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Robust stability of positive discrete-time interval systems
with time-delays
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Abstract. Necessary and sufficient conditions for robust stability of the positive discrete-time interval system with time-delays are established.
It is shown that this system is robustly stable if and only if one well defined positive discrete-time system with time-delays is asymptotically
stable. The considerations are illustrated by numerical example.
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1. Introduction

In positive systems inputs, state variables and outputs
take only non-negative values for non-negative initial
states and non-negative controls. A variety of models
having positive linear systems behaviour can be found in
engineering, management science, economics, social sci-
ences, biology and medicine, etc. An overview of state of
the art in positive systems theory is given in the mono-
graphs [1,2]. Recent developments in positive systems
theory and some new results are given in [3]. The reach-
ability of positive discrete-time systems with time-delays
has been considered in [4,5] and the minimal energy con-
trol of the same class of positive systems has been studied
in [6].

The stability and robust stability problems of linear
system with time-delays has been considered in many
papers and books, see for example [7–10]. These books
are directed to the non-positive systems.

Robust stability problem of continuous and discrete-
time system (in general non-positive) was considered
in [11,12], for example. Existing stability criteria for
interval non-positive discrete-time systems described by
the state-space equations have the forms of only sufficient
conditions.

In this paper, we extend the main results of [13] to
positive discrete-time interval systems with time-delays.
It will be shown that interval positive system described
by the state-space equations is robustly stable if and
only if one well defined positive discrete-time system with
time-delays is asymptotically stable.

To the best authors knowledge the above problem for
positive interval discrete-time systems with time-delays
has been not considered yet.

2. Preliminaries

Let �n×m be the set of n × m matrices with entries from
the field of real numbers and �n = �n×1. The set of n×m
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matrices with real non-negative entries will be denoted by
�n×m

+ and �n
+ = �n×1. The set of non-negative integers

will be denoted by Z+.
Consider the positive discrete-time linear system with

delays described in the state space by the homogeneous
equation

xi+1 =
h∑

k=0

Akxi−k, i ∈ Z+, (1)

with the initial conditions

x−i, i = 0, 1, ..., h, (2)

where h is a positive number, xi ∈ �n is the state vector
and

Ak ∈ �n×n
+ (k = 0, 1, ..., h). (3)

If (3) holds then for every x−i ∈ �n
+ (i = 0, 1, ..., h)

we have xi ∈ �n
+ for i ∈ Z+ [4, 13].

The system (1) is asymptotically stable if and only if
all roots z1, z2, ..., zn of the characteristic equation

det(zIn −
h∑

k=0

Akz−k) = 0 (4a)

have moduli less than 1, or equivalently, all roots z1, z2, ...,
zñ of the equation

det
(

zh+1In −
h∑

k=0

Akzh−k
)

= zñ + añ−1zñ−1 + ... + a1z + a0 = 0 (4b)

have moduli less than 1, i.e.

|zk| < 1 for k = 1, 2, ..., ñ = (h + 1)n. (5)

Defining

�xi =




xi

xi−1
...

xi−h+1

xi−h


 ∈ �ñ

+, �x0 =




x0

x−1
...

x−h+1

x−h


 ∈ �ñ

+, (6)

the equation (1) can be written in the form

�xi+1 = A�xi, i ∈ Z+, (7)
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with initial condition �x0, where ñ = (h + 1)n and

A =




A0 A1 · · · Ah−1 Ah

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · In 0


 ∈ �ñ×ñ

+ . (8)

It is well known [1, 2] that the positive system (7)
is asymptotically stable if and only if all eigenvalues
z1, z2, ..., zñ of the matrix A (the roots of the equation
det(zIñ − A) = 0) have moduli less than 1.

It was shown that [13]

det(zIñ − A) = det(zh+1In −
h∑

k=0

Akzh−k). (9)

This means that asymptotic stability of the system
(1) (with delays) is equivalent to asymptotic stability of
the system (7) (without delays).

Theorem 1 [13]. The positive system with time-delays
(1) is asymptotically stable if and only if the following
equivalent conditions hold:

1) all coefficients of the polynomial

detMh(z) = det[(z + 1)h+1In −
h∑

k=0

Ak(z + 1)h−k]

= zñ + ãñ−1zñ−1 + ... + ã1z + ã0 (10)

are positive, i.e. ãi > 0 for i = 1, 2, ..., ñ − 1

2) all leading (principal) minors of the matrix Ā =
Iñ − A are positive.

3. Robust stability

Let us consider a family of positive discrete-time linear
systems with delays described by

xi+1 =
h∑

k=0

Akxi−k, Ak ∈ [A−
k , A+

k ] ⊂ �n×n
+

for k = 0, 1, ..., h. (11)

The positive system (11) is called an interval positive
system with time delays.

The interval positive system (11) is called robustly
stable if the system (1) is asymptotically stable for all
Ak ∈ [A−

k , A+
k ] ⊂ �n×n

+ (k = 0, 1, ..., h).

If Ak ∈ [A−
k , A+

k ] ⊂ �n×n
+ for all k = 0, 1, ..., h then

A ∈ AI = [A−, A+] ⊂ �ñ×ñ
+ , (12)

where A is of the form (8) and

A− =




A−
0 A−

1 · · · A−
h−1 A−

h

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · In 0


 ,

A+ =




A+
0 A+

1 · · · A+
h−1 A+

h

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · In 0


 .

(13)

Theorem 2. The interval positive time-delays system
(11) is robustly stable if and only if the positive system
without delays

�xi+1 = A+�xi, i ∈ Z+, (14a)

is asymptotically stable or, equivalently the positive time-
delays system is asymptotically stable

xi+1 = A+
0 x0 +

h∑
k=1

A+
k xi−k, i ∈ Z+. (14b)

P r o o f . The proof follows directly from the fact that
all eigenvalues of any non-negative matrix A ∈ [A−, A+]
have moduli less than 1 if and only if all eigenvalues of
A+ have moduli less than 1 [14,15] (see also [11,16]).

From Theorem 2 it follows that robust stability of
interval system (11) does not depend on the matrices
A−

k ∈ �n×n
+ (k = 0, 1, ..., h). Therefore may be A−

k = 0,
k = 0, 1, ..., h. Moreover, if the system (1) is asymptoti-
cally stable for fixed Ak = Akf ∈ �n×n

+ , k = 0, 1, ..., h,
then this system is also asymptotically stable for all
Ak ∈ [0, Akf ], k = 0, 1, ..., h.

The system (14b) is asymptotically stable if and only
if all roots z1, z2, ..., zn of the equation

det
(

zh+1In −
h∑

k=0

A+
k zh−k

)

= zñ + āñ−1zñ−1 + ... + ā1z + ā0 = 0 (15)

have moduli less than 1.
From the above and Theorem 1 we have the following

theorem.

Theorem 3. The interval positive time-delays sys-
tem (11) is robustly stable if and only if the following
equivalent conditions hold:

1) all coefficients of the polynomial

det[(z + 1)Iñ − A+] = detM+
h (z)

= zñ + âñ−1zñ−1 + ... + â1z + â0 (16)

are positive, i.e. âi > 0 for i = 0, 1, ..., ñ − 1, where
ñ = (h + 1)n, has the form given in (13) and

M+
h (z) = (z + 1)h+1In −

h∑
k=0

A+
k (z + 1)h−k. (17)
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2) all leading (principal) minors of the matrix

Ā+ = Iñ − A+

=




In − A+
0 −A+

1 · · · −A+
h−1 −A+

h

−In In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0
0 0 · · · −In In


(18)

are positive.

Theorem 4. The interval positive time-delays system
(11) is not robustly stable if 1) the positive system
(without delays)

xi+1 = A+
0 xi, i ∈ Z+, (19)

is unstable, or
2) at least one diagonal entry of the matrix A+

0 = [a0+
ij ]

is greater than 1, i.e.

a0+
kk > 1 for some k ∈ (1, 2, ..., n). (20)

P r o o f . In [13] it was shown that instability of the
positive system (without delays)

xi+1 = A0xi, i ∈ Z+, (21)

always implies the instability of the positive system with
time-delays (1). The proof of 1) follows from the fact that
asymptotic stability of (21) with A0 ∈ [A−

0 , A+
0 ] ⊂ �n×n

+
is equivalent to asymptotic stability of the system (21)
with A0 = A+

0 .
The positive system (1) is unstable if at least one

diagonal entry of the matrix A0 = [a0
ij ] is greater than

1 [13]. Hence, if A0 ∈ [A−
0 , A+

0 ] ⊂ �n×n
+ the above

condition is satisfied if (20) holds.

4. Example

Consider the positive interval system

xi+1 = A0xi + A1xi−1, (22)

where Ak ∈ [A−
k , A+

k ] ⊂ �3×3
+ for k = 0 and k = 1 with

A−
0 =


 0 0.1 0

0.1 0 0
0 0 0


 , A+

0 =


 0 0.2 0

0.2 0 a
0 0.1 0


 ,(23a)

A−
1 =


 0 0.1 0

0.1 0 0
0.4 0 0


 , A+

1 =


 0 0.2 0

0.4 0 0
1 0 b


 . (23b)

Find values of the parameters a � 0 and b � 0 for
which the system (22), (23) is robustly stable.

In this case the matrix Ā+ = I6 − A+ has the form

Ā+ =
[

I3 − A+
0 −A+

1
−I3 I3

]

=




1 −0.2 0 0 −0.2 0
−0.2 1 −a −0.4 0 0
0 −0.1 1 −1 0 −b

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1




. (24)

Computing all leading (principal) minors ∆+
i , (i =

1, 2, ..., 6) of the matrix (24), from condition 2) of Theorem
3 we obtain:
∆+

1 = 1 > 0, ∆+
2 = 0.96 > 0,

∆+
3 = 0.96 − 0.1a > 0 hence a < 9.6,

∆+
4 = −0.3a + 0.88 > 0 hence a < 2.9333,

∆+
5 = −0.5a + 0.76 > 0 hence a < 1.52,

∆+
6 = det Ā+ = −0.5a + 0.76 − 0.76b > 0 hence b <

1 − 0.6579a.
From the above it follows that the interval system (22)

is robustly stable for 0 	 a < 1.52, 0 	 b < 1 − 0.6579a.
If a = 1, for example, then 0 	 b < 0.3421.

The same result can be obtained by the use of the
condition 1) of Theorem 3.

5. Concluding remarks

It has been shown that the interval positive discrete-time
system with time-delays, described by (11), is robustly
stable if and only if one well defined positive discrete-time
system with time-delays (14b) is asymptotically stable.

Necessary and sufficient conditions and also simple
necessary conditions for robust stability checking are
given.
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