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Abstract. The positive (minimal) realization problem for a class of singular discrete-time linear single-input, single-output systems with delays
in state and delays in control is addressed. Solvability conditions for the positive (minimal) realization problem are established. It is shown
that there exists a positive (minimal) realization of an improper transfer fun€tjen = n(z)/d(z) if the coefficients of polynomiak(z) are
non-negative and of the polynomid({z) are non-positive except the leading one, which should be positive. A procedure for computation of
the positive (minimal) realization of the transfer function is proposed and illustrated by an example.
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1. Introduction 2. Preliminaries and problem formulation

In positive systems inputs, state variables and outputs take onlgt 2’*"™ be the set ofi x m matrices with entries from the
non-negative values. Examples of positive systems are inddield of real numbers an®™ = Rnx1. The set ofu x m ma-

trial processes involving chemical reactors, heat exchangeriges with real non-negative entries is denoteditly*™ and

and distillation columns, storage systems, compartmental sygz — R}ljl_ The set of non-negative integers is denoted by
tems, water and atmospheric pollution models. A variety of, and then x m identity matrix byr,,.

models having positive linear systems behaviour can be found consider the discrete-time linear system with one state de-

in engineering, management science, economics, social SGly and one input delay described by the equations
ences, biology and medicine, etc.

Positive linear systems are defined on cones and not on linEz(i+1) = Aoz (i) +Ay2(i—1)+Bou(i) + Biu(i—1) (la)
ear spaces. Therefore, the theory of positive systems is more
complicated and less advanced. An overview of state of the y(t) = cx(i) i€ Zy (1b)
art in standard delay systems is given in [1] and in positive
systems theory is given in the monographs [2,3]. Recent deherex(i) € R, u(i) € R, y(i) € R are the state vector,
velopments in positive systems theory and some new resudisalar input and scalar output respectively ahd4, € R"*",
are given in [4]. Realizations problem of positive linear sysB;, € R*, k = 0,1, c € R**".
tems without time-delays has been considered in many papers |t is assumed that d&t= 0 and
and books [2,3,5].

Recently, the reachability, controllability and minimum en- det[Ez* — Apz — A1 # 0 for some
ergy control of positive linear discrete-time systems with time- z € C (the field of complex numbers)
delays have been considered in [6-9]. The realization problem " )
for positive multivariable discrete-time systems with one time! N€ initial conditions for (1a) are given by
delay was formulated and solved in [10,11].

(2)

) i ) z(—i) € R® for i=0,1 and wu(—-1)e R (3)
The main purpose of this paper is to present a method for

computation of positive (minimal) realization of an impropent is assumed that the initial conditions belong to theXgbf
transfer function for a class singular discrete-time linear sygsmmissible initial conditions.
tems with delays in state and in control. It will be shown

that there exists a positive (minimal) realization of improper pegniTion 1. The system (1) is called (internally) posi-
transfer function if the coefficients of numerator polynomiative if for everyz(—k) € R?, k = 0,1, u(—1) € R, and all

are non-negative and of the denominator are non-positive (&putsu(i) € R, i € Z, we havex(i) € R? andy(i) € Ry
cept the leading coefficient equal to 1). forie Z..

To the best knowledge of the author the realization prob-
lem for singular linear systems with delays in the state vector Let us assume that the matricés Ag, Ay, By, Bi, ¢
and in control has not been considered yet. have the following canonical forms [3].
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E In—l 0_ RV A 0 | agp Rnxn i’(l + 1) - doeg i’(l) + (1‘_1 + @1671; )CL'(Z _ 1)
“lo o€ » Ao = [0 | 0} € ’ s(n1) ' sy
Z aobon . aobin + a1bon  + .
ax + aoiou(z +1) + (CM)IW) + bo) u(i)
_ as ne1 a2(n—1) a2(n—1)
ag = . €R s aib -
+ ( Lin +b1>u(i—1)
G2n—3 | A2(n-1)
[ Al | a1 —| . 63; _ . bon . bin .
4 = e R, y(i) = 2(0) + —"—u(i +1) + —"—ufi).
' _6271 | _a2(n—1)J 2(n—1) az(n-1) az(n—1)
ap The transfer function of (1) is given by
Al _ [0 | O:| c R(nfl)x(nfl)7 a; = CL.Q , T(Z) = C[EZ — AO — Alzil}il(Bo + Blzfl) (7)
‘Iniz | : (4) = C[IZQ — A()Z — Al]_l(Boz + Bl)
b 22 DEFINITION 2. Matrices (4) satisfying the condition (5)
o bOl are called a positive realization of a given proper transfer func-
By — bbo ] €R" by = (_)2 c Rl tion 7'(z) if they satisfy the equality (7).
L70n The realization is called minimal if the dimensienx n of
bon—1 E, A, k= 0,1is minimal among all realizations df(z).
b1y The positive minimal realization problem can be stated as
7 b12 follows. Given an improper transfer functidfi(z). Find a
by n n—1 ” o o
By = b €R", b= R, positive (minimal) realization of th&(z).
b Conditions for solvability of the positive (minimal) realiza-
In—1 tion problem will be established and a procedure for computa-
c=el=[0...01] € R™*". tion of a positive (minimal) realization df'(z) will be pre-
sented.
THEOREM 1. The system (1) with (4) is positive if and
only if

3. Problem solution
ay € Ry™Y, agm-1) >0 and By € R}, k=0,1 (5) The transfer function (7) can be written in the form

P roof. Sufficiency The equation (1) for (4) can be writtenas . _ c(Adj[E2? — Agz + A1])(Boz + B1) _ n(2) (8)
det[Fz2 — Ag + Aq] d(z)

(i +1) = oz, (i) + A12(i — 1) + @y, (i — 1)

_ - 6 here
+ bou(d) + byu(i — 1) (6a)  wher

n(z) = ¢(Adj[E2* — Agz — A1])(Boz + B1)

9
and d(z) = det[Ez?* — Ag — A4] ©)
ag(n-1)Tn(i—1) = €L (i —1) +bonu(i) +brnu(i—1) (6b)  and Adjstands for the adjoint matrix.
where LEMMA 1. If the matricesE, Ag andA; have the follow-
. ing forms (4) then
21(3) 9 2( )
_ (i) - x2(1) _ det[Ez* — Agz — Aq]
= |Vl eRY z(i)=| . |,i€Z,. 10
#(f) {xn(l)} =) : P = Ag(n-1)2"""Y — a9,_322" 73 — ... — a1z + ay. (10
p—1(1) P r o o f. Expansion of the determinant with respect torttie
If the conditions (5) are satisfied then using (6a)ifer 0 and ~ column yields
the initial conditions (3) we may compui€l) € R, and next det[Ez? — Agz — A4]
from (6b) fori = 1 z,(1) and from (6a)z(2) € R}~ '. Con- 20 0 - 0 v —a
tinuing the procedure we may find(i) € R} fori = 1,2, ... U200 _alz - aO
and from (1b)y(i) = cxz(i) € R, fori =1,2, .... 0 1 .2 0 a3z a2
_ —asz — ay

The necessity follows immediately from arbitrariness of =| =~~~
the initial conditions (3) and of the input(i) and it can be
shown in a similar way as for systems without delays [3].

Remarkl. Using (6b) we may eliminate,, (i) from (6a)
and (1b) and we obtain = @2(n-1)% — G2n-3%

0 0 0 - 22 —a2p—32 — Az(—2)
o 0 0 -

- =1 ag(n—1)
2n—3 _

... — a1z — Qp.
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LEMMA 2. If the matricesE, Ay A, have the forms (4) Using (8), (11) and (12) we obtain
then thenth row R,, () of the adjoint matrix AdjEz2 — Agz —

AdJ[EZ2 - A()Z - Al]

T(z) = B B
Aq] has the form (2) cdet[E22 y w—w (Boz + By)
Ru(2) =122 ... 22071 (11) 122 ... 2201
P r o o f. Taking into account that 220 —agy 527 — . — a1z — ag
T2 2 bo1z + b1t
(Adj[Ez* — Agz — Aq])[Ez” — Apz — A1) = 1,d(2) boaz + b1a 20)
itis easy to veriythat e
Y fy bOnZ + bln
Rn(z)[EZQ —Apz—A]=1[0 ... 0 1]d(2). Do 22" + by, 22D 4 4 Dotz + b1y
Let a given improper transfer function have the form C 220D gy, 5223 — L — iz —ag
2n—1
T(Z) - b2n_122n71 + ...+ blz + bo — 2(n7(])-)2n—12 2‘:173 + blz =+ bo .
T 22(n-1) — Q9p_322""3 — .. —ayz — ap (12) z — a2p—-3%2 — ... a1z — Qo
(ban_1 % 0) Equaling the coefficients at the same powers of the numer-
" ators of (21) we obtain
LEMMA 3. Let bon = ban—1, bin = ba(n_1),---,bo1 = b1, b11 = bo. (21)
T(z)=qaz+q+qz " +qz > +. .. (13) THEOREM 2. There exists a positive minimal realization
of (12) if
Then ) .
>0 f k= —1.0.1 14 i) the coefficients;; > 0for: =0,1,...,2n — 3.
& = or F=75L05.. (14) ii) the coefficientsz; > 0for j =0,1,...,2n — 1.
if . P roof. If the condition ii) is satisfied then from (21) it fol-
@20 for ¢=0,1,...,2n—-3 and (15) lows thatBy, By € R. If additionally the condition i) is
bj>0 for 7=0,1,...,2n—1 satisfied then the conditions (5) hold and by Theorem 1 the
realization is positive. Note that the dimensionx n of the
Proof. From (12) and (13) we have matricesAy, A; chosen of the forms (18) is minimal.
bon_122" L+ .+ biz+ b If the conditions of Theorem 2 are satisfied then a posi-
= (22! gy 32273 a1z — ap) (16) tive minimal realization of (12) can be found by the use of the

x(qgorz+qo+qz 4 gz 2+..).

Equaling the coefficients at the same powerg aff (16) we

obtain
g—1="bap_1 >0,
qo = ba(n—1) + a2n—3b2n—1 >0, ..., G2(n—1)
=bo + azn—3G2n—3+ ... +apgo >0, ...

Knowing the coefficients of the polynomial we may find the

(17)

following procedure.

PROCEDUREL.
Step 1. Knowing the coefficients;,: = 0,1,...,p—10f d(z)
find the matricesAy and A;.
Step 2. Using (21) find the matriceBy and B;.

Remark2. The matriced” andc have the canonical forms (4)
which are independent @f(z).
Examplel. Given the transfer function

_2z3+22+2z—|—1

matrices T 22
[0 -+ 0 m =) 22 —22-3 (22)
0 -+ 0 oas find its positive minimal realization.
Ag= |- ove ven YR It is easy to verify that the transfer function (22) satisfies
0 - 0 asn_3 the conditions of Theorem 2.
0 - 0 0 Using the Procedure 1 we obtain.
- 0 0 0 a (18) Step 1. From (22) we have and using (18) we obtain
1 0 0 a9 _0&1_02 _OCLQ_OS
o0 a Ao = [0 o} = [o 0}’ A= {11} = [11]' (23)
1 =
Step 2. Using (23) we obtain in this case
0 0 - 0 agm—2 ) )
0o 0 --- 1 —1 _ |bor| _ (1 _ (| _ |1
hth _ = [502] B {2] = [blz} - {2} @
such that
The matriced” andc have the forms
det[E22 — A()Z — Al] (19> 10
=d(z) = 22001 gy 522 a2 — ag. E= {O 0] » €= [O 1} ' (25)
Bull. Pol. Ac.: Tech. 53(3) 2005 295
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The desired positive realization is given by (23), (24) and (25). Itis also assumed that E and ¢ have the canonical forms (4)
If the degree of denominatai =) of a given transfer func- and

tion T(z) = n(z)/d(z) is odd then multiplying the numer- [0 - 0 ay 0 - 0 a
ator and the denominator df(z) by z we obtainT'(z) = 0 -~ 0 as 0 - 0 ay
zn(z)/zd(z) with the denominatoed(z) of even degree and A, = [... ... ... v | A = e ,
we may apply the previous Procedure 1. 0 0 asn_4 0 0 asn_s
The obtained positive realization is not, in a general case, a 0 ---0 0 0 ---0 0
minimal one. - 0 0 0 a
Example2. Find a positive realization of the transfer function 1 0 0 0 bk
as by
224 +323 4+ 2242243 g ,Be.=1 . |,k=0,1,2.
Tz = 23 —222 22 (26) 0 0 0 azmn-2) b:

Multiplying the numerator and the denominator of (26) by z L0 0 0 -1 n (34)
we obtain The following theorem can be shown in a similar way as The-

_ 2% 4320427 +22% 1+ 32 (27) orem 1.

() 24— 223 — 22 — 22 . .
THEOREM3. The system described by (31), (1b) with ma-
The transfer function (27) satisfies the conditions of Theorefiices (4) and (34) is positive if and only if

2 and we may apply the Procedure 1. 4 >0 for k=01,.. 3n—4 and

Step 1. From (27) we have, = 3 and using (18) we obtain (35)
_ b”ZO for iZO,l,Q; j:l,...,n.
00 a; 002 .
LEMMA 4. If the matricesE, A, k = 0,1,2 have the
Ag=|00a3| = [002], .
canonical forms then
000 000 s )
- g (28) det[Ez® — Agz® — A1z — As)
00 ag 000 Sn1) 4 (36)
A1: 10ay| = (10 1 s =z — G3n—4%2 — ...~ @12 — ap.
101-1 01 -1 The proof is similar to the proof of Lemma 1.
Step 2. Using (21) we obtain LEMMA 5. If the matricesE, A, kK = 0,1,2 have the
b 5 b 0 canonical forms then theth row R,,(z) of the adjoint matrix
o1 1 Adj[Ez3 — Agz? — A1z — Ay] has the form
By = |boa| = |1]|, By = |bia| = [2]. (29) 3 3(n—1)
bos 9 b1 3 Ruo(z)=[12% - z ] (37)

The proof is similar to the proof of Lemma 2.

The matrices® andc have the forms . . .
Let a given improper transfer function have the form

100 n(2)
E=1]010 ,c:[OOl]. (30) T(z) = —=%
000 d(z) (33)
. . . . . . b3n7123n_1 + b3n,223n_2 +...4+biz+ by
The desired positive realization of (26) is given by (28), (29) =~ 3m-D) - .
and (30). 22\ —agp_42°" Tt — ... — a1z — ag
Knowing ag, ay, - . ., as,—4 Of the denominatod(z) we may

find the matricesA;, k& = 00, 1, 2 of the forms (34) such that

4. Multi delays systems (36) holds. Using (36)—(38) we obtain
Consider the singular discrete-time linear system with two de- _ B B -1 _or—1
lays in state and two delays in input described by the equationT(Z) =Bz = Ao~ Arz A2z

X (B() —+ Blz_l =+ BQZ_Q)

Ex(i+1) = Aox(i) + Arz(i — 1) + Asz(i — 2)

31 _ 3 _ 2 _ _ A1 2
+ Bou(i) + Byu(i — 1) + Bouli — 2) (31) c|Ez® — Agz® — A1z — Ao " (Boz” + B1z + Bs)
AdJ[EZB — A022 - Alz — Ao}
and (1b), where:(7), u(i) andy(i) are defined in the same way =¢ det[E23 — Agz? — Az — Ag)

as for (1a) andd, € R"*", By € R".

2
It is assumed that x (Boz” + Biz + Ba)

det[Ez® — Agz® — A1z — Ag] £0 f C (32 = 12 ... )
et[Fz° — Agz® — A1z — Ag] # orsome z € C (32) T B T S———
The initial conditions for (31) are given by bor22 + by1z + boy
z(—i) € R* for i=0,1,2 and % bo22” + b122 + baz —
: . (33) T
u(—j) e R for j=1,2 Do + bz + ba,
and they belong to the séf, of admissible initial conditions. (39)
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, , , If the matricesk, A, € R"*", k =0,1,...,r, have the
_ b0nz” T 4 12 7 4 0002 L 4 b1z +buiz + b2 canonical forms then the minimalis given by

23(n=1) —qg, 42374 — . —ai1z —aop 1
_at - (47)
b3n—12°""1 + by 22" 2 + ..+ b1z + by T
= T A0 C e i —agir—an The formula (47) can be justified at follows.
sn—d e 0 If the matrix £ has the canonical form then
Equalling the coefficients at the same powers of z of the nu-
- —1 1) = 4
merators of (39) we obtain (n=D(r+1)=p (48)
Taking into account (46) and solving (48) with respect to n
bon = ban—1, bin = bsp—2,...,bo1 = by, (40) We obtain the formula (47). In general case to find a positive
b11 = b1, bay = bp. realization of an improper transfer function of the form (45)

: " o .. we may use the following procedure.
THEOREMA4. There exists a positive realization of (38) if y ap

the conditions (35) are satisfied. The proof is satisfied to the PROCEDUREZ. _ _
proof of Theorem 2. Step 1. Knowingq andp and using (46) find the numberof

delays of the system.

If the conditions (35) are satisfied then a positive realizaStep 2. Knowingq andr and using (47) find the minimai.
tion of (38) can be found by the use of the procedure similagtep 3. Knowing the coefficients;, of the denominator find
to Procedure 1. The procedure is illustrated by the following the matricesdy,, k=0,1,...,7.
example. Step 4. Using equalities similar to (40) find the matricBs
Example3. Find a positive realization of the transfer function fork=0,1,...,r.

22°4 32+ 228+ 22+ 242 " The Procedure 2 will be illustrated by the following exam-
N 23 —222-32-1 (41) ple.

] ) o Exampled. Find a positive realization of the transfer function
It is easy to see that the transfer function (41) satisfies the . 5 5 o
22" +32°+22° + 2"+ 242

T(z)

conditions (35). T(z) = = - - . ) (49)
Step 1. From (38) and (41) it follows that and using (34) we 20 =428 —32° —22% — 2 =2
obtain Itis easy to see that the transfer function (49) satisfies the con-
ditions (35).
Ay = [0 ‘ﬂ — [O 2] - [O al} — [O 3] 7 To obtain the transfer function of the form (38) we multi-
00 00 00 00 (42) ply the numerator and the denominator of (49) by z and then
Ay = {0 ao} _ {0 1 } we obtain
1-1 1-1]° T(Z)_228+326+224+23+z2+2z (50)
Step 2. Using (41) and (41) we obtain 20— 425 — 321 —22% — 22 - 22
Using Procedure 2 to (50) we obtain
By = {bm] _ H , By = {bll] — H ’ Step 1. Taking into account that in this cage= 8, p = 6 and
boz 2 biz 3 (43) using (46) we obtain
32{221]@. r=q-p=2
* Step 2. From (47) we have
The matriced” andc have the forms g+1
n = =
E:[lo},c:[()l]. (44) o r+l
00 Step 3. Taking into account thak(z) = 26 — 42° — 32* —
3_ .2 i i
The desired positive realization of (41) is given by (42), (43) 2Z — z° — 2z and using (34) we obtain
and (44). 00 ap 001 00ay 002
Remark3. If the degree of denominatds>) of a giventrans- Ao = |00as| = [004|, Ay = [00as| = |003],
fer functionT'(z) = n(z)/d(z) is equal to3n — 4 (3n — 5) 000 000 000 000
then multiplying the numerator and the denominatof'¢£) 00 ao 00 0
by z(2?) we obtain the desired transfer function and we may 4, — (10 a3 | = [10 2
apply the proposed approach. 01 -1 01 -1
Let the transfer function, in general case, have the form B (51)
n(z) Step 4. In this case we have
T(Z) = %7 degn(z) =4q, degd(z) =D (45) b0122 + 5112 + b21

[1 23 26] b022’2 + bi2z + bao
bo3z? + bisz + bag

r=4q-—p. (46) =28 4+354+24 423422422 and

Then the number of delays of the system is equal to

Bull. Pol. Ac.: Tech. 53(3) 2005 297
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bo1 1 bi1 2
BO == b02 = |0 3 Bl = b12 = |2 3
:bOS: :2: b 0 (52)
b21 0
BQ == b22 = 1
| b23 | 13]
The matricesZ andc have the forms
100
E=1010|,c=[001]. (53)
000

S
i
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multi-output singular discrete-time and singular continuous-
time linear systems with delays in state and in control.
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