundwater ion 
concentration of the virtual water samples to achieve oversampling of rare water samples. Case study in 
Gubei Coal Mine shows that the method improves overall discriminant accuracy of the Bayesian criterion 
model by 5.26%, from 85.26% to 90.69%. In particular, the discriminative precision of the rare class is 
improved from 0% to 83.33%, which indicates that the method can improve the discriminant accuracy 
of the rare class to large extent. In addition, this method increases the Kappa coefficient of the model by 
19.92%, from 52.26% to 72.19%, increasing the degree of consistency from “general” to “significant”. 
Our research is of significance to enriching and improving the theory of prevention and treatment of 
mine water damage.
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W przypadku zrównoważonych danych o jakościowym rozkładzie próbek, zastosowanie kryterium 
Bayesowskiego do modelowania źródeł wycieków daje stosunkowo dokładne wyniki w analizie dyskry-
minacyjnej źródeł wycieków wody kopalnianej. Jednakże w przypadku niezrównoważonych danych, 
pożądane efekty kategoryzacji są niezmiernie trudne do uzyskania. Dane o składzie próbek są w znacznej 
mierze niezrównoważone, i jest to powszechny problem napotykany przy identyfikacji źródeł wycieków. 
W obecnej pracy zaproponowano więc trójwymiarową (3D) metodę powtórnego próbkowania z wykorzy-
staniem próbek wód z kategorii zdarzeń rzadkich, tak by uzyskać zrównoważony zbiór danych. W oparciu 
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o wirtualne punkty na trójwymiarowej siatce, wykorzystano trójwymiarową metodę średniej ważonej 
odległością (Inverse Distance Weighing – IDW) do interpolacji stężenia jonów w wodach gruntowych 
w wirtualnych próbkach wody, w celu nadpróbkowania dla kategorii zdarzeń rzadkich. Studium przypadku 
kopalni węgla Gubei pokazuje, że metoda poprawia dokładność dopasowania modelu w oparciu o kryterium 
Bayesowskie o 5.25% (z 85.26% na 90.96 %). W szczególności, dokładność rozróżniania i dyskryminacji 
próbek należących do kategorii zdarzeń rzadkich wzrasta od 0% do 83.33%, co oznacza bardzo znaczna 
poprawę. Ponadto, wartość współczynnika Kappa wzrasta o 19.92%, od 52.26 % do 72.19%, tym samym 
podnosząc poziom zgodności metody z poziomu ogólnego na „znaczący”. Prowadzone przez nas badania 
mają poważne znaczenie z punktu widzenia udoskonalenia teorii leżących u podstaw metod i technik 
zapobiegania i kontroli wycieków wód kopalnianych.

Słowa kluczowe: analiza dyskryminacyjna źródeł wycieków, wyciek wód, jakość wód, kryterium 
Bayesowskie, kategoria zdarzeń rzadkich 

1. Introduction

Quick and effective identification of mine water-inrush is one of the important technical 
means to ensure coal mine safety production. Using hydrogeochemical information to quickly and 
accurately identify water-inrush sources is a hot topic in water disaster prevention research of coal 
mine in recent years. Various attempts have been made to quickly and accurately discriminate the 
source of water-inrush by use of groundwater hydrogeochemical information (Ma, 2010; Rina et 
al., 2012; Bagyaraj et al., 2013; Pantaleoni et al., 2013). Manzi et al. (2012) predicted possible 
passages of deep groundwater and methane gas of Witwatersrand Gold Mine in South Africa 
throug h 3D edge detection seismic attributes. Vincenzi et al. (2009) evaluated the effectiveness 
of drainage systems of underground tunnels by tracer tests and hydrological observation methods. 
However, few overseas studies focus on source discrimination of mine water-inrush by use of 
groundwater hydrogeochemical information. In China, Zhang applied the Bayesian discrimina-
tion method to source discrimination of water-inrush in Guqiao Coal Mine, and Ben et al. (2006) 
applied comprehensive fuzzy evaluation method   to source discrimination of water-inrush of 
subsided columns in a mine in Shanxi Province. The discrimination methods mentioned above 
hav  e strong dependence of training samples, and do not consider the imbalance of dis tribution of 
number of training samples. There always exists problems of imbalanced distribution of number 
of training samples when source discrimination of water-inrush is conducted by use of hydro-
geochemical information, that is, the number of some training samples is significantly less than 
that of other classes (Umar et al., 2013). For convenience, this kind of sample that its number of 
samples is significantly less than that of other classes is called “rare class sample” in this paper. 

For the problem of unbalanced classification, the main research focuses on feature selection, 
data distribution adjustment, and improvement of model training algorithms. The main feature 
selection methods include SYMON (Moayedikia et al., 2017), FAST (Feature Assessment by 
Sliding Thresholds) (Chen et al., 2008), etc. Chan et al. (2007) studied a lightweight intrusion 
detection system by use of feature selection approach. The method of data distribution adjust-
ment mainly includes methods such as resampling and data grouping. The resampling method 
improves the recognition rate of rare classes by classifiers by increasing the number of training 
samples of rare classes and reducing the number of training samples of most classes, so that the 
imbalanced sample distribution becomes roughly balanced. The early method of increasing the 
number of rare class training samples was to copy rare class samples directly and randomly, 
but this would lead to over-fitting problems. Two methods proposed by Chawla et al. (2002) to 
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generate a few samples by synthetic methods, SMOTE and SMOTEBoost, are improvements 
to the early random oversampling technique, which can avoid the problem of model overfitting 
to some extent. The under-sampling method of most classes mainly includes CNN (Condensed 
Nearest Neighbor) (Alegria et al., 2000; Liang et al., 2017) and NCR (Neighborhood Cleaning 
Rule) (Li et al., 2009; Mishra et al., 2018). In the improvement of model training algorithm, 
the current research mainly focuses on cost-sensitive learning (Chai et al., 2004) and integrated 
learning methods (Yuan et al., 2013). Zou et al. (2011) used cost-sensitive learning methods to 
cl  assify customers, help companies lock in high-  end customers and dynamically adjust regional 
market strategies. The above research improves the classification accuracy of the unbalanced 
classification problem by different methods. However, in previous studies, no research has been 
done on the sample imbalance in the source identification of mine water-inrush. Therefore, we 
propose a rare class oversampling method by 3D spatial interpolation of rare class to try to solve 
the sample imbalance problem in the source identification of mine water-inrush to some extent.

2. The basic principles and method

2.1. The main principles of rare class resampling

The so-called imbalanced classification problem refers to the pattern classification problems 
that the distribution of number of training samples among different classes is imbalanced. When 
the number of samples of a specific class is far less than that of other types of classes (generally 
10% less than other samples), the class is called “rare class” in this paper. Imbalanced sample 
distribution always leads to absolute or relative scarcity of rare class samples. Absolute scarcity 
refers to the fact that the absolute number of rare class samples is too small to reflect the hydro-
geochemical information of groundwater. The study of artificial experimental data showed that the 
error rate of identifying the rare class with absolute scarcity is much higher than the average error 
rate (Weiss et al., 1995). Relative scarcity means that the absolute number of rare class samples 
is quite large, but its proportion is too small compared to other classes (i.e., generally 10% less 
than other samples). In this case, to identify a rare class is very difficult just like to find a needle 
in a haystack. The advent of the rare class with relative scarcity always decreases the effect of the 
greedy heuristic search method (Ye et al., 2009). The rare class always appears when we identify 
the source of mine water-inrush based on the Bayesian method and hydrogeochemical informa-
tion of mine groundwater, which often seriously affects the discriminant accuracy of rare classes. 

The resampling method mainly achieves the approximate balance of training samples by 
increasing the number of rare class training samples or reducing the number of training samples of 
most classes, so as to improve the discriminant accuracy of rare class. The most primitive method 
of increasing the number of rare class samples is to copy the samples of rare class directly and 
randomly, but this method always leads to “over learning” and cannot dramatically improve the 
recognition rate of rare class (Zhu et al., 2004). Because of the spatial continuity of water quality 
changes in groundwater systems with uniform hydraulic connections, it is reasonable to improve 
the balance of distribution of training samples of rare class by resampling method. Therefore, 
the main goal of this paper is to achieve the balance of rare class samples by interpolating water 
quality of rare class, thus improving the discriminant accuracy of rare classes. 
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2.2. 3D interpolation method for rare classes

The technical process of our method is show in figure 1. First, we should make   sure that 
there is no less than one rare class in the water samples. Second, virtual water samples of rare 
classes should be generated by 3D spatial resampling method. Finally, the virtual water samples 
of rare class and other actual water samples are added to the Bayesian classifier for the source 
discrimination of mine water-inrush. 

Analyzer the water
 samples of everyquifer 

Rare classe xists ? Select appropriate
 sampling intervals

Determine the distriution of 
virtual water points by 

resampling method

Compare the calculated values 
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Fig. 1. The technical process of the method
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In addition, in order to ensure a better interpolating effect, we should try to increase the 
number of rare water samples in the interpolated neighborhood. It is generally required that the 
number of rare samples should be at least 3 to 6 or more, and these samples should be evenly 
distributed in the interpolated neighborhood to achieve better interpolation. In order to minimize 
the error caused by interpolation, only those virtual water samples with less than 15% of the 
interpolation error can be added to the Bayesian classifier. When the number of all water samples 
(including virtual water samples of rare class and other actual water samples) is balanced, the 
interpolation of rare classes will end. In order to prevent the occurrence of an infinite loop in 
the resampling process, generally a maximum number of cycles should be set according to the 
number of samples. If this condition is reached, the cycle calculation will end.

2.2.1. Generation of virtual samples of rare class

In this study, appropriate amounts of virtual water samples are generated by 3D spatial 
resampling method and added into the Bayesian classifier as training samples, which makes the 
number of different kinds of samples balanced. These virtual samples are generated according to 
the following principles: (1) it is necessary to generate virtual samples from the virtual samples 
matrix of hydrogeochemical field of rare class in terms of the category of virtual samples; (2) the 
total number of different types of water samples should be equal in terms of the number of virtual 
samples. In other words, the total number of virtual and actual water samples of each rare class 
should be nearly equal to the number of other normal classes, and (3) the spatial distribution of 
sample points should be relatively uniform in the study area. The optimal planar and vertical 
sample interval are determined according to the above principles and the matrix of virtual water 
samples can be established by resampling method. 

2.2.2. Interpolation of water quality of virtual water samples 

The water quality of virtual water samples can be calculated out using GIS spatial interpola-
tion methods after the matrix of virtual water samples has been established. The IDW method is 
adopted because of its advantages of simple concept, high speed, etc. (Wang et al., 1995). The 
most important reason is that it can be easily extended to 3D space. The IDW method is given by:
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Where x represents the virtual point. u(x) is the interpolation results of attribute values of the 
virtual point x. xi represents the i-th sampling point. ui is the actual value of the i-th sampling 
point. Wi(x) is the weight of the point xi; d(x, xi) is the Euclidean distance between xi and x. P 
is an exponent of the distance d(x, xi). Its value varies under different conditions, and its value 
is two in our study.

In particular, under the condition of two-dimensional spatial interpolation,
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Under the condition of three-dimensional spatial interpolation, 

 
2 2 2( , ) ( ) ( ) ( )i x xi x xi x xid x x X X Y Y Z Z  

 . 

Where X (Xx,Yx,Zx) and Xi (Xxi,Yxi,Zxi) represents the 3D coordinates of the two points respec-
tively, and X (Xx,Yx) and Xi (Xxi,Yxi) represents the two-dimensional coordinates of the two points 
respectively.

2.2.3. The Bayesian discrimination method based on balanced samples

The virtual water samples and other actual water samples except the water samples need 
to be identified are all taken as training samples, and they are used to discriminate the source 
of water-inrush by the Bayesian methods. The Bayesian discrimination is a method based on 
probability and statistics. It requires a certain understanding of the research object and uses prior 
probability to describe this understanding. Based on the prior probability, Bayesian model uses 
the probability density of multivariate normal distribution to calculate the posterior probability 
of a sample, and calculates the probability that the sample falls into each category, and consid-
ers that the class with the maximum posterior probability is the category to which the sample 
belongs. For a given m-variate aquifer categories G1, ..., GK (K > 2) with K aquifers, the vector 

of their average and their covariance matrices are  ,  1, 2, ,i

i
i K . For any given water 

sample X = (x1, ..., xm)', the formula for calculating the posterior probability P(t|X) of it belong-
ing to an aquifer Gt is as follow:
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Where: Di
2(x) is the generalized squared distance from X to the i-th aquifer. The generalized 

squared distance of X to the t-aquifer Di
2(X) is calculated as follows:
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Where: μ = (μ1, ..., μm)' is the mean vector of groundwater ion concentration, ∑ = (σij)m×m is the 
covariance matrix of groundwater ion concentration.
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Where: St is the covariance matrix of the water sample in the t-th aquifer, and qt is the prior prob-
ability of the water sample of the t-th aquifer. The Bayesian model uses the criterion of posterior 
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probability to determine X  Gt, when P(t |X) > P(i |X), i ≠ t (i = 1, ..., k). In other words, the 
criterion for the Bayesian model to discriminate the source of a water-inrush is that the water 
sample should belong to the aquifer with the highest posterior probability. The main purpose of 
this study is to use the Bayes model and the water quality of the mine water-inrush to determine 
which aquifer the source of the water-inrush originated from. Therefore, the probability of oc-
currence of six major ion concentrations (m = 6) in different aquifers, such as K+ + Na+, Ca2+, 
Mg2+, HCO3–, Cl–, SO4

2–, in groundwater is used to comprehensively determine the source of 
water-inrush. The source of the water -inrush contains three groundwater aquifers (K = 3). 

According to the results of discrimination, the confusion matrix and the Kappa coefficient 
can be calculated out. The Kappa coefficient is a method of classification accuracy based on the 
confusion matrix. The Kappa coefficient can reflect the extent that the discriminant accuracy of 
the Bayesian method is superior to the discriminant accuracy through random assigning a spe-
cific category to each point in the statistical sense. In other words, it can be used to evaluate the 
classification accuracy of the Bayesian method. The classification and evaluation criteria of the 
Kappa coefficient proposed by Cohen in 1968 (Xu et al., 2011) is shown in table 1 and adopted 
to evaluate the classification accuracy of the Bayesian method.

TABLE 1

The classification criteria of the Kappa coefficient 

Kappa <0.00 0.00 ~ 0.20 0.21 ~ 0.40 0.41 ~ 0.60 0.61 ~ 0.80 0.81 ~ 1.00
Degree of 

consistency Poor Micro-Weak Weak General Notable Optimal

3. Case Study

3.1. Study area

The Gubei Mine is located at about 23 km northwest of Fengtai County of Huainan City in 
Anhui Province, and located in the western Huainan Coalfield. It is 7.5 km long, 4.5 km wide and 
covers an area of about 34 km2. There are significant differences of hydrogeological conditions 
between its shallow aquifers and deep aquifers. The hydrogeological conditions controlled by 
regional tectonic and new tectonic movement are relatively complex, which make it difficult to 
effectively prevent and treat the disaster of mine water. 

The main aquifers of the Gubei Mine include  the Cenozoic loose aquifers, the Permian 
sandstone aquifers, and the Ordovician karst aquifers. The thickness of the Cenozoic loose 
aquifers that directly overlay the Permian coal measures ranges from 390.35 m ~ 509.10 m. Ac-
cording to the penetration of saturated rocks, the Cenozoic loose stratums are divided into five 
aquifers, five   water-resisting layers, and a “gravel layer” (also called “Red Layer”) from top to 
bottom. The five aquifers are as follows: (1) the top segment of Upper Aquifer of the Cenozoic 
loose aquifers (hereinafter referred to as “Upper Aquifer”); (2) the bottom segment of the Up-
per Aquifer; (3) the top segment and bottom segment of Middle Aquifer of the Cenozoic loose 
aquifers, and (4) the Bottom Aquifer of the Cenozoic loose aquifers (“Bottom Aquifer”). The 
water in the Bottom Aquifer is our main study object. The upper boundary of the Bottom Aquifer 
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is a water-resisting layer containing the light gray-green, gray-green thick layer of consolidated 
clay and sandy clay. The lower boundary is the water-resisting layer of the Bottom Aquifer 
composed of gray-green, reddish brown consolidated clay, sandy clay, etc. The Bottom Aquifer 
consists of light gray fine and silt sand layer sandwiched between the main purple gravel and 
clay. According to the regional pumping data, its water level ranges from 26.18 m to 26.45 m, 
and it is a rich aqueous rock stratum.

3.2. Data processing and analysis

We collected 95 water samples from the Gubei Mine, including 6 samples of the Bottom 
Aquifer, 79 samples of the Coal Measure Aquifer, and 10 samples of the Taiyuan Formation 
Limestone Aquifer (“Tai Limestone”). From the point of view of absolute quantity, the quantity 
of water samples of both the Bottom Aquifer and   the Tai Limestone are less than 10, which 
should be considered as the absolute scarcity of sample numbers. From the point of view of 
relative quantity, the ratio of quantity of water samples of the Bottom Aquifer and the Coal 
Measure Aquifer is 1:13.2, while the ratio of the Tai Limestone and the Coal Measure Aquifer 
is 1:7.9. This situation should be regarded as the relative scarcity of sample numbers. Therefore, 
the classification problem is a typical imbalance classification problem and both the Bottom 
Aquifer and the Tai Limestone are considered as rare class. There are 77 virtual water samples 
(see Fig. 2) within the scope of the study area when the sampling interval is 900 m. The sample 
numbers of the Bottom Aquifer, the Coal Measure Aquifer and the Tai Limestone are 83, 79, 
and 87 respectively when the virtual samples are added into the classifier, which make the three 
kinds of samples approximately balanced.

Fig. 2. Distribution of water samples
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The spatial distribution of water quality of the Bottom Aquifer changes continuously because 
that the Bottom Aquifer is a pore aquifer system with unified groundwater level. Therefore, it 
is reasonable to interpolate the water quality of different water samples in the Bottom Aquifer 
by use of the IDW method. It should be noted that the distance from a virtual point to the actual 
point should be three-dimensional distance. In order to improve the interpolation accuracy, we 
collected water samples of the Gubei Mine and its surrounding mines because that the quantity 
of water samples of the Gubei Mine is too few to cover its whole territory. All of the water sam-
ples of the Bottom Aquifer of the Gubei Mine and its surrounding mines are shown in table 2.

TABLE 2

Water samples of the Bottom Aquifer of the Gubei Mine and its surrounding mines (Unit: mg/L)

Mine Name id X (m) Y (m) Ca2+ Mg2+ K+ + Na+ HCO3
– Cl– SO4

2–

Gubei Mine 1 39458387 3635848 41.4 23.64 839.06 305.4 1031.91 292.17
… … … … … … … … … …

Gubei Mine 6 39456985 3636106 35.47 12.4 415.89 190.99 529.27 135.21
Xieqiao Mine 7 39442403 3629692 47.33 20.64 785.43 260.86 1027.54 228.38

North Zhangji Mine 8 39450180 3628741 56.61 33.79 691.37 168.87 966.6 264.19
North Zhangji Mine 9 39450086 3628754 54.65 34.38 828.86 268.95 1087.26 307.39

Dingji Mine 10 39467179 3641136 26.51 11.7 741.64 334.81 786.9 274.57
… … … … … … … … … …

Dingji Mine 20 39459388 3637582 22.48 14.88 979.57 253.18 1021.61 567.26
Zhuji Mine 21 39485800 3636953 53.44 30.44 728.48 283.71 954.17 240.37
Zhuji Mine 22 39480394 3639128 67.33 36.94 784.02 300.75 1031.11 296.76

The interpolation results of concentration of main ions of groundwater of the Bottom Aquifer 
are shown in table 3. As shown in table 3, the average errors of interpolation results are about 
15%, which indicates that the interpolation results of the concentration of each ion combination 

TABLE 3

The average errors of interpolated water quality of the Bottom Aquifer (Unit: mg/L)

ID

Ca2+ Mg2+ K+ + Na+ HCO3
– Cl– SO4
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1 39.80 41.4 19.97 23.64 775.01 839.06 300.79 305.4 930.23 1031.91 287.67 292.17
2 38.80 31.06 19.94 24.83 789.71 964.97 295.63 374.66 930.21 1170.08 318.81 307.81
3 39.85 42.89 20.31 19.7 730.23 830.86 275.90 347.2 893.43 1009.62 263.06 275.15
4 40.89 40.88 18.56 26.02 696.49 803.04 276.45 289.23 857.93 979.84 242.33 290.38
5 36.61 35.47 14.88 12.4 510.22 415.89 218.67 190.99 637.32 529.27 172.68 135.21
6 46.82 49.5 21.93 21.4 837.27 841.2 319.72 322.19 1034.01 1047.55 290.37 287.91

Average
Error 
(%)

7.42 14.91 12.38 10.46 12.67 9.10
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of virtual water samples are reliable. Therefore, it is reasonable to consider the virtual water 
samples as actual water samples, which can play important role in increasing the quantity of 
training samples of the rare class.

3.3. Results and discussion

The results of source discrimination of water-inrush by use of the Bayesian discrimination 
method based on unbalanced samples are shown in table 4. The actual aquifers represent the 
aquifers to which the water samples belong. For example, the first water sample (i.e., ID = 1) 
actually belongs to the Bottom Aquifer, but  it has been falsely identified as the water samples 
coming from the Tai Limestone. The results of source discrimination of water-inrush by use of 
the Bayesian discrimination method based on balanced samples are shown in table 5.

TABLE 4

The results of the Bayesian discrimination method based on unbalanced samples (Unit: mg/L) 

ID Ca2+ Mg2+ K+ + Na+ HCO3– Cl– SO4
2– Actual 

aquifers
Discrimination 

aquifers
1 41.4 23.64 839.06 305.4 1031.91 292.17 1 3*
2 31.06 24.83 964.97 374.66 1170.08 307.81 1 3*
3 42.89 19.7 830.86 347.2 1009.62 275.15 1 3*
4 40.88 26.02 803.04 289.23 979.84 290.38 1 3*
5 49.5 21.4 841.2 322.19 1047.55 287.91 1 3*
… … … … … … … … …
93 29.15 25.65 862.2 439.34 1019.89 244.84 3 3
94 30.36 0 858.68 317.3 1039.88 280.64 3 3
95 40.08 0 602.78 349.33 554.94 477.34 3 2*

Note: * Indicates a wrong identification of water samples, 1 – the Bottom Aquifer, 2 – the Coal Measure A quifer, 
3 – the Tai Limestone.

According to the above discrimination results, the confusion matrix are calculated out and 
shown in table 6. The results of comparative analysis of the two discrimination methods are shown 
in figure 3. As can be seen from table 6, though the overall accuracy of the Bayesian method based 
on unbalanced samples is about 85.26%, its Kappa coefficient is only about 52.26%, indicating 
that its degree of consistency is general level. Especially, the discrimination effect of the rare 
class is not ideal. For example, the error rate of discrimination of the Bottom Aquifer is 100% 
and that of the Tai Limestone is about 60%, which indicates that the discrimination effect of the 
rare class is not ideal by use of the Bayesian method based on unbalanced samples though its 
overall discrimination effect is relatively good. In addition, the Bottom Aquifer is the main source 
of water-inrush of the Gubei Mine. Therefore, the overall discrimination effect of the Bayesian 
method is not ideal indeed, especially for the discrimination of the two rare classes.

Compared with the Bayesian method based on unbalanced samples, the overall accuracy 
of the Bayesian method based on balanced samples improves about 5% and achieves to around 
90.69%. In addition, the Kappa coefficient increases by about 20% and achieves to about 72.19%, 
indicating that its degree of consistency is significant level. Especially, the discrimination accuracy 
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F  ig. 3. The results of comparative analysis of unbalanced samples and balanced samples

TABLE 5

The results of the Bayesian d  iscrimination method based on balanced samples

ID Ca2+ Mg2+ K+ + Na+ HCO3– Cl– SO4
2– Actual 

aquifers
Discrimination 

aquifers
1 41.4 23.64 839.06 305.4 1031.91 292.17 1 1
2 31.06 24.83 964.97 374.66 1170.08 307.81 1 1
3 42.89 19.7 830.86 347.2 1009.62 275.15 1 1
4 40.88 26.02 803.04 289.23 979.84 290.38 1 1
5 49.5 21.4 841.2 322.19 1047.55 287.91 1 1
6 35.47 12.4 415.89 190.99 529.27 135.21 1 3*
… … … … … … … … …
93 29.15 25.65 862.2 439.34 1019.89 244.84 3 3
94 30.36 0 858.68 317.3 1039.88 280.64 3 3
95 40.08 0 602.78 349.33 554.94 477.34 3 3

Note: * Indicates a wrong identification of water samples, 1 – the Bottom Aquifer, 2 – the Coal Measure Aquifer, 
3 – the Tai Limestone.

TABLE 6

The confusion matrix of unbalanced samples and balanced samples 

Results
Actual aquifer

Results of unbalanced samples Results of balanced samples 
1 2 3 Total 1 2 3 Total

1 0 1 5 6 5 0 1 6
2 3 75 1 79 2 73 4 79
3 3 1 6 10 2 0 8 10

Total 6 77 12 95 9 73 13 95

Note: 1 – the Bottom Aquifer, 2 – the Coal Measure Aquifer, 3 – the Tai Limestone.
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of the Bottom A  quifer greatly increases from 0% to about 83.33% and that of the Tai Limestone 
increases by 20%. Although the discrimination accuracy of the Coal Measure Aquifer slightly 
decreased from about 94.94% down to around 92.41%, it still has a high discrimination accuracy. 
In summary, the Bayesian method based on balanced samples improves the overall discrimination 
accuracy, in particular, greatly improves the discrimination accuracy of the rare class.

4. Conclusion

In order to solve the imbalanced classification problem of source discrimination of water-
inrush in the Gubei Mine, we propose a three-dimensional (3D) spatial resampling method based 
on rare water quality samples, which achieves the balance of water quality samples. Our study 
shows that the resampling method can effectively increase the virtual water samples of the rare 
classes and improve the balance of different classes. The study results of the Gubei Mine show 
that the Bayesian method based on balanced samples not only increases the overall d  iscrimina-
tion accuracy but also improves the Kappa coefficient in the absence of any additional training 
samples. In particular, it greatly improves the discrimination accuracy of the rare classes, such as 
the Bottom Aquifer and the Tai Limestone, indicating that our method can increase the discrimi-
nation accuracy of the rare class to some extent. Our study is a beneficial attempt to improve the 
discrimination accuracy of mine water-inrush, a  nd whether this method has universal applicability 
for other kinds of aquifers needs further research. 
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