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Abstract. We discuss recent progress in hybrid atomistic-continuum methods with particular emphasis on developments in boundary con-
dition imposition in molecular simulations, an essential ingredient of hybrid methods. Both Dirichlet (state variable) and flux boundary
conditions are discussed. We also briefly review various coupling approaches and discuss the effects of compressibility and molecular fluctu-
ations on the choice of coupling method. Common elements between hybrid methods and related multiscale simulation approaches are also
briefly discussed.
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1. Introduction

By limiting the molecular description to regions where it is
needed, hybrid methods allow the simulation of complex phe-
nomena which require modeling at the molecular scale without
the prohibitive cost of a fully molecular calculation. In this pa-
per we discuss recent progress in this rapidly expanding field.
The discussion builds upon a recent review [1] and covers the
two major challenges in hybrid simulation, namely the choice
of coupling method and the imposition of boundary conditions
on the molecular simulation, with particular emphasis on the
latter.

Here we limit ourselves to the discussion of hydrodynam-
ics applications. Consequently, the term continuum descrip-
tion will be understood to refer to the Navier-Stokes set of
equations. As will be discussed below, and in complete anal-
ogy with continuum numerical solution methods, compress-
ibility has significant bearing on the chosen approach [2]. In
this paper coupling of both compressible and incompressible
Navier-Stokes descriptions to a molecular description will be
discussed; it will thus be assumed that the appropriate descrip-
tion is chosen depending on the extent to which compressibil-
ity effects are important. On the molecular side, we limit our-
selves to a classical molecular dynamics treatment [3] where
particles move according to Newton’s equation of motion

mir̈i = Fi = −
∑

j 6=i

∇U(rij) (1)

wheremi, ri andFi are the mass, position vector and force
on particle i, the latter assumed to be captured by simple
pair potentialsU(rij) (such as a Lennard-Jones), whererij =
|ri−rj |. Although more complex potentials may be used, these
do not affect the current discussion significantly. We will also
discuss dilute gases for which molecular dynamics methods
become inefficient compared to Boltzmann descriptions [4]; in
this paper the “molecular description” for dilute gases will be

provided by a stochastic particle method for solving the Boltz-
mann equation known as the direct simulation Monte Carlo
[4,5].

The coupling method is the numerical strategy for ex-
change of information between the different physical descrip-
tions/subdomains (molecular and continuum) in a way which
ensures a seamless coupled solution. For example, the chosen
coupling technique may require imposing equality of the flow
velocity in the two descriptions at the matching interface or
across an overlap region [6,7].

One would expect that in choosing a coupling method, the
best approach would be one that makes use of the existing nu-
merical methods literature; such an approach allows the use
of already developed, robust matching schemes (e.g. domain
decomposition [8]) with the added benefit that these will be im-
mediately compatible with at least one of the subdomain for-
mulations (the continuum problem).

This information exchange required by the coupling tech-
nique typically requires the imposition of data from one sub-
domain in the form of boundary conditions/constraints on the
“solvers” of the other subdomain and vice versa. In the ex-
ample given above, the coupling recipe of matching solutions
by imposing equality of flow velocity, requires the ability to
impose velocity boundary conditions on each subdomain; this
may be a time-dependent (explicit coupling in time, e.g. [7])
or a time-independent (time-independent coupling, e.g. [6])
formulation.

Information transfer from the molecular to the continuum
subdomain is usually a well-defined process since, in analogy
to the process of extracting macroscopic fields from molecular
simulations, it is typically achieved through coarse graining
the molecular field to the continuum field resolution (physical
and spatial) [3]. Moreover, imposition of generalized bound-
ary constraints on the continuum domain can be conveniently
formulated in terms of boundary conditions.
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The reverse process is more problematic: information
from the continuum subdomain is limited to hydrodynamic
variables which correspond to the first few moments of the
complete molecular distribution function [3] and is thus in-
sufficient to completely specify the non-equilibrium molec-
ular state. In other words, generating realizations of non-
equilibrium molecular states that are consistent with desired
hydrodynamic fields/constraints is very challenging; the con-
straints involved are usually of the integral type, but more im-
portantly, the non-equilibrium molecular distribution function
is in most cases unknown. The process just described, which
we will refer to as imposition of boundary conditions on the
molecular simulation, has, in our opinion, not been resolved
in a completely satisfactory manner to date. Successful reso-
lution of this problem will have broader impact in molecular
hydrodynamics; imposing macroscopic constraints/boundary
conditions on molecular simulations is not only important in
hybrid method applications, but also a variety of other situa-
tions where problems of interest are formulated in hydrody-
namic terms.

As pointed out in the previous review [1], boundary con-
dition imposition on molecular simulations and the choice of
coupling technique are not necessarily coupled. Although the
latter determines the nature of information transfer between
the suddomains, it does not necessarily constrain the way this
is to be achieved. Returning to the example discussed above,
the requirement that velocities are aqual at a matching inter-
face or across an overlap region, does not constrain the way
this is to be implemented on either subdomain. In fact, it is
preferable to formulate the problem in such a way that these
two functions are completely decoupled. This affords the most
flexibilty in customizing the hybrid methodology to the physics
of the problem at hand, a recommended approach for any nu-
merical solution. As will be explained below, the choice of
coupling technique is not unique and from a number of stud-
ies to date it appears that a variety of coupling techniques
can be used to achieve a globally consistent solution, pro-
vided that numerical choices which respect the flow physics
are made.

2. Recent developments

Before focusing on boundary condition imposition in molecu-
lar simulations we will briefly touch upon a number of other
considerations, such as the role of molecular fluctuations and
the choice of coupling method. Although the choice of cou-
pling method is very important, our discussion will be brief
since this topic was thoroughly discussed in [1].

2.1. Molecular fluctuations: physics or noise?The exis-
tence of a molecular subdomain in a hybrid calculation means
that molecular fluctuations are an integral part of the calcula-
tion. Although molecular fluctuations sometimes lead to inter-
esting physical phenomena [9], they are also the source of sig-
nificant statistical uncertainty which makes low-noise molecu-
lar simulations very expensive. Additionally, in a recent paper,
Tysanner and Garcia [10] show that molecular fluctuations in

flows out of equilibrium may cause numerical artifacts if care
is not taken in correctly defining hydrodynamic quantities in
terms of molecular data.

In [11], analytical results for the relative statistical uncer-
tainty as a function of samples for typical hydrodynamic quan-
tities in low speed flows (where statistical noise presents a
problem) were obtained. The relative statistical uncertainty of
hydrodynamic quantityQ, EQ, is defined as the one standard
deviation in the uncertainty in the measurement ofQ, divided
by the magnitude ofQ. These results were obtained using
equilibrium statistical mechanics; the assumption of equilib-
rium is very reasonable for low speed flows in which the de-
viation from equilibrium is small. One finding of this study
for dilute gas flows is that the relative statistical error in hy-
drodynamic flux measurement,Ef , is related to the relative
statistical error in the corresponding state property measure-
ment,Es, by Ef ∼ Es/Kn, whereKn is the Knudsen num-
ber (defined as the ratio of the molecular mean free path to the
characteristic flow lengthscale). This implies that in low speed
gas flows, using hydrodynamic fluxes to couple the Navier-
Stokes and atomistic region is at a considerable disadvantage
compared to coupling using state variables since the coupling
will take place in regions whereKn ¿ 1. This result, namely
that the relative statistical uncertainty in fluxes is significantly
larger than the relative statistical uncertainty in the correspond-
ing state variables, was also verified for dense fluid flows
in [12].

Molecular fluctuations may affect the accuracy, stability
and efficiency of the hybrid solver. For example, molecular
data, if insufficiently averaged, may cause numerical insta-
bility when imposed onto a continuum solver. Another ex-
ample illustrating the effect of molecular fluctuations can be
found in [13] where a fully adaptive mesh and algorithm re-
finement scheme was presented; this scheme automatically in-
troduces the molecular description (dilute gas in this case) as
the finest level of refinement based on continuum-description
breakdown criteria. Numerical experiments using this scheme
showed that statistical fluctuations were responsible for spu-
rious growth of the molecular region, even at equilibrium:
this occured because spontaneous fluctuations between adja-
cent computational cells resulted in spurious gradients that ex-
ceeded the breakdown criteria. This resulted in the develop-
ment of bounds on the number of statistical samples required
to avoid spurious growth of the molecular domain [13]. A re-
cently developed variance reduction technique [14] for dilute
gases may be used if molecular fluctuations need not be re-
tained.

If hydrodynamic fluctuations are important to the problem
studied, e.g. triggering an instability [9,15], they can be re-
tained; Alexander et al. [16,17] have demonstrated that explicit
time-dependent flux-based coupling formulations preserve the
fluctuation spectrum of the molecular description throughout
the molecular region while the fluctuations rapidly decay into
the continuum region. They also demonstrated that correct
fluctuation spectra can be obtained in the entire hybrid domain
by using an appropriate fluctuating hydrodynamics formula-
tion [16–18] in the continuum subdomain.
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2.2. Coupling method.The selection of coupling method
has been discussed at length before [1]. The main message of
this discussion is that the choice of a coupling method needs
to be based on the physics of the problem of interest and not
on a preset notion that a particular coupling method is more
appropriate than all others. In other words, no general hybrid
method that can treat all hydrodynamic problems exists. In
fact, although a number of approaches may be possible, sim-
ilarly to continuum numerical methods, in order to develop a
robust and efficient simulation method, it is important to allow
the flow physics to dictate the appropriate formulation, while
the numerical implementation is chosen to cater to the particu-
lar requirements of the former.

Both molecular fluctuations discussed above and a second
important consideration, namely timescale decoupling orig-
inally discussed by Hadjiconstantinou in [6], are intimately
linked to the flow physics (flow speed). Timescale decou-
pling is required because explicit integration at the molecu-
lar timestep to the global solution time (or steady state) is
very computationally expensive, if not infeasible, if the Navier-
Stokes subdomain is appropriately large (leading to long global
evolution timescales). This is because the molecular timestep
is significantly smaller (dense fluids–MD) or at best smaller
(dilute gases–direct simulation Monte Carlo (DSMC) [4]) than
the Courant-Friedrich-Lewy (CFL) stability timestep [2] at
comparable discretization levels.

High speed (compressible) gas flows have characteris-
tic timescales that scale with the compressible CFL timestep
which is not very different from a DSMC timestep in a dilute
gas simulation, while the high speeds mean that relative statis-
tical uncertainties are smaller [11]. On the other hand, incom-
pressible flows have characteristic timescales that are much
longer than the CFL timestep [2] and thus explicit integration
at the molecular timestep is more prohibitive, while low flow
speeds mean that statistical noise is significant. It appears that
a coupling procedure based on an explicit (in time) control-
volume-type flux matching scheme is appropriate and perhaps
more convenient for a compressible flow, but not an incom-
pressible one. In fact, a number of hybrid methods [19–21]
treating compressible gas flows using explicit time integration
with a finite-volume-type coupling technique have been devel-
oped as a natural extension of already existing Navier-Stokes
solution methods. Such approaches have reached a reasonable
maturity level. Recent developments in compressible formu-
lations include techniques which extend the adaptive mesh re-
finement (AMR) concept to mesh and algorithm refinement,
by including the molecular description as the finest level of re-
finement [13,22].

In contrast, for incompressible flows, implicit methods are
required that provide solutions without the need for explicit in-
tegration in time. One such implicit method for steady state
problems has been proposed by the author and collaborators
for liquids [6,23]; it is based on a domain decomposition ap-
proach known as the Schwarz alternating method [8,24]. The
very general nature of this framework (coupling is achieved by
an iterative exchange of boundary conditions across an over-
lap region) makes it very flexible: although first used for liq-

uids, it has been already extended to gas flows [1] and was
recently used to simulate flow through microfluidic filters [25]
yielding significant computational savings. Recent work [26]
has shown that if an iterative steady state formulation is used
for the atomistic description (Boltzmann equation), the in-
ner (Boltzmann) and outer (Schwarz) iterations may be inter-
leaved, leading to further computational savings.

As pointed out in [1], the timescale limitations discussed
above have not been apparent to date because in typicaltest
problemspublished so far, the continuum and atomistic sub-
domains are of the same size, i.e. of molecular dimensions.
It should be recalled, however, that hybrid methods are useful
when the continuum subdomain is significantly larger than the
molecular subdomain. The limitations arising from timescale
considerations are apparent in a recent study which uses an
explicit in time coupling method to treat an incompressible
steady problem [7]; according to the authors, extending the
study to larger systems is limited by the need to explicity in-
tegrate the atomistic domain to the long time required for the
continuum domain to reach steady state.

2.3. Boundary condition imposition. Imposing general hy-
drodynamic boundary conditions on a molecular simulation
domain has received some attention in recent years. As stated
above, this is a challenging problem with potential applications
beyond hybrid methods. Examples include approaches appear-
ing in a number of areas in multiscale simulation which incor-
porate molecular information into continuum frameworks, e.g.
the Equation-free framework of Kevrekidis [27].

In the interest of simplicity our discussion will refer to a
one-dimensional formulation (see Fig. 1); higher-dimensional
implementations directly follow. Let the molecular and con-
tinuum subdomains be denoted byΩ andC, respectively, and
let their common boundary be denoted by∂Γ. Except from the
most trivial flows, the net mass flux across∂Γ will not be zero.
This means that imposition of hydrodynamic boundary condi-
tions also implies the supply of the correct flux of molecules
(positive or negative) through∂Γ. What makes this problem
so challenging is the fact that molecules must arrive at∂Γ in
the correct state as described by the non-equilibrium molecular
distribution function consistent with the hydrodynamic state to
be imposed. Although coupling between the molecular and
continuum description, and thus exchange of boundary condi-
tions, should only take place in a region were both are valid,
the non-equilibrium distribution function will, in general, be
unknown: even in the case of a simple fluid in the Navier-
Stokes limit, the non-equilibrium distribution function is only
known in limiting cases, e.g. a dilute gas [4].

The most convenient way to implement the required con-
ditions is to introduce a particle reservoirR by extendingΩ
into C (see Fig. 1); inR, particle dynamics may be altered
in such a way that the desired boundary conditions appear on
∂Γ under the assumption that the influence of the perturbed
dynamics decays sufficiently fast and does not propagate into
Ω; in other words, one assumes that the relaxation distance for
both the velocity distribution function and the fluid structure is
small compared to the characteristic size ofΩ. One of the rea-
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sons reservoirs are popular is that they provide for an overlap
between the continuum and molecular subdomains; this over-
lap provides more opportunities for constraining the molecular
flow to the “underlying” continuum flow and lends itself nat-
urally to approaches which use overlap regions as part of the
coupling approach (e.g. [6,7,28,29]); note that in these cases,
rather than further extendingΩ into C, the reservoir usually is
part of the overlap region (see Fig. 2).

Implementation details are typically problem dependent.
For example, note that in the configuration of Fig. 1 the outer
edge of the molecular dynamics domain is∂R, whereas in the
configuration of Fig. 2 the outer edge of the molecular dynam-
ics domain is∂Ω; although these differences complicate the
development of a general discussion, the actual scientific chal-
lenges and solutions associated with the two configurations are
very similar. We will attempt to keep our discussion as general
as possible: unless otherwise stated, we will be referring to the
configuration of Fig. 1.

Fig. 1. One-dimensional illustration of boundary condition imposi-
tion using a reservoirR

Fig. 2. One-dimensional illustration of boundary condition imposi-
tion using a reservoirR in the presence of an overlap regionΓ

We will begin our discussion with dilute gases where the
distribution function is known in the Navier-Stokes limit. We
will then discuss dense fluids in which a number of theoretical
questions remain open.

Dilute gases.In a dilute gas, the non-equilibrium distribu-
tion function in the Navier-Stokes limit has been characterized
[4,30] and is known as the Chapman-Enskog distribution. It
can be written asnf(C) wheren is the local number density,

f(C) = f0(C)[1 + Φ(C)], (2)

C is the molecular thermal velocity,f0(C) is the Maxwell-
Boltzmann equilibrium distribution function, andΦ(C) is a
small perturbation function parametrized by the local heat flux
vector and stress tensor (the exact form ofΦ(C) can be found
in [4,30,32]). Use of this distribution to impose boundary con-
ditions on molecular simulations of dilute gases results in a
robust, accurate and theoretically elegant approach.

Typical implementations [22] require particle generation
and initialization withinR during every simulation timestep;
these particles are drawn from the Chapman-Enskog distri-
bution as parametrized by the local continuum solution to
be imposed. Particles that move intoΩ within the simu-
lation timestep are added to the simulation whereas parti-
cles remaining inR are discarded. Particles leavingΩ to R
are also discarded. Recent implementations [13,22,31] show
that imposing a linearly interpolated form of the continuum
field within the reservoir region provides sufficient accuracy.
Generation of particles according to a linear density gradient
can be achieved using a variety of methods [31], including
acceptance-rejection schemes. Similarly,f(C) can be gener-
ated using an acceptance-rejection scheme [32].

Dense fluid flows. Unfortunately, for dense fluids (even
simple dense fluids) the non-equilibrium distribution function
corresponding to Navier-Stokes flow has not been character-
ized. Due to strong molecular interactions in the dense fluid
limit, describing the fluid state requires knowledge of both
the molecular velocity distribution and fluid structure. Strong
molecular interactions also make termination of the molecu-
lar dynamics domain significantly more challenging: the outer
edge of the molecular region needs to be terminated in a way
that does not have a large effect on the fluid state insideΩ.

Using a Maxwell-Boltzmann distribution to generate the
velocities of molecules on∂Γ in non-equilibrium situations
will in general lead to slip. To overcome this difficulty, Li et
al. [33] used a Chapman-Enskog distribution to impose bound-
ary conditions. They studied a simple Couette flow in which
molecules crossing∂Γ to enterΩ acquire velocities drawn
from a Chapman-Enskog distribution parametrized by the local
values of the required velocity and stress boundary condition.
Although this approach was only tested for a simple shear flow,
it appears to give reasonable results (within molecular fluctua-
tions).

Dirichlet boundary conditions on MD simulations can also
be imposed through the method of constraint dynamics [28].
This approach has appeared in a number of methods featur-
ing an overlap region [7,28,29]. In this approach, the required
boundary condition (e.g., referring to Fig. 2, flow velocity on
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∂Ω or throughoutR as specified by the continuum solution)
is formulated as a constraint and introduced into the equations
of motion of the particles in the constraint region. Although
the particular formulation in [28] did not allow for flow across
∂Ω, this feature can be integrated into this approach as shown
by Nie et al. [7]; this generalization and the remaining ele-
ments of the approach by Nie et al. will be discussed below. In
summary, although constraint dynamics methods that enforce
the required boundary condition can be formulated, their effect
on the local distribution function and thus fluid behavior is not
well understood. In other words, it is not clear what the effect
of the modified Newton equations obeyed by the constrained
particles is on the flowfield in the remainder ofΩ and the hy-
brid solution.

Although the choice of a time-dependent flux-based cou-
pling motivated by a compressible formulation in the contin-
uum subdomain is not recommended for dense fluids1, a fair
amount of work has been done in imposing flux boundary con-
ditions on molecular simulations. Flekkoy et al. [35] achieve
flux matching at∂Γ (referring to Fig. 1) by using external
forces to control particle momentum in the reservoir. The mag-
nitude of these forces is such that the total force on the fluid
particles in the reservoir region is the one required by momen-
tum conservation. By varying the spatial distribution of the
normal component of this force in a way which prevents par-
ticle escape from∂R, Flekkoy et al. use this force as a means
of terminating the reservoir. More specifically, each particle
in R is subject to a fraction of the total normal force as deter-
mined by a spatially dependent weighing factor which diverges
as the particle approaches∂R; this ensures that particles do
not escape the reservoir region while particles introduced at
∂R move towardsΩ. To remove the heat generated by these
forces and keep the temperature constant a Langevin thermo-
stat is used. Particles are introduced intoR with velocities
drawn from a Maxwell-Boltzmann distribution.

Delgado-Buscalioni and Coveney [36] extended this ap-
proach to impose both momentum and energy fluxes by using
an Usher algorithm to insert particles inR with the desired
specific energy, which is beneficial to imposing the desired
heat flux; the Usher algorithm facilitates particle insertion at
the desired location of the energy landscape while eliminating
the risk of particle overlap in physical space (at some compu-
tational cost). Inserted particle velocities are again drawn from
a Maxwell-Boltzmann distribution. In the presense of a heat
flux the temperature is no longer constant inR; instead, the
requisite temperature gradient is imposed by a small number
of thermostats placed at stations in the direction of the gra-
dient. Although this technique appeared to be successful at
imposing flux boundary conditions with moderate error, recent
work [37] reports stability problems and the appearance of dis-
continuities in state properties across∂Γ. In response to this,
a new method [37] which uses a minimum entropy production

criterion to formulate the imposition of momentum and energy
fluxes was proposed. This approach uses the fact that mass,
momentum and energy added to the reservoir region will flow
to Ω through∂Γ assuming that the associated inertias ofR
are small. The particles inR are acted upon by a force field
designed to add the desired energy and momentum to them
while R stays close to equilibrium. Although the equilibrium
requirement limits the arbitrary choice in reservoir force, it is
not clear that it is a hydrodynamically consistent choice for the
state ofR. Although it is well-known that the deviation from
equilibrium under Navier-Stokes conditions is very small (this
can be verified for a dilute gas by inserting typical values in
Φ(C)), an algorithm which promotes local equilibrium (tests
in [37] show moderate deviation therefrom) cannot guarantee
that the desired non-equilibrium molecular state is achieved in
R; this, in turn, implies that the transport properties of the fluid
may be inconsistent with Navier-Stokes behavior inR. In other
words, even if the flux across∂Γ is correct (assuming zero in-
ertia forR) consistent behavior of the state variables on∂Γ and
in the neighborhood cannot be guaranteed. It is possible that
the resulting discrepancy is small; this may be clarified when
this approach is used in a hybrid method.

Although the non-unique choice of force fields and lo-
cal Maxwell-Boltzmann distributions is not very theoretically
pleasing, the use of forces in the reservoir region has been
adopted by a number of researchers as a way of controlling
particle motion (both domain termination and flow properties).
For example, the recent work of Nie et al. [7] combines con-
straint dynamics to impose Dirichlet (state variable) boundary
conditions with a force field which prevents particles from es-
caping the reservoir region.

The application of a normal force to control particles es-
capingΩ (referring to Fig. 2) has recently been put on a firmer
theoretical footing by Werder et al. [29] who recognize that
the origin of this force is the particles that would reside in a
homogeneous and infinite extension of the molecular region2.
In other words, the force on a particle close to∂Ω receives
two contributions: the first is the one explicitly calculated in
the simulation, namely the force from all particles in the sim-
ulation within the potential cutoff; the second is the contri-
bution of all particles beyond the molecular domain termina-
tion, ∂Ω, which are within the potential cutoff. The key lies
in the realization that the spatial distribution of this force can
be re-created through knowledge of the fluid structure which
is contained in the radial distribution function [3]. Although
the fluid radial distribution function is not known away from
equilibrium, one can obtain a good approximation to this aver-
age force by using the equilibrium radial distribution function.
Simulation tests [29] show that using this approach results in a
significantly improved description of the fluid state inΩ (close
to ∂Ω). Since Werder et al. do not prevent the particles from
escaping fromΩ but rather focus on providing the correct long-

1See [2] for a discussion of challenges resulting from application of compressible solution methods to essentially incompressible flowfields; see [1], as well
as Section 2.2, for a discussion of timescale limitations arising from the above choice; see [1,29,34] for a discussion of the prohibitive statistical noise in flux
quantities compared to corresponding state variables.

2Their approach also requires a very small reservoir region whose thickness is one averaging cell width.
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range force field, specular reflection at∂Ω is used to contain
particles inΩ, while an Usher algorithm is used for introducing
new particles in the case that there is a net mass inflow toΩ.

As stated above, the need to impose boundary conditions
on molecular simulations does not only arise in hybrid meth-
ods. Recent developments in multiscale simulation have re-
sulted in a number of simulation methods which incorpo-
rate molecular information in a number of ways. One exam-
ple is the Equation-free framework of Kevrekidis et al. [27]
which uses information obtained from microscopic (molecu-
lar) solvers over small periods of time and small spatial do-
mains to integrate macroscopic equations over large domains
and long times. Performing these simulations requires the
ability to initialize and subject molecular systems to bound-
ary conditions derived from macroscopic fields (for example
from the previous macroscopic timestep). In the area of ini-
tialization, progress has been made [38] in cases where a sepa-
ration of timescales exists between the microscopic dynamics
and macroscopic dynamics of interest. In a similar fashion, in
the case of spatially smooth solutions, it is shown in [39] that
appropriately initialized reservoir regions will provide bound-
ary conditions for sufficient time for the problem to be inte-
grated forward in time for a special class of homogenization
problems. Although the assumptions of smoothness at macro-
scopic scales makes these techniques applicable to different
classes of problems, communication and idea exchange be-
tween the various multiscale simulation disciplines may prove
to be very useful in the future.

2.4. Validation. Hybrid methods are typically validated by
comparing their results with fully molecular simulations of the
same problem. This limits validation problems to small phys-
ical domains, since a fully molecular solution needs to be fea-
sible. As discussed in Section 2.2 this practice has masked
the issue of timescale discrepancy between the molecular dy-
namics integration timestep and the timescale of the nominally
large continuum subdomain. Typical comparisons are limited
to hydrodynamic fields suitably (ensemble) averaged to reduce
the statistical uncertainty to levels permitting meaningful com-
parisons; recent work on the role of fluctuations has extended
comparisons to other statistical moments of these fields, such
as the variance and spatial correlations [16,17].

Unfortunately, the numerical error associated with hybrid
procedures is not well characterized, in part due to the sta-
tistical uncertainty associated with molecular fluctuations and
the large computational cost associated with its removal [11]
which makes convergence studies very challenging. Using a
coupling method for which consistency can be shown and nu-
merical error estimates for finite discretization can be derived,
can help eliminate or bound the error resulting from the cou-
pling procedure. Other sources of error include the approxi-
mation inherent in the boundary condition imposition methods
discussed in Section 2.3 which remains largely uncharacter-
ized, and the effect of molecular fluctuations on the contin-
uum solver. A final source of error results from “incompati-
bilities” between the continuum and molecular models; these
may arise from a number of factors, such as molecular effects

present in the molecular description but neglected in the con-
tinuum model (e.g. shear thinning) or statistical uncertainty
in the properties (e.g. transport coefficients) of the molecular
fluid.

Incompatibility between the two models also arises in con-
nection with the breakdown of the continuum description and
the choice of location for the matching interface. Breakdown
of the continuum description usually means that the discrep-
ancy between the continuum and molecular model is expected
to exceed some error tolerance. In this sense, even a conser-
vative placement of the matching interface may still imply that
matching is occuring in regions where some incompatibility
between the two descriptions exists, especially in situations
where the limits of the continuum description are not well char-
acterized.

3. Final remarks
It appears that although from a theoretical point of view the im-
position of boundary conditions on molecular simulations re-
mains an open problem, significant progress has been made in
developing schemes which exhibit small numerical error in im-
posing the desired boundary conditions. One exception to this
observation is the dilute gas case where the Chapman-Enskog
distribution provides a robust and accurate method for impos-
ing boundary conditions. As in the case of continuum numer-
ical schemes, in the presence of continuous progress, flexibil-
ity in adopting appropriate elements from previous approaches
is a key step to the development of more sophisticated, next-
generation hybrid methods. Work on adaptive algorithm re-
finement methods [13] has shown that these require robust cri-
teria for Navier-Stokes or continuum description breakdown
[4,13] that are both physically accurate but also insensitive to
molecular fluctuations.

The importance of choosing the coupling method based
on flow physics cannot be overstated. Solution of appropri-
ately large, time-dependent problems is still not possible if the
molecular domain needs to be explicitly integrated for the to-
tal time of interest. Iterative steady-state solution frameworks
which decouple timescales have been successfully developed
for low speed, incompressible flows and should be used when
appropriate. For large-scale time-dependent flows, new frame-
works are required which allow timescale decoupling; alter-
natively, the resolution may lie in the development of coarse
grained molecular simulation methods. Progress in this direc-
tion has been made with dissipative particle dynamics meth-
ods [40]. In the case where separation of timescales exists be-
tween the atomistic region dynamics and the global evolution
timescale, projective techniques [27] may be used to propagate
the hybrid field forward in time, following brief explicit inte-
gration during which the two descriptions are coupled.
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