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Evolutionary algorithm for a reconstruction of NOE paths
in NMR spectra of RNA chains
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Abstract. Resonance assignment remains one of the hardest stages in RNA tertiary structure determination with the use of Nuclear Magnetic
Resonance spectroscopy. We propose an evolutionary algorithm being a tool for an automatization of the procedure. NOE pathway, which
determines the assignments, is constructed during an analysis of possible connections between resonances within aromatic and anomeric region
of 2D-NOESY spectra resulting from appropriate NMR experiments. Computational tests demonstrate the performance of the evolutionary
algorithm as compared with the exact branch-and-cut procedure applied for the experimental and simulated spectral data for RNA molecules.
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1. Introduction

Cognition of biomolecule structures has been now one
of the most fundamental tasks in the biochemical re-
search area. Structural analysis of proteins and nucleic
acids contributes for clarifying their biological functions,
drug design, identification of the new diseases, raising the
new specimens of plants and animals etc. Initially, the
research in that area concentrated on proteins and de-
oxyribonucleic acids (DNA). However, knowledge gained
when studying these molecules appeared insufficient to
answer all the questions that have arisen for years. Thus,
the research has been extended for the molecules of the
ribonucleic acid (RNA), which transmits genetic informa-
tion from DNA into proteins and controls certain chemical
processes in the cell. Regarding RNA functional variety
as well as its quick degradation under in vitro condi-
tions, studying the structures of these molecules proved
to be more difficult than the examination of proteins and
deoxyribonucleic acids. Consequently, development of an-
alytical methods dedicated to the exploration of RNA has
been less dynamic than the spread of processing protein
and DNA structures.

The subjects of RNA structural analysis are: pri-
mary structure determined by the sequence of nucleoside
monophosphates in the chain, secondary structure de-
scribing one- and two-strand fragments as well as the
formation of loops or helices, and tertiary structure,
which characterizes the three-dimensional shape of the
entire chain. An elucidation of molecule tertiary struc-
tures has become possible owing to the development of
crystallographic methods, Raman spectroscopy, fluores-
cence, nuclear magnetic resonance (NMR) spectroscopy
as well as some other analytical methods. Recent years,
yielded a quick spread of NMR spectroscopy, which has
been now a well established method for structure deter-
mination of biomolecules in solution [1]. The elucidation
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procedure using NMR is composed of two general stages:
experimental, where multidimensional correlation spec-
tra are acquired and computational, where spectra are
analyzed and structure is determined. Types of NMR ex-
periments differ for proteins [2] and nucleic acids [3, 4].
Nevertheless, in all methods of NMR structure analysis
raw experimental data are exposed to the action of pro-
cessing, peak-picking, assignment, restraints determina-
tion, structure generation and refinement. The procedure
assigning the observed NMR signals to the correspond-
ing protons and other nuclei is a bottleneck of the RNA
structure elucidation process. The assignment is usually
based on the analysis of two dimensional (2D) spectra
resulting from NMR experiments like NOESY (Nuclear
Overhauser Enhancement SpectroscopY), COSY (COr-
related SpectroscopY) and TOCSY (TOtal Correlation
SpectroscopY). For short DNA and RNA duplexes the
assignment is performed manually in accordance with the
experimentator’s knowledge and intuition. However, for
the longer nucleic chains, due to a considerable large num-
ber of signals and their overlapping, the assignment step
becomes troublesome. Therefore, it has been of a great
need to facilitate NMR structural analysis of biopolymers
by an introduction of automatic procedures at this level.

At present, automatization of NMR spectra analysis
makes the strong impact on the determination of protein
structures [5]. Several programs exist which automatize
the process of their assignment [6–11]. Unfortunately,
these programs cannot be applied for an automatic as-
signment of the nucleic acids spectra. Distinctive patterns
of NH peptide bond resonances, for several amino acid
residues within protein structure, make their recognition
via automatic assignment much easier than in case of nu-
cleic acids, especially RNA. To our knowledge, only two
papers exist concerning an automatic pathway analysis
applied for RNA duplexes [12, 13]. The first algorithm is
based on the Reduced Adjacency Matrix and Backtrack-
ing procedures. The second method uses Branch-and-Cut
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procedure idea. Both are exact algorithms, applicable for
an analysis of short unbreaked RNA duplexes.

In this paper, our attention is focused on the devel-
opment of an approximation algorithm for an automatic
generation of pathways between H6/H8 and H1’ reso-
nances, known as the NOE (Nuclear Overhauser Effect)
signals, observed for RNA duplexes during the NOESY
experiment. The NOE peaks illustrated in the 2D-NOESY
spectrum resulting from the experiment are connected to
form the path, called the NOE pathway. The method
takes into account the specificity of the data, thus, bas-
ing on the combinatorial model of a NOESY graph [13].
Exact analytical algorithm applied for the long nucleic
chains may provide too many solutions, preventing from
performance of the next steps in the elucidation process.
As it is crucial to generate the pathways as close as possi-
ble to the original one, we have considered an application
of metaheuristics, known as successful in tackling the
difficult combinatorial problems. The experiments have
shown a good quality of the evolutionary approach pro-
viding the new analytical tool for resolving the problem
of structure reconstruction.

An organization of the paper is as follows. Section 2
discusses the combinatorial model of the problem in
question. Section 3 outlines the basis of the general
evolutionary algorithm structure and presents the details
about the new evolutionary algorithm dedicated to the
problem of the NOE paths reconstruction. In Section
4, the results of computational experiments are given,
while Section 5 sums up the results of application of
the evolutionary approach to the problem of NOE paths
assignment and points out the directions for further
research.

2. Combinatorial model of the problem

Our aim has been to facilitate the NMR analysis of RNA
molecules, especially their fragments known as the helical
motives in ribonucleic acids structure. One of the major
analytical steps is an identification of the sequence-specific
connectivity H8/H6(i)–H1’(i)–H8/H6(i+1) pathway, repre-
sented as NOE path in the 2D–NOESY spectrum of
RNA duplex [1]. Formation of such a path is possi-
ble because each aromatic H6/H8 proton of nucleotide
residue is in close proximity to two anomeric protons: its
own and the preceding H1’ proton. A short exemplary
H8/H6(i)–H1’(i)–H8/H6(i+1) pathway going through the
four-nucleotide strand r(CGUA) is illustrated in Fig. 1,
where main NOE interactions between protons of our
interest are marked with arrows.

The NOE interactions between protons are repre-
sented as cross-peaks in the 2D-NOESY spectrum gen-
erated for the molecule during the appropriate NMR
experiment. The whole spectrum contains nine character-
istic regions of the correlated signals. In the search for
NOE connectivity pathway H8/H6(i)–H1’(i)–H8/H6(i+1)
we focus only on the aromatic/anomeric region, which

Fig. 1. Main NOE interactions in r(CGUA)

borders interactions between protons of our interest. Fig-
ure 2 presents an exemplary aromatic/anomeric region of
2D–NOESY spectrum for r(GAGGUCUC)2. It includes
24 numbered cross-peaks representing the NOE interac-
tions generated by the pairs of protons. Each proton of
the analyzed molecule can be described by its resonance
frequency known as the chemical shift and expressed in
parts per million (ppm). Thus, for example peak 6 from
Fig. 2, having coordinates (8.02, 5.66) represents the NOE
signal generated by H8 (8.02 ppm) and H1’ (5.66 ppm)
protons belonging to G1 nucleotide.

The path is composed of intranucleotide (with higher
intensity) and internucleotide (with lower intensity) in-
teractions. They give rise to the alternately appearing
cross-peaks. In case of the ideal A-RNA duplexes, the
NOE pathway starts with the intranucleotide interaction
at 5’ end of the strand and length of the path equals
2 · n − 1, where n is a number of residues in RNA chain.
Each proton, except for the starting and terminal ones,
belonging to the pathway gives cross-peaks with two other
protons. Every cross-peak is characterized by the two co-
ordinates of its centre, widths in both directions and the
value of signal intensity. However, if the fine structure of
a cross-peak is not considered, it can be defined as the
point with two coordinates only, specified by the values of
the chemical shifts of the corresponding protons. There-
fore, every two consecutive points in the NOE pathway
have exactly one coordinate in common and consecutive
connections within the pathway lay vertically or horizon-
tally. Figure 3 demonstrates the NOE pathway found in
the spectrum of r(GAGGUCUC)2.

222 Bull. Pol. Ac.: Tech. 52(3) 2004



Evolutionary algorithm for a reconstruction of NOE paths

Fig. 2. Aromatic/anomeric region of the 2D-NOESY spectra

for r(GAGGUCUC)2

Only one NOE pathway exists for each RNA molecule
forming self-complementary chain. It satisfies all the con-
ditions mentioned in the previous paragraphs. We will
call this path an original solution.

Fig. 3. NOE pathway for r(GAGGUCUC)2

Respecting the above description of the problem, we
proposed its graph-theoretic model [13] being a back-
ground for the complexity analysis and for the construc-
tion of the algorithms solving the problem. Sequential
assignments of H6/H8–H1’ correspond to searching for
a path between vertices of a graph, thus, converting
2D–NOESY spectrum to a graph structure seemed an
attractive idea. We defined a NOESY undirected graph
G = (V,E) situated on a plane following the succeeding
prerequisities:
1. every vertex v ∈ V , where V is the set of vertices, rep-

resents one cross-peak from the hypothetical NOESY

spectrum,
2. vertices are weighted: weight 1 is assigned to every

vertex representing intranucleotide NOE signal, weight
0 — to every vertex representing internucleotide NOE
signal,

3. number of vertices in a graph equals the number of
cross-peaks in the spectrum,

4. every edge e ∈ E, where E is the set of edges represents
a possible connection between two cross-peaks with
different intensity having one common coordinate,

5. number of edges in a graph equals the number of
all possible correct connections (i.e. lines between two
cross-peaks of different intensities having one common
coordinate) that can be drawn in the spectrum [13].
As the NOE interactions are illustrated only in the

aromatic/anomeric region of the spectrum, the definition
of the graph also concerns only this part of 2D–NOESY,
but — for the simplicity — we call it the spectrum.

Basing on the aromatic/anomeric region of the 2D-
NOESY spectrum and regarding the characteristics of
the NOE pathway one can create an appropriate NOESY
graph being compatible with the above definition. Figure
4 shows an exemplary NOESY graph corresponding to
the spectrum of r(GAGGUCUC)2 illustrated in Figure 2.

Fig. 4. NOESY graph corresponding to the spectrum

of r(GAGGUCUC)2

Converting an aromatic/anomeric region of the spec-
trum to a graph requires formulation of the NOE pathway
problem in terms of graph theory. Thus, an appropriate
path in the graph, being the corresponding solution of
the problem in the theoretical model, must satisfy the fol-
lowing conditions [13]: every vertex and edge may occur
in the path at most once, every two neighboring edges
are perpendicular, no two edges lie on the same horizon-
tal or vertical line, the length of a path, measured as
a number of constituent edges, equals 2|V1| − 2, where
|V1| is a number of intranucleotide signals. We can see the
conformity between the problems of the NOE path and
Hamiltonian path in a graph. However, the problem of
NOE assignments assumes additional constraints on the
search space of the algorithms:
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a) an edge can join only vertices having exactly one
common coordinate, thus, only horizontal and vertical
edges are correct,

b) horizontal and vertical edges occur alternatively in the
path,

c) every edge connects two vertices having different in-
tensities (inter-intra),

d) for some instances we know the position of some
vertices in a sequence; in particular the starting points
of a path are very probable to be known,

e) for some instances we know the NOE path length,

f) for the molecules including citidine, every vertex repre-
senting signal intra generated by citidine protons have
the same coordinate as one of the vertices representing
H5–H6 signals.

There are many cases, which demand an additional
expert information for a proper interpretation of the
spectral data. Such a knowledge, given to the algorithm,
extends the chances of practical appliance of the proposed
combinatorial model for the non-ideal instances. We have
proposed supplying the following information if needed:
a) spectral resolution

If the resolution of the spectrum is small, then location
and dimension of the cross-peak should be considered
within error range.

b) distance between doublet cross-peaks
Sometimes the NMR signal is so strong, that the spec-
trometer registers it as two signals, called the doublet.
An expert can distinguish such a doublet in the spec-
trum and define a value of the distance between two
cross-peaks, that represent one splitting signal. Next,
an algorithm finds the doublet and calculates one
signal out of it: computes an average position, appro-
priate widths and mates the volume (intensity).

c) overlapping in a specified spectral region
Signal overlapping appears when we analyze the spec-
tra of longer chains. It provokes occurring many cross-
peaks with the same value of one centre coordinate.
For such instances the NOE pathway can include more
than one edge lying on the same horizontal or verti-
cal line within the specified overlapping region. Thus,
an algorithm generates and accepts solutions, which
allow for such edges occurence.
By indication, that a NOESY graph contains NOE
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pathway if and only if there exists a Hamiltonian path of
the desired properties in the corresponding graph, it has
been proved, that the problem of the NOE path construc-
tion in the NOESY graph in its decision version is strongly
NP-complete [13, 14]. Hence, no polynomial-time exact
algorithm is likely to exist for this problem. Recently the
branch-and-cut algorithm has been implemented for the
problem in question [13]. An examination of the results
obtained after adopting this exact algorithm to a set of
many various data made us try the other approach, that
could improve the process of NOE assignments in case of
longer RNA chains and the noised spectra. Consequently,
a new algorithm for solving the problem will be proposed
in the next section.

3. Evolutionary algorithm

An idea of evolutionary algorithms for combinatorial opti-
mization problems, inspired by Darwin’s theory of evolu-
tion, was introduced by John Holland in 1975. Computer
procedures employing the mechanics of natural selection
and genetics to evolve solutions to combinatorial prob-
lems appeared very effective in providing near optimal
solutions with a reasonable computational effort. Thus,
the recent years brought an increasing popularity of evo-
lutionary methods as well as of the other metaheuristics,
designed for complex combinatorial optimization prob-
lems [15].

Evolutionary algorithms use biologically derived tech-
niques such as inheritance, mutation, natural selection
and recombination. To their basic components one can
subsume population (set of solutions), chromosomes (in-
dividuals), fitness of the chromosomes, process of repro-
duction (selection of parents and children generation),
replacement (death of the individuals) and generation
completion. Typically evolution starts from a population
of completely random individuals (solutions), represented
by chromosomes, and happens in generations. Tradition-
ally, solutions occur as binary strings of 0s and 1s, but
different encodings are also possible. Each individual is
characterized by its fitness. Each generation is defined by
population size, as well as the birth and death processes.
In every generation, multiple individuals are stochastically
selected from the current population, and next — mod-
ified through mutation or recombination to form a new
population, which becomes current in the following itera-
tion of the algorithm. Solutions which form the offspring
are selected according to their fitness — the more suit-
able they are the more chances they have to reproduce.
This is motivated by a hope, that the new population will
be better than the old one. In such a manner, an approx-
imation algorithm evolves towards better solutions. The
procedure stops when the desired stopping criterion, like
number of populations or improvement of the best solu-
tion, is reached. As a result of this simulated evolution
one obtains highly evolved solution to the original prob-
lem, that is the best chromosome picked out of the final

population.
Evolutionary algorithms have been widely applied to

many different optimization problems. Examination of
their performance has shown that the computational ef-
fectiveness depended on the values given to algorithm
parameters like population size, initial population, ge-
netic operators, fitness and stopping criteria [16–18]. Our
implementation of the evolutionary algorithm complies
with the typical structure characteristics described above
as well as the nature of the problem of the NOE pathway
reconstruction on the basis of 2D-NOESY spectra of RNA
molecules. All components of the proposed algorithm are
introduced in the following paragraphs.

Input data: We consider an aromatic/anomeric region
of two-dimensional NOESY spectrum resulting from NMR
experiment performed for RNA molecule. The spectrum
contains cross-peaks, which represent NOE interactions
between the atoms. In particular, the considered region
borders the interactions between protons: H6, H8, H1’,
H5. Every cross-peak is characterized by the two coor-
dinates D1, D2 of its center, widths dD1, dD2 in both
directions and volume V ol of the signal corresponding to
its intensity.

Size of the population: Population size P is kept
constant through the generations. It is the parameter,
which can be changed if necessary. We assumed its value
between 250 an 1000 individuals.

Initial population: The initial population partially con-
sists of the individuals generated randomly (but satisfying
some predefined criteria) and partially — of the solutions
generated by the greedy algorithm beginning the search
from various starting points.

Individual encoding: An individual is represented by
a vector of size n, where n is a maximum length of the
NOE path for the given molecule. The value of n can be
derived from the molecule primary structure and equals
2N − 1, where N denotes the number of nucleotides in
the RNA chain. The vector is composed of the sequence
of vertex numbers written in the order of their occurrence
in the path.

Fitness: Fitness of each individual is determined by
the associated value of the goal function, being one of the
most crucial component of the algorithm.

Goal function: The function comprises the knowledge
about desirable features of the problem solutions, thus
assuring metaheuristic efficiency. It assembles the criteria,
which serve the evaluation of individuals (paths). The
value of the function basically depends on acceptability
criteria, path’s length and the sum of the acceptable edge
deviations. Particularly, when a couple of solutions having
the same function value appear, an aleatory element is
considered as an additional function component. This
additional element tries to prevent the search process
to enter a local optimum. The criteria aggregated in
the goal function can be divided into two groups of
acceptability (more important) and optimization (less
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important) criteria. The function penalizes the solution,
if:
a) the solution does not contain the given signal, which

is to appear in the specified position (when such
a knowledge is defined in the input),

b) the solution contains neighbouring vertices, which can
not be joined by an edge (e.g they do not have one
common coordinate or have the same intensity),

c) the solution contains neighbouring edges, that are not
perpendicular,

d) the solution contains edges lying on the same horizon-
tal or vertical line,

e) the solution has not got the maximum length (when
length of the path is not defined in the input and
should be maximized),

f) the sum of edges deviation within the path is greater
than zero.
Proper definition of the penalty values prevents their

substitution between acceptability and optimization crite-
ria. Goal function value is minimized during optimization.

Selection: The aim of the selection step is to elimi-
nate the solutions and passing the good ones from one
generation to the other. Thus, basing on fitness values,
the procedure picks individuals from the current pop-
ulation and builds from them the mating pool for the
reproduction step. We have adopted the roulette system
of selection, which demands a calculation of a fitness of
each individual, a total fitness of the whole population,
a probability of each individual selection and a cumula-
tive distribution of each solution. Afterwards, algorithm
draws P/2 values out of the interval 〈0, 1〉 and removes
from the current population all individuals having cumu-
lative distribution values corresponding to the fated ones.
Thus, higher goal function values result in a greater prob-
ability of being removed from the population with no
chance to get into the mating pool.

Reproduction: New solutions (offspring) are generated
with the use of crossover and mutation operators applied
to the mating pool.

Crossover: Crossover phase in our algorithm is based
on the two operators OX and merge applied to the in-
dividuals selected according to the roulette mechanism.
Solutions having better (smaller) values of the goal func-
tion are chosen for reproduction with higher likelihood.
An offspring is added to the population of the next gener-
ation in place of the individuals removed in the selection
step. Crossing operators are responsible for carrying valu-
able schemes to the next generations. Thus, their proper
definitions provide the algorithm convergence to the opti-
mum. We have introduced the following operators:
a) OX operator

In the problem of NOE pathways, like in the other
problems of that kind [19], the quality of solutions de-
pends mostly on the features of edges, which have to
satisfy a number of particular conditions. The OX op-
erator disrupts relatively small number of edges, thus,

letting to preserve many features of the parents [20]. It
is used by the algorithm as the only operator in cases,
where the length of the NOE pathway is known a priori.
At the beginning, the OX operator qualifies a random se-
quence of vertices of one parent and places it adequately
in the offspring sequence. Next, the empty places of the
new solution are filled with the vertices of the second par-
ent according to their succession. No vertices reduplicate
within the generated sequence.
b) Merge operator

If the length of the NOE pathway is not known
a priori, we propose the usage of two operators: OX and
merge. Merge operator improves the quality of solutions
in the final population. It keeps valuable schemes of
the short parent sequences and generates long, more
desirable offspring solutions. The operator copies the
whole sequence of one parent into the new solution.
Subsequently, in the second parent sequence it finds
a vertex, which has occupied the closing position of
the first parent. Then, operator copies the subsequent
vertices of the second parent to the offspring sequence.
Copying from the second parent stops, when procedure
finds a vertex which has been already put into the
generated solution.

Mutation: During the mutation phase each solution
can be a subject of up to five independent mutation oper-
ators. In practice, five operators are used if the pathway
length is a priori unknown. If the length is known, only
three of them mutate. In theory, the probability of uti-
lization equals 0.1 for each mutation operator and the
probability of mutation equals 0.3 or 0.5 for each solu-
tion. Practically, likelihood values are smaller. We have
defined the following mutation operators:
a) Swapping operator

Swap operator selects two random vertices and ex-
changes their positions within the sequence.

b) Replacement operator
Replacement operator draws a random vertex from
the sequence and replaces it with a random vertex
from behind the sequence.

c) Inversion operator
Inversion operator selects two positions in the solution
sequence. Next, it rewrites the vertices positioned
between the fated places in the reverse order.

d) Addition operator
Addition operator is used if the pathway length is un-
known. The operator inserts an additional unemployed
vertex into the random position of the sequence.

e) Deletion operator
Deletion operator is used if the pathway length is
unknown. The operator removes a randomly selected
vertex from the sequence.
Creating the new generation: The next generation is

formed out of the best parent solutions and all individuals
from the offspring population.

Stopping criterion: Stopping criterion has been de-

226 Bull. Pol. Ac.: Tech. 52(3) 2004



Evolutionary algorithm for a reconstruction of NOE paths

fined as the number of succeeding generations without
improvement of the best individuals. Its value has been
set experimentally to 250 iterations.

The proposed algorithm performs in pursuance of the
following steps:
1. Generate initial population t = 0: create P individuals,

where each individual is a permutation of n signals
given in the input.

2. Calculate fitness of each individual in population t
and find the best individual in this population.

3. Repeat steps 4–6 until the stopping criteria are not
satisfied:

4. Basing on the fitness values of the individuals select
parents for the new population t + 1 according to the
roulette system. For each pair of the selected parents
apply crossover operators OX and Merge.

5. Mutate individuals: considering offspring and parents
populations pick an individual and apply the chosen
mutation operators.

6. Evaluate fitness for each individual in the current
offspring and parent population. Create the new gen-
eration out of the best parents and all the offspring
solutions.

4. Computational tests

Both, evolutionary and exact algorithms were tested on
Indigo 2 Silicon Graphics workstation (1133 MHz, 64
MB) in IRIX 6.5 environment. The algorithms were im-
plemented in ANSI C programming language. As a test-
ing set we used a group of experimental and simulated
2D-NOESY spectra. The input data are the same as
used in [13]. Experimental spectra of r(CGCGCG)2, 2’-
O-Me(CGCGCG)2 and r(CGCGFCG)2 in D2O at 30◦C
were recorded on Varian Unity+ 500 MHz spectrome-
ter. The 2D-NOESY spectrum of d(GACTAGTC)2 was
acquired on Bruker AVANCE 600 MHz. The spectra
of r(GAGGUCUC)2, r(GGCAGGCC)2, r(GGAGUUCC)2
and r(GGCGAGCC)2 were simulated using Matrix Dou-
bling method of Felix software based on published 1H
chemical shifts [21–24] and three dimensional structures
from Protein Data Bank. Numeric data for computational
experiments were obtained after peak-picking procedure
of Felix Accelrys. All the instances had been already
solved manually, so we could verify the consistency of
paths generated by each algorithm with the original solu-
tion. All the molecules formed self-complementary chains,
so one pathway (an original solution), correct from the
biochemical point of view, existed for each of them. Ex-
act algorithm has been designed in such a way, that it
enumerates all feasible solutions to each instance of the
problem. Evolutionary algorithm may also produce feasi-
ble paths as well as one optimal, being the best feasible
solution. The cardinality of a final feasible solution set
depended on the expert information reducing the search
space. In the case of an expert information deficiency the

algorithms generated a set of feasible solutions, which sat-
isfied all the conditions of the NOE path. Additionally,
the evolutionary algorithm optimalized path length and
edge deviations, thus giving the optimal solution.

Three tests were performed for every molecule. In
the first test algorithms used all available expert knowl-
edge. In the second test we checked how the algorithms
worked if some important data lacked – no path length
was defined. In the third case the algorithms did not
consider any expert knowledge. Table 1 summarizes the
experimental results of the algorithms. The first column
contains the molecule sequence and the number of the an-
alyzed cross-peaks (instance size) for each instance of the
problem. In the second column, numbers of tests (1–3)
are given. The number of feasible paths generated by the
exact algorithm for every molecule has been placed in the
third column. As, the exact algorithm looks through the
whole search space, it always finds an original solution as
well as the other feasible solutions if they exist. In the
next four columns we have placed the results obtained by
the evolutionary algorithm run for the different popula-
tion sizes P ∈ {250, 500, 750, 1000}, i.e. values of optimal
solution precision. The precision is given as two numbers
o/v, where o determines the length of maximum sub-path
in the optimal solution that covers the original vertex se-
quence and v is the number of vertices in the original
path.

Computational experiments have proved, that the
proposed evolutionary algorithm in most cases gives very
good results. The precision of this method have appeared
high enough to consider it as an alternative approach
in solving the problem of NOE pathways reconstruction.
This especially concerns the instances, for which an ex-
act algorithm is hardly effective because of an enormous
number of feasible paths generated. The results of test
number 3 for all the analyzed molecules deserve the spe-
cial attention. In this test both algorithms operated on
the minimum expert knowledge, what means that only
the information required for a proper interpretation of
the input spectral data has been supplied. Thus, the
information about spectral resolution, doublets or over-
lapping has been defined, while any additional, like path
length, volume intervals, H5–H6 signals, known signal po-
sitions within the path, signals rejection has not been
provided. Such an additional information is easy to de-
fine for the spectra of short RNA chains, where the
2D–NOESY spectra are not overcrowded. Unfortunately,
the longer chain is analyzed, the more packed spectrum
results from the NMR experiment. An extreme number of
cross-peaks located within the same spectral region pre-
vents the experimentator to define additional information
just from the spectral data and results in many overlap-
ping signals. Thus, supplying any additional data to the
algorithms solving the problem of assignments appears
hard and the experimentators rather induce to — the less
risky — trying the algorithms without an expert infor-
mation. Unfortunately, computational analysis with the
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use of exact algorithm in such cases appears completely
ineffective and disqualifies this method here. Of course,
we are sure that the exact algorithm finds the original
solution, but looking through the generated set of 3192
feasible paths (see test 3 for the seventh molecule) in or-
der to situate the original one is a hopeless job and harder
than manual reconstruction of the NOE path. Thus, it
seems a good idea to apply an evolutionary algorithm for
solving such instances of the problem. Even if the evo-
lutionary method finds only half of the original pathway
it facilitates the problem to a very large degree. Having
the partial assignment an experimentator is able to com-
plete the NOE pathway in a measurable time with not

an extreme effort. It seems possible to analyze manually
the set of up to 20 feasible solutions in order to find the
original one among them. But greater number of paths
discourages an ordinary researcher to look through them.
So, if we revise experimental results placed in Table 1,
we will see that even the best case for the test 3, which
is the forth molecule r(CGCGFCG)2 (63 feasible solu-
tions generated by the exact algorithm) makes us rather
consider the optimal path generated by the evolutionary
algorithm.

Another important part of the tests is measuring
the time of computation. Table 2 contains the times of
computation for each analyzed instance.

Table 1
Number of feasible solutions and optimal solution precision

Molecule Exact Evolutionary algorithm
Test

instance size algorithm P = 250 P = 500 P = 750 P = 1000

1. r(CGCGCG)2 1 1 9/11 11/11 11/11 11/11

17 peaks 2 2 11/11 9/11 11/11 11/11

3 140 4/11 10/11 10/11 10/11

2. 2’-OMe(CGCGCG)2 1 2 11/11 11/11 11/11 11/11

17 peaks 2 4 5/11 11/11 6/11 9/11

3 776 5/11 11/11 11/11 7/11

3. r(CGCGFCG)2 1 3 11/11 9/11 11/11 9/11

16 peaks 2 21 8/11 6/11 11/11 9/11

3 72 9/11 9/11 7/11 7/11

4. r(CGCGFCG)2 1 2 9/11 9/11 9/11 9/11

22 peaks 2 6 10/11 9/11 9/11 7/11

3 63 10/11 9/11 6/11 8/11

5. d(GACTAGTC)2 1 4 7/15 12/15 8/15 6/15

26 peaks 2 8 6/15 8/15 6/15 6/15

3 240 5/15 5/15 7/15 5/15

6. r(GAGGUCUC)2 1 1 14/15 14/15 14/15 14/15

24 peaks 2 1 9/15 9/15 14/15 14/15

3 160 6/15 5/15 5/15 5/15

7. r(GGCAGGCC)2 1 2 13/15 15/15 13/15 15/15

26 peaks 2 2 10/15 13/15 12/15 15/15

3 3192 4/15 3/15 8/15 7/15

8. r(GGAGUUCC)2 1 1 14/15 15/15 14/15 15/15

25 peaks 2 1 14/15 14/15 14/15 14/15

3 843 5/15 12/15 13/15 6/15

9. r(GGAGUUCC)2 1 1 14/15 14/15 14/15 15/15

26 peaks 2 1 10/15 8/15 13/15 8/15

3 1134 8/15 5/15 4/15 5/15

10. r(GGCGAGCC)2 1 4 10/10 10/10 10/10 10/10

20 peaks 2 8 10/10 10/10 10/10 10/10

3 64 6/10 10/10 8/10 8/10
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Table 2
Time of computations [s]

Molecule Exact Evolutionary algorithm
Test

instance size algorithm P = 250 P = 500 P = 750 P = 1000

1. r(CGCGCG)2 1 1 1 3 8 11

17 peaks 2 4 3 7 18 31

3 5 3 10 21 48

2.2’-OMe(CGCGCG)2 1 1 1 3 5 13

17 peaks 2 2 2 9 15 32

3 60 2 12 38 63

3. r(CGCGFCG)2 1 2 2 4 16 17

16 peaks 2 3 2 8 20 64

3 4 1 6 17 45

4. r(CGCGFCG)2 1 1 2 5 5 19

22 peaks 2 1 2 9 22 58

3 2 2 4 7 20

5. d(GACTAGTC)2 1 1 7 22 74 129

26 peaks 2 1 2 7 22 64

3 5 4 6 27 90

6. r(GAGGUCUC)2 1 1 4 18 44 80

24 peaks 2 1 2 8 16 52

3 30 4 17 73 132

7. r(GGCAGGCC)2 1 1 4 6 10 16

26 peaks 2 1 2 10 37 57

3 2453 2 8 27 62

8. r(GGAGUUCC)2 1 1 5 18 44 80

25 peaks 2 1 1 6 17 45

3 170 2 6 22 63

9. r(GGAGUUCC)2 1 1 5 19 43 80

26 peaks 2 1 3 8 14 33

3 573 3 5 34 31

10. r(GGCGAGCC)2 1 1 1 2 4 12

20 peaks 2 1 2 5 12 26

3 5 2 5 21 24

We can observe, that both — exact as well as evo-
lutionary — algorithms work quite fast. In most cases
we obtain the results before the end of the first minute.
This is very important, especially when we recall that,
the problem of NOE pathways reconstruction is hardly
NP-complete. Fortunately, the NOESY graphs created
upon the 2D–NOESY spectra belong to the class of the
sparse graphs ( E 	 V 2, where E is the number of edges,
V — a number of vertices), thus, the cardinality of the
edge set is rather small, which considerably reduces the
time of computations. Computational times of evolution-
ary method in the worst cases are usually better or similar
to these obtained by the exact procedure. However, the
time deviations are very small, what drives us to the con-
clusion that the time of computations plays a peripheral
role in solving the problem of NOE pathway assignments
with automatic methods.

5. Conclusions

In the paper, we have considered the problem of the re-
construction of NOE pathways in 2D-NOESY spectra of
RNA molecules. Basing on the combinatorial model of the
problem, we have proposed the evolutionary algorithm
and applied it to the collection of spectral data gathered
from the NMR experiment for different RNA molecules.
During computational experiments we have compared the
results obtained by the exact branch-and-cut algorithm
and the new evolutionary method. An evolutionary ap-
proach gives very good results and for most instances the
obtained solution coincides with the prevalent number
of vertices in the original NOE path. Evolutionary algo-
rithm appears very useful in the situation of an expert
knowledge deficiency. The large number of feasible NOE
pathways returned by the exact algorithm for the in-
stances without the additional expert information, makes
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it hard to use such an approach in practice. Thus, joining
the analysis of the solutions generated by the evolution-
ary algorithm with the manual method of assignment
seems a better idea.

As a continuation of the research reported in this
paper, one may consider the analysis of spectra which
contain a lot of noise signals. The typical exact method
can hardly cope with such cases, especially when an
expert is not able to define which cross-peaks should not
be considered during the NOE pathway reconstruction.
The evolutionary method applied for the noised instances
can also facilitate the separation of correct signals and
the noised ones, if the cross-peak appearance in the
reconstructed solutions is the basis of its evaluation.
Experimenting with the reduction of the search space by
an elimination of the signals with the least rates can be
helpful in considering longer RNA chains.

The steps for improving evolutionary algorithm can
be also undertaken. For example, it seems a good idea
to try one of the other selection strategies, that have
been successfully used for graph problems: tournament
selection, elitist recombination etc. Using some other
crossover operators, like edge recombination operator or
asymmetric edge recombination operator can also improve
optimization procedure and result in more precise optimal
solutions.
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