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R. CZERWIŃSKI∗, D. KANIA, and J. KULISZ

Institute of Electronics, Silesian University of Technology, 16 Akademicka Str., 44-100 Gliwice, Poland

Abstract. The paper concerns the problem of state assignment for finite state machines (FSM), targeting at PAL-based CPLDs implementations.
Presented in the paper approach is dedicated to state encoding of fast automata. The main idea is to determine the number of logic levels of
the transition function before the state encoding process, and keep the constraints during the process. The number of implicants of every single
transition function must be known while assigning states, so elements of two level minimization based on Primary and Secondary Merging
Conditions are implemented in the algorithm. The method is based on code length extraction if necessary. In one of the most basic stages of the
logic synthesis of sequential devices, the elements referring to constraints of PAL-based CPLDs are taken into account.
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1. Introduction

Proper state encoding is very important for sequential logic.
The choice of the codding words assigned to states of an FSM
has a tremendous influence on the number of flip-flops and
complexity of the transition and output combinatorial blocks.
The sequential automata state assignment plays therefore a ma-
jor role in the synthesis process.

The main problem of the synthesis is implementation of
a single-output function, which is a sum ofp-implicants, by
means of logic cells containingk-terms, ifp > k. The problem
appears when targeting PAL-based CPLDs implementations.
The implementation of such a function requires more than one
cell. This way, the number of logic levels of such implemen-
tation is increased, and so propagation time is increased. The
methods of avoiding this problem in combinatorial devices has
been studied for instance in [1–4].

There are many different methods of state assignment. This
is because there are different goals of optimization and many
structures of automata. Some well known methods, e.g. “one
hot” coding, are simple, but they often give effects far from op-
timum. There are also methods which give results considered
as optimal [5–7]. The state assignment problem is often solved
together with input and output encoding [8]. Some methods
are based on dichotomies or dominance graphs [6,9]. Some-
times the problem is solved using genetic algorithms [10]. The
most importand and popular academic systems are: NOVA [6],
MUSTANG [11], JEDI [12], ASYL [1,2,13].

A large majority of methods are dedicated for automata
which are to be implemented in a PLA-based devices, while
the kernel of most CPLDs is a PAL-based cell. A characteris-
tic feature of this cell is a limited number of terms connected to
the OR-gate. The output of an AND-gate is connected to only
one OR-gate. So, the product terms cannot be shared among
the functions, and unused terms cannot be freely allocated to
other cells.

The aim of the proposed state assignment method is to

fit the finite state machines to the structure of the PAL-based
CPLDs as well as possible. The major purpose is taking into
account – minimizing the number of logic level of the transi-
tion function. The number of logic levels of the transition func-
tion is determined before the state assignment process on the
basis of state weights. Of course, minimization of the number
of PAL-based cells used to implement the transition function
is also taken into account. Elements of two-level minimization,
based on Primary and Secondary Merging Conditions, are in-
cluded in the algorithm. The main idea is to extract the length
of the coding word if necessary (when the number of logic lev-
els exceeds the assumed value).

The method, dedicated for fast automata, is quick and easy.
Because of a heuristic nature of the algorithm, many experi-
ments were carried out, and are reported in the paper.

This paper is structured as follows. Section 2 introduces
some basic informations about PAL-cell and automata theory.
Section 3 focuses on the basic ideas and definitions. The al-
gorithms are presented in Section 4. Experimental results are
reported in Section 5. The paper concludes with a summary in
Section 6.

2. Preliminaries
2.1. The automata theory. Let the sequential circuit hasn-
inputs, m-outputs, andK-memory elements to representl-
internal states of the circuit. The input state is determined by
the vectorX = (xn−1, . . . , x0), the output state is determined
by the vectorY = (ym−1, . . . , y0), and the internal state is de-
termined by the vectorS = (QK−1, . . . , Q0). LetB = {0, 1}.

The mathematical model of a sequential circuit is a Finite
State Machine (FSM), which is a six-tuple:{X,Y, S, δ, λ, Sr},
where:X is a finite input alphabet (X ∈ X ⊆ Bn), Y is a fi-
nite output alphabet (Y ∈ Y ⊆ Bm), S is a finite set of states
(S ∈ S ⊆ Bl), δ : X×S→ S is the transition function,λ is the
output function andSR ∈ S is the initial or reset state.

The transition function of an FSM determines next state
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of the automata (S+), and is the mappingδ : X × S → S
(S+ = δ(X, S)).

The most popular finite state machines are the Mealy FSM,
and the Moore FSM. In the Mealy FSM the output function is
associated with each transition:λ : X×S→ Y (Y = λ(X, S)),
whereas in the Moore FSM the output function is associated
with each state:λ : S → Y (Y = λ(S)). Structure of the most
popular FSM is presented in Fig. 1.

Fig. 1. The structure of an FSM

Generally theδ andλ functions are multi-output functions:
δ = (δK−1, . . . , δ0), λ = (λm−1, . . . , λ0), so letδi be ith bit
of the transition function andλj bejth bit of the output func-
tion.

Internal states of an FSM are given mostly symbolic val-
ues. The goal of the state assignment is to assign to every state
S ∈ S a binary representationf (S), f : S→ BK , where:K is
the number of bits required to distinguish states. The minimum
number of the code bits can be calculated from Eq. (1):

K = dlog2 le (1)

where:dae is a minimum integer not less thana. The number
of states must be greater than one. Otherwise the sequential cir-
cuit is just reduced to a combinatorial circuit (there is no need
to assign states).

FSMs can be represented by a State Transition Table
(STT). Every row of an STT corresponds to the transition be-
tween two states of the machine. The rows are divided into four
columns corresponding to the primary inputs, present states,
next states, and primary outputs (thekissformat). In the FSMs
primary inputs and outputs are usually binary vectors, which
may contain don’t care entries. The present-state and the next-
state columns are symbolic. The rows of a STT are called sym-
bolic implicants (of the symbolic cover) [14]. A state transition
graph, with corresponding STT, is presented on Fig. 2.

Fig. 2. State transition graph and corresponding STT

An assigned STT is a collection of multi-output implicants.
An input part of a multi-output implicant corresponds to the

primary input and a present state. An output part of a multi-
output implicant corresponds to a next state and the primary
output.

2.2. PAL-based CPLDs.A large majority of CPLDs are built
of a simple cell matrix and a programmable interconnect array
(PIA) – see Fig. 3.

Fig. 3. A typical CPLD structure

The core of most CPLDs is a PAL-based cell. The general-
ized structure of the PAL-based cell is shown in Fig. 4. From
the point of view of the presented method, three most impor-
tant elements will be discussed.

Fig. 4. A generalized structure of a PAL-based cell

A PAL-based cell contains a programmable-AND/fixed-
OR structure (1), which can implement logic up tok product
terms. In most casesk < 8 (usually 4 – Lattice: ispXPLD4A,
or 5 – Xilinx: XC9500, MAX7000; Lattice: ispXPLD5000; At-
mel: ATF1500). The output of an AND-gate connot be con-
nected to more than one OR-gate.

The register (in some cases programmable as D or T flip-
flop) can be bypassed for combinatorial operation (2). For a
multi-level structure of the transition function, the last cell is
of the synchronous type, while the previous cells are combina-
torial. As a rule, the output function is combinatorial.

It was mentioned above, that sometimes functions are
multi-level. It is required, when the number of implicants ex-
ceeds the number of AND-gates of the PAL-cell. Sometimes
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it is possible to allocate additional term (or group of terms)
from other cells to the OR-gate. Nevertheless, the implemen-
tation of every function is not possible. It is possible to ex-
pand the number of product terms thanks to the feedback lines
(3). The D flip-flop’sQ or Q output is fed back into the pro-
grammable AND-array, so sequential logic can be easily im-
plemented. There are two basic types of product term expan-
sion – Fig. 5.

Fig. 5. Two types of product terms expansion

These two types of expansions use the same number of
PAL-cells, but the second solution (Fig. 5b) is better with re-
gard to the number of logic levels.

3. Definitions
3.1. State encoding using weights.Let the state weightηSi

be a number of transits to the stateSi of the machine – the
number of occurrences as a next state in STT.

Let ηδi be the number of implicants of a single transition
functionδi.

Let theµ-range be the number of bits equal to1 in the code.
The distanceν(A,B) between two mintermsA andB is

the number of bits, they differ in. Let theν(Si, Sj) be a num-
ber of code bits assigned to statesSi andSj , they differ in.

According to the definition, a coded STT is a collection of
multi-output implicants: the input part of the multi-output im-
plicant is the cube of those functionsδi or λi, for which there
is 1 on ith position of the output part. To decrease the number
of implicants:

1. Codes should be minimal with respect toµ-range.
2. StatesSi with greater weightsηSi should be assigned first.

The second conclusion is easy to explain – states that oc-
cur more frequently as a next state are assigned codes with
a smaller number of logic “high”. Going step forward, one
more thing should be noticed: the state with the greatest weight
should be assigned the code with all bits logic low (µ = 0).
This is because none of the single transition functions includes
implicants corresponding to transition to the state.

Considering the FSM realization, dedicated for PAL-based
CPLDs, the number of implicants of every single function

should fit the number of product terms best. So, the number
of implicants should be known in the process of state assign-
ment. The total number of implicants of a single functionδi or
λi equals to the weight of states, for which there is a1 on ith

position.
An example of a FSM is shown in Fig. 6. States2 has the

biggest weight –ηs2 = 6. On the basis of the presented con-
clusions, the code00 should be assigned to the state. Next,s3
(ηs3 = 3) should be assigned the code01 or 10, and thens1 or
s4 (ηs1 = ηs4 = 2) with unused states. It is necessary to use
16 or 9 product terms to implement the transition function of
the presented FSM.

Fig. 6. Influence of state assignment on the number of implicants

Elements that refer to the weights of states have been pro-
posed in [15].

Considerations presented in this subsection don’t take into
account two-level minimization. Of course the number of
terms may be reduced. The main goal of the state assignment
process should be to assign states with codes situated conve-
niently for the implicants to be merged. It is complicated for
FSMs, because the input parts of the multi-output implicants
are connected with the output part. The next state of the tran-
sition is the present state of another transition. Changing one
bit of the state code involves changes in both input and output
part of the implicants. On the other hand, elements of two-
level minimization must be included in the state assignment
process, in order to take advantage of the number of the PAL-
based cell terms. Primary merging conditions and secondary
merging conditions enable the algorithm to include elements
of two-level minimization into the process of the state assign-
ment. It is possible to predict the number of terms of a single
function then.

3.2. Primary merging conditions. The idea of the state as-
signment is based on assigning to two statesSp and Sr,
which correspond to the transitions to another stateSi for the
same inputX, binary codes that differ only in one position,
ν(Si, Sj) = 1.

A fragment of an example FSM with two different state
assignment is shown in Fig. 7. There are two transitions pre-
sented in figure. The states3 is the next state for both tran-
sitions. The inputs and the outputs are also the same for both
transitions. The present states ares1 in first transition ands2 in
the second transition. The states2 should be assigned the code,
such as the distance to the states1 code is one (ν(s1, s2) = 1).
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Two presented multi-output implicants can be merged into one
implicant (right branch in figure). The distance for the case on
the left branch in figure isν(s1, s2) = 2. Implicants cannot be
merged.

Fig. 7. Fragment of an example FSM with two types of state assign-
ment

DEFINITION 1. A Primary Merging Condition (PMC)
{Sp, Sr}Si

X for a transition function is a condition formed by
two transitions from statesSp andSr to the stateSi that corre-
spond to the same inputX.

DEFINITION 2. A Primary merging condition{Sp, Sr}λi

X
for the output function is a condition formed by two transitions
from statesSp andSr, for which the output functionλi is 1,
that correspond to the same inputX.

To satisfy primary merging conditions, statesSp and Sr

have to be assigned binary codes, whose distance equals one.
Primary merging conditions{s1, s2}s3

001 and{s1, s2}λ0
001,

presented in Fig. 8, concern to fragment of an FSM presented
in Fig. 7.

Fig. 8. A part of STT with primary merging conditions

3.3. Secondary merging conditions.Product terms of the
PAL-based cell cannot be shared among the functions. So
the structure extorts independent realization of every function
fi : Bn → B for i = m−1 . . . 0. The two-level minimization is
carried out for every functionfi independently (each function
is minimized one at a time as a single-output function).

As a result of the state assignment, the transition function
δi can contain implicants, the distance of which is 1, but not as
the effect of satisfying primary merging conditions. This can
happen, if the transition function contains implicants that refer
to:

– transitions from two different actual statesSi andSj , that
are carried out for the same inputxu, if the distance between
the codes of those states equals one –ν(Si, Sj) = 1,

– transitions from the same stateSi for two different inputs
Xu and Xw, the distance between which is also one –
ν(Xu, Xw) = 1.

Consider the example shown in Fig. 9. No primary merg-
ing conditions exist for the presented fragment of the unas-
signed STT. The states are assigned codes and then the list
of multi-output implicants is splitted to single-output impli-
cants (because product terms of a PAL-based cell cannot be
shared among the functions). The list of implicants is reduced
to two after the two-level minimization. One pair of implicants
is merged because there is pair of transitions from the states
s1 ands3 for the same input01 and the output has a1 on the
same positionδ2. It is of course possible because the distance
between codes of the statess1 ands3 equals one.

The second pair of implicants can be merged because there
are transitions from the states3 for two different inputs01 and
11, the distance between which is one (ν(Xu, Xw) = 1) and
two implicants that correspond to the transitions belong to the
same functionδ1.

Fig. 9. A part of an STT before and after the state assignment process

DEFINITION 3. A Secondary Merging Condition (SMC)
{Sp, Sr}Sa,Sb

δi,X
is a condition that is formed by two present

statesSp andSr from which there are transitions to next states
Sa andSb for the same inputX. The symbolic implicants, re-
ferring to the present statesSp andSr, belong to the same tran-
sition functionδi.

To satisfy the secondary merging conditions
{Sp, Sr}Sa,Sb

δi,X
, the statesSp and Sr have to be assigned bi-

nary codes with the distance between them equal to one –
ν(Sp, Sr) = 1.
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DEFINITION 4. A Secondary Merging Condition
{Sp}Sa,Sb

δi,Xu,Xw
is a condition that is formed by the present

stateSp, from which there are transitions to the next states
Sa andSb for inputsXu andXw. The symbolic implicants,
referring to the present stateSp, belong to the same transition
functionδi.

The Secondary merging condition{Sp}Sa,Sb

δi,Xu,Xw
is always

fulfilled, and two implicants are merged. The condition is writ-
ten in order to eliminate multiple merging of the same impli-
cants.

SMCs emerge during the process of state assignment. One
step of thestate encoding process is shown in Fig. 10 . The
mechanism of the SMC arising is also presented.

Fig. 10. The mechanism of the SMCs forming, during the process of
state assignment

3.4. The implicants distribution table. The basic difficulty
of an effective term using, when functions are to be imple-
mented in PAL-based devices, is two-level minimization. As
a rule it is carried out after the state assignment process, so
the result cannot be foreseen. The elements of the two-level
minimization or methods of counting the number of implicant
(as the effect of the minimization process) have to be included
in the process of state assignment. It is easy to write primary
merging conditions, but secondary merging conditions appear
only in the state assignment process, and come from the distri-
bution of implicants among single functions.

DEFINITION 5. The Implicants Distribution Table (IDT)T
is the table divided into columns, corresponding to the weights
ηδi of the single functionsδi. Every row of the table corre-
sponds to the number of implicants which is equal to weights
of the states. The weights of the states are written into those
columnsηδi , for which there is a1 on ith position of the code.

When the PMC or SMC is fulfilled, a−1 is written into
column corresponding to the functionδi, for which two impli-
cants are merged.

Example of an IDT is shown in Fig. 11.

4. The method
The way of expanding the product term number is to feed back
an OR-gate output to the logic array. Two basic types of expan-
sion are presented on Fig. 5. The main cost of such an imple-
mentation is reduction of the system speed caused by adding
extra logic levels to the structure. The delay of forming an out-
put vector in an FSMs depends not only on the speed of an
output block. It depends on the speed of a block which re-
alizes the transition function, too (Fig. 1.). The speed of the

transition block is much more critical, because the state vec-
tor is formed synchronously, while the output vector is formed
asynchronously (the output block is combinatorial). The non-
uniform increase of logic levels of the single transition function
should be avoided – the logic level number of the transition
blockξδ equals to the number of cells used in the longest path.

The number of logic levels number of fast automata must
be as small as possible. The logic level extraction problem is
solved in the presented approach.

It is possible to determine the number of logic cells of the
transition block after the state assignment process. Let theσδi

be the number of logic cells of the transition block:

σδi =

{
1 dlaηδi = 1⌈

ηδi−1
k−1

⌉
dlaηδi > 1 (2)

where:k is the number of the product terms in the PAL-cell
(k > 1).

Let theξδ be the number of logic levels of the transition
block. The number of logic levels for the expansion strat-
egy presented in Fig. 5a, equals to the number of logic cells
calculated on the basis of Eq. (2) in the longest path:ξδ =
maxi(ηδi).

The number of logic levels for the expansion strategy pre-
sented in Fig. 5b can be calculated from Eq. (3).

ξδ =
{

1 if ηδi < k
maxi(

⌈
lgk ηδi

⌉
) if ηδi ≥ k

(3)

The question is: is it possible to estimate the minimum
number of logic levels of the transition block, for which the
realization is possible? The answer is yes. It is so important
because the number of logic levels of the transition block must
be known in advance – before the state assignment process. It
can be determined from the equation (4).

ξδ =
{

1 if ηSi < k⌈
lgk ηSi

⌉
if ηSi ≥ k

(4)

where:ηSi is the greatest but one weight (unless there are two,
or more states with the same greatest weight). The state with
the greatest weight is assigned the zero code, so none of the
functions has implicants corresponding to transitions to the
state.

The main idea is to count the number of logic levels of ev-
ery single transition block during the state assignment process.
In following steps of the algorithm, unassigned state with the
greatest weigh, is assigned a minimumµ-range code. If the
number of logic levels exceeds the assumption, the number of
codding bits is increased. Codes already assigned to states are
supplemented with0.

The algorithm (ml):

1. Calculate the numberK of bits of coding word (equa-
tion (1)).

2. Specify the PMCs of the transition function.
3. Assign to the state with the greatest weightηsi the zero code

(µ = 0). If there is more than one state that satisfies the
condition, choose the statesi which can satisfy most PMCs
{si, sr}sj

x .
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4. µ := 1.
5. Calculate the numberξδ of logic levels of the transition

function (Eq. (4)).
6. Choose the state with the greatest weightηsi . If there is

more than one state that satisfies the condition, the sort key
is as follows:

(a) choose the statesi, which can satisfy more primary
merging conditions{si, sr}sj

x ,

(b) choose the statesi, which can satisfy more non-
excluding secondary merging conditions{si, sr}sa,sb

δj ,x ,

7. If none of theµ-range codes is free,µ := µ + 1.
8. Assign to the chosen statesi a free code of theµ-order; if

there is more than one possibility, the sort key is as follows:

(a) the number of PAL-based cell incrementation is the
smallest,

(b) the sum of allηδi is the smallest,

(The PAL-cell incrementation and the sum of allηδi are cal-
culated after making allowance for every satisfied merging
condition)

9. If existsδi : ξi > ξδ, than:

(a) cancel the last assignment,

(b) K := K + 1,

(c) µ := 1,

(d) suplement the already assigned codes with 0 on the
MSB,

(e) return to point 8.

10. Refresh the IDT.
11. Revise the secondary merging conditions.
12. Cancel the satisfied or the excluded primary and secondary

merging conditions.
13. If not all states have been already encoded, than return to

point 6.
14. Choose the output level activity [16].
15. End.

EXAMPLE . Let’s consider an example. The STT of the ex-
ample FSM is given in Fig. 11 (kiss2format don’t care states
are denoted by ’*’; A current state don’t care condition indi-
cates that no matter what state you are in, a specified input
produces a transition to a given next state and output condi-
tion). On the basis of the presented STT, the weights and the
PMCs are specified. The coding lengthK is 4. It has been as-
sumed that the product term number of the PAL-based cell is 3.
The number of logic levels is determined on the basis of weight
of the states1 (or s3) and equals one.

The states0 is assigned first of all – the weightηs0 is the
greatest. According the algorithm (and drawn conclusions) the
states0 is assigned0000. Next, states are assigned respectively
s1 − 0001, s3 − 0010, s4 − 0100 ands2 − 1000. According
to the definition 5, the weights of states are written into those
columnsδi, for which there is a1 on theith position of the
code. Four rows of the presented part of the IDT correspond to
the numbers of implicants, which are equal to weights of the
states. The situation is shown in Fig. 12a.

Fig. 11. An example function with weights and PMCs

Fig. 12. State assignment process
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Fig. 13. An example function with IDTs being the effects of the dif-
ferent state assignment

The continuation of the state assignment procedure is pre-
sented in Fig. 12b and c. First, the states5 is assigned1100.
The PMC{s4, s5}s1

1 00 is fulfilled, so a−1 is written into ITD
for the column corresponding to the functionδ0 (ηδ0 is decre-
mented). It should be noticed that statess4 ands5 have a com-
mon logic high on the position corresponding to the function
δ2. Because there are two transitions from the states3 for in-
puts100 and101 ({s3}s4,s5

δ2,100,101 is fulfilled), ηδ0 is also decre-
mented.

The states5 can be assigned0110 as well (Fig. 12c).
The two conditions are satisfied like in Fig. 12b. But there is
one more SMC for this case. Statess3 and s5 have a com-

mon1 on the position corresponding to the functionδ1. There
are two transitions from the states3 for inputs101 and111
({s3}s3,s5

δ1,101,111), so theηδ1 is decremented too.
A starting point to assign states8 is an IDT form Fig. 12c.

Next, the states8 should be assigned the code for which the
distance between the states8 and the states1 is one. Assign-
ing to the state the code 0101 makes the structure of the FSM
two-level. If whichever of the free codes was chosen, there
would be the same effect (like in the one shown in Fig. 13,
after the states8 was encoded with0110). The main idea in
this situation is to use an additional bit and to assign the state
s8 code10000. The number of logic cells is the same as in
previous cases, but the number of the logic levels still remains
one. Codes, that are already used, are supplemented with 0 on
the MSB position.

5. Experimental results

The experiments were carried out by means of:

– JEDI [12]: the input dominant algorithm (i), the output
dominant algorithm (o) and the coupled dominant algorithm
(c);

– NOVA [6]: the input and output (dominance) constraints
(iohybrid_code –ioh), the input constraints (ihybrid_code –
ih) and the input constraints (iexact_code –ie);

– the “one-hot”encoding (one);
– the presented ml-algorithm (ml).

Table 1
Comparison of the ml-algorithm with JEDI and NOVA

B-mark
k = 3 k = 4 k = 5

i o c ioh ih ie ml i o c ioh ih ie ml i o c ioh ih ie ml

The number of logic levels of the transition function
bbtas 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 1 1 2 1 1 1
dk27 1 2 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1
ex3 2 2 2 2 3 - 2 2 2 2 2 2 - 1 2 2 2 2 2 - 1
ex5 2 2 2 3 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1
ex7 2 2 2 3 2 2 2 2 2 2 2 2 2 1 2 2 2 3 2 2 1
lion 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lion9 1 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
mc 2 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1
train11 2 2 2 2 2 - 1 2 2 2 2 2 - 1 1 2 1 1 1 - 1
train4 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total 16 18 17 21 20 151 13 15 15 15 17 16 131 10 14 14 12 14 14 101 10
The number of logic cells of the transition function

bbtas 6 2 3 5 5 5 5 5 2 2 4 4 4 5 4 2 2 4 4 4 4
dk27 3 4 3 6 5 5 3 3 3 3 5 5 5 3 3 3 3 3 3 3 3
ex3 12 3 3 12 2 2 8 9 2 2 9 2 2 6 7 2 2 7 2 2 4
ex5 12 6 4 17 3 4 8 8 4 4 12 2 2 5 8 4 4 9 2 2 4
ex7 14 5 6 13 6 - 9 10 5 5 9 5 - 5 8 3 3 8 4 - 5
lion 2 2 2 3 11 12 3 2 2 2 2 8 8 2 2 2 2 2 6 8 2
lion9 4 7 6 4 3 4 8 4 5 6 4 2 4 7 4 5 4 4 2 2 5
mc 3 9 14 3 13 13 2 2 6 10 3 9 9 2 2 5 8 2 8 7 2
train11 7 9 8 7 6 6 6 5 7 7 5 4 4 6 4 6 4 4 3 3 4
train4 2 11 10 3 14 - 2 2 7 8 2 9 - 2 2 7 6 2 8 - 2

Total 65 58 59 73 68 511 54 50 43 49 55 50 381 43 44 39 38 45 42 311 35
1 – without ex3 and train11 benchmarks
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Fig. 14. Comparison of different algorithms targeting at reduction of
the number of logic levels

Fig. 15. Comparison of the “one-hot” coding with the proposed
method: lc – the number of logic cells, ll – the number of logic levels

Experiment were carried out using some selected bench-
marks [17].

Experimental results for NOVA, JEDI, and the considered
state assignment targeting at fast automata (the ml-algorithm)
are shown in Table 1. The ml-algorithm gave the best results
for all analyzed logic cells. The total number of logic levels is
reduced by about 18%, 33%, and 16% for3-, 4- and5-terms
cells (for the worst case). It can be observed, that fork = 4
andk = 5, for all presented benchmarks transition blocks are

one-level. Moreover, the minimization of the number of logic
levels is not relevant with the number of cell expansion. The
considerable reduction of the number of logic levels guaran-
teed a comparable number of logic cells used to implement the
transition function.

The graphs presented on Fig. 14 illustrate the comparisons
of the total numbers of logic levels and logic cells obtained for
different algorithms.

Table 2
Comparison of the ml-algorithm with “one-hot” coding

B-mark
k = 3 k = 4 k = 5

one ml one ml one ml

bbtas 2/11 1/5 2/7 1/5 2/7 1/4
dk27 2/8 1/3 1/7 1/3 1/7 1/3
ex3 3/19 2/8 2/14 1/6 2/13 1/4
ex5 3/16 2/8 2/13 1/5 2/12 1/4
ex7 3/19 2/9 2/15 1/5 2/14 1/5
lion 1/4 1/3 1/4 1/2 1/4 1/2
lion9 1/9 1/8 1/9 1/7 1/9 1/5
mc 1/4 1/2 1/4 1/2 1/4 1/2
train11 2/12 1/6 2/12 1/6 1/11 1/4
train4 2/7 1/2 1/4 1/2 1/4 1/2

Total 20/109 13/54 15/89 10/43 14/85 10/35

a/b: a – the number of logic levels
b – the number of logic cells

Table 3
Comparison of different algorithms for the expansion strategy like

in Fig. 15a

B-mark
k = 3 k = 4 k = 5

one ih ml one ih ml one ih ml

bbtas 3 2 1 2 2 1 2 1 1
dk27 2 2 1 1 2 1 1 1 1
ex3 8 5 2 5 3 1 4 3 1
ex5 7 4 2 5 3 1 4 2 1
ex7 9 4 2 6 3 1 5 2 1
lion 1 1 1 1 1 1 1 1 1
lion9 1 2 1 1 1 1 1 1 1
mc 1 2 1 1 1 1 1 1 1
train11 2 2 1 2 2 1 1 1 1
train4 2 2 1 1 1 1 1 1 1

Total 36 26 13 25 19 10 21 14 10

Fig. 16. Comparison of different algorithms for the expansion strategy
like in Fig. 15a

In Table 2 the comparison of the ml-algorithm with “one-
hot” encoding for the chosen benchmarks is shown. The num-
bers of logic levels are calculated from Eq. (3) and concern the
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transition block (the expansion strategy like in Fig. 5b). The
proposed algorithm gives much better results than the “one-
hot” method, which is considered as a good method for fast
automata. Moreover, increase of the number of product terms
in PAL-based cell leads to decreasing the ratio of the number
of logic levels between the ml-algorithm and the “one-hot” al-
gorithm, while the ratio of the number of logic cells increases.
This can be explained by better fitting the structure of an au-
tomaton after the state assignment using the ml-algorithm than
using the “one-hot” algorithm.

The comparison of total numbers of PAL-cells based on the
Table 2 is shown on a graph in Fig. 15.

The comparison of the ml-algorithm with the “one-hot”
and JEDI ih-algorithm is presented in Table 3 and in Fig. 16.
The numbers of logic levels of the transition blocks are calcu-
lated from Eq. (2) – the expansion strategy like in Fig. 15a.

The main disadvantage of the “one-hot” method is that
there is no zero code. Every of theδi function includes impli-
cants that correspond to transitions to the stateSi. In the group
of benchmarks, there are three with disproportional weight of
one state (ex3, ex5, ex7). Assigning to those states zero codes
provide solutions that are faster and use less terms. The “one-
hot” method may be than improved by expanding the set of
codes with the zero code.

6. Conclusions
The method proposed in the paper method matches the struc-
ture of sequential automata to the PAL-based CPLDs better.
The novel method based on Primary and Secondary Merging
Conditions and Implicants Distribution Table makes that the
limitations of PAL-based cell are taken into account at an early
stage of synthesis.

The one-hot coding is considered to be a method, which
generates fast automata. The preliminary experimental results
don’t confirm this thesis. It is known that generally the num-
ber of code bits (in ”one-hot” coding) is redundant – it may
require too many bits to be practical. The modification of the
”one-hot” method, presented in this paper, may lead to faster
structures.

Experimental results indicate that the ml-algorithm is very
efficient. The algorithm is also very fast – faster than NOVA
and JEDI (e.g. for ex3:tioh/tmb À 10).
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