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Abstract. The main objective of this work is to provide a closed formula for the backward and symmetric solution of the 2-D implicit

Roesser model. The relative forward and backward fundamental matrix is of fundamental importance in our approach. An algorithm for the

determination of the backward fundamental matrix sequense is also given.

Key words: Roesser model, forward solution, backward solution, symmetric solution, implicit 2-D systems, fundamental matrix sequence.

1. Introduction

In recent years, the field of multidimensional linear systems

theory has attracted many researchers [1–3] due to the wide

applications in areas such as image processing, linear multi-

pass processes, iterative learning control systems, lumped and

distributed networks e.t.c.. The Roesser [4] and the Fornasini-

Marchesini [5] 2-D state-space models have been proven use-

ful in such areas (see also [3]). A main disadvantage of these

models is that they require causality or a milder notion like

recursibility. However, in the 2-D plane there is no natu-

ral notion of causality, if we think, for example of the dis-

cretized version of the hyperbolic equation [6] or the heat

equation which is a two-variable partial differential equation

with boundary conditions specified on all sides of a planar

region or the long transmission line where the voltage at a

point depends on the voltage on either side of a point. Other

examples are also in image processing where the 2-D system

may have right to left dependencies as well as left to right

dependencies. To overcome the problem of causality and re-

cursibility, implicit models have been proposed. More specif-

ically, [7] has proposed a general singular model (GSM) or

otherwise called implicit Fornasini-Marchesini model, while

[8] and [9] have proposed a special case of the general sin-

gular model, the implicit Roesser model. However, there is a

number of important cases where singularity in the resulting

model structure can be avoided by using appropriate analysis

tools i.e. linear repetitive processes [10]. However, this is not

the case in this paper.

In [11] and [12] a forward solution to the 2-D GSM and

the implicit Roesser model respectively, was investigated in

terms of the forward fundamental matrix of the system. In

both cases, it is found the semistate sequence is given the in-

puts and the initial semistate value. However, certain questions

still remain as concerns: a) the symmetric solution, where the

inputs and the boundary values are prescribed, and b) the

backward solution, where the inputs and the final values are

prescribed. In this note, we provide analytic solutions for the

backward and symmetric solution and thus extend in this way

the results presented in [13] for the case of one-variable de-

scriptor systems.

2. Background

Consider the singular dynamical system of equations

Ex (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k) + Du (k)
(1)

with x (k) ∈ Rn, u (k) ∈ Rm, y (k) ∈ Rp, k = 0, 1, ..., N −1.

The interval of interest of index k is [0, N ], with u (k) nonze-

ro for k = 0, 1, .., N . By assuming that the pencil zE − A
is regular i.e. det (z0E − A) 6= 0 for some z0 ∈ C, then for

some R > 0 and |z| > R, the Laurent series expansion about

infinity for the resolvent matrix is given by

(zE − A)
−1

= z−1
∞∑

i=−µ

Φiz
−i (2)

where µ is the index of nilpotence and the sequence Φi is

known as the (forward) fundamental matrix. Similarly for

some R > 0 and for 0 < |z| < R, the Laurent series ex-

pansion about zero for the resolvent matrix is given by

(zE − A)
−1

=

∞∑

i=−p

F−iz
i (3)

where the sequence F−i is known as the (backward) funda-

mental matrix. Explicit formulas for the coefficients Φi has

been given in [14–18]. There have been several interpretations

of Eq. (1). From a dynamical standpoint we may consider that

the initial condition x (0) is given and that is desired to de-

termine the state x (k) in a forward fashion from the input

sequence and the previous values of the semistate. We call

this the forward solution of (1) and is given by [13]:

x (k) = ΦkEx (0) +
∑k+µ−1

i=0
Φk−i−1Bu (i) (4)
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A variant of this is to consider x (N) as given and then deter-

mine x (k) in a backward fashion from the input and future

values of the semistate. We call this the backward solution of

(1) and is given by [13]:

x (k) = −Fk−N−1Ex (N) +
∑N−1

i=k−p
Fk−iBu (i) . (5)

Another interpretation, arising in economics (where k might

not be the time variable) and elsewhere, is to determine the

semistate x (k) for intermediate values of k, given the se-

quence {u (k)} and admissible x (0) and x (N). We call this

the symmetric solution of (1) and it is given by [13]:

x (k) = ΦkEx (0)−Φ−N+kEx (N)+
∑N−1

i=0
Φk−i−1Bu (i)

(6)

where x (0),x (N) satisfy a symmetric boundary condition of

the form

W0x (0) + WNx (N) = w ∈ R
n (7)

and
[

W0 WN

]

is a prescribed real matrix with full rank

n, and w a real vector.

Consider the 2-D linear discrete time system proposed in

[7] as a generalization of the 2-D state-space model given in

[19]

Ex (i + 1, j + 1) = A0x (i, j) + A1x (i + 1, j)

+A2x (i, j + 1) + B0u (i, j)

+B1u (i + 1, j) + B2u (i, j + 1)

(8)

where i, j are integer-value vertical and horizontal coordi-

nates, respectively, x (i, j) ∈ Rn is the partial state vector

at (i, j), u (i, j) ∈ Rm is the input vector, Ak ∈ Rn×n,

Bk ∈ R
n×m, k = 0, 1, 2 and matrices E, A0 ∈ R

n×n ex-

ists and are not necessarily nonsingular. This model includes

similar generalization of other 2-D state space models such as

the Fornasini and Marchesini [5] and the Roesser 2-D model

[23]. If E 6= I we call these models implicit 2-D systems. We

shall call (8) the general singular model (GSM) or otherwise

the implicit Fornasini-Marchesini model. If E is non-square

or det (E) = 0 we call these models singular 2-D systems.

One particular case of (8) is the implicit Roesser model pro-

posed in [8] and [9] as a generalization of the Roesser 2-D

model given in [4]

[

E1 E2

E3 E4

]

︸ ︷︷ ︸

E

[

xh(i + 1, j)

xv(i, j + 1)

]

︸ ︷︷ ︸

x̃(i,j)

=

[

A1 A2

A3 A3

]

︸ ︷︷ ︸

A

[

xh(i, j)

xv(i, j)

]

︸ ︷︷ ︸

x(i,j)

+

[

B1

B2

]

︸ ︷︷ ︸

B

u(i, j)

(9)

where xh (i, j) ∈ Rt1 and xv (i, j) ∈ Rt2 (with t1 + t2 = n)

denote the so-called horizontal and vertical partial state vec-

tors. It is shown in [20] that the implicit Roesser and the

implicit FM model are equivalent. Define for example

EI =

[

E1 0

E3 0

]

, EII =

[

0 E2

0 E4

]

.

Then (9) may be rewritten as

EIx (i + 1, j)+EIIx (i, j + 1) = Ax (i, j)+Bu (i, j) (10)

a special case of (8). Due to the equivalence of the above

models we consider in the rest of the paper only the Roesser

model, due to its simplest form. An extensive study of implicit

2-D systems is given in [3].

According to [21] there are various ways to specify the

boundary conditions (BCs) and the region of interest for the

implicit FM and Roesser models:

a) First suppose that the 2-D implicit system has BCs

specified along the i− and j− axes. For the Roesser model

this means we know:

x (i, 0) = xi0, i = 0, 1, ..., N

x (0, j) = x0j , j = 0, 1, ..., M
(11)

where xi0 and x0j are known vectors. Then, if the region of

interest is the rectangle [0, N ]×[0, M ] in the (i, j) – plane, we

are concerned with finding what could be called a “forward

solution”.

b) If the BCs are specified along the upper and right-hand

sides of the rectangle:

x (i, M) = xiM , i = 0, 1, ..., N

x (N, j) = xNj , j = 0, 1, ..., M
(12)

then the solution on [0, N ]×[0, M ] could be called “backward

solution”.

c) A general case which includes both of these situations

is where the BCs are of the split or two-point form:

Cu
i,0x (i, 0) + Cu

i,Mx (i, M) = cu
i , 0 ≤ i ≤ N

Ch
0,jx (0, j) + Ch

N,jx (N, j) = ch
i , 0 ≤ j ≤ M

(13)

with
[

Cu
i,0 Cu

i,M

]

and
[

Ch
0,j Ch

N,j

]

prescribed matri-

ces of full row rank and cu
i , ch

i given vectors. If the BCs are of

the split form given above or otherwise involve the semistate

along all boundaries of the rectangular region [0, N ]× [0, M ]
then the solution on [0, N ]× [0, M ] could be called “symmet-

ric solution”.

An example of the implicit Roesser model is given by the

2-D realization of a nonrecursible mask in digital image pro-

cessing [12]. Implicit Roesser models are also arising from the

discretization of continuous-time systems that are described

by partial differential equations i.e. the standard discretiza-

tion of the elliptic equation that results in a five-point discrete

mask or the discretization of the diffusion equation that results

in a four-point discrete mask [22]. Even in the case where the
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continuous time model is described by a standard 2-D state

space model, the discretization method employed produces a

singular discrete approximation [10]. However, in some spe-

cial cases, it is possible to avoid the disadvantage by applying

transformation techniques or alternative discretization meth-

ods [10].

Assuming that the polynomial matrix

G (z1, z2) = z1EI + z2EII − A (14)

and the Laurent expansion at infinity of G (z1, z2)
−1

exists,

is unique [12,23], and is given by:

G (z1, z2)
−1 =

∞∑

i=−n1

∞∑

j=−n2

Ti,jz
−i
1 z−j

2

(n1 ≤ n, n2 ≤ n) and |z1| > σ1 > 0, |z2| > σ2 > 0

(15)

where the matrix sequence {Ti,j} is known as the forward

fundamental matrix. Note that a necessary and sufficient con-

dition for the uniqueness of the fundamental matrix sequence

{Ti,j} is that condition degz |G (z, z)| = degz1
|G (z1, z2)|+

degz2
|G (z1, z2)| is satisfied [12,23], where degzi

|G (z1, z2)|
is the degree of det G (z1, z2) in zi, with i = 1, 2 and

degz |G (z, z)| is the degree of detG (z, z) in z. The finite

lower limits on the summation permit us the introduction of

a unique transition matrix in the same way as in the standard

case [7]. If the determinant of G (z1, z2) has the above char-

acteristic property, then it is called principal, and the corre-

sponding system is also called principal [21]. Thus, principal

systems consist a particular class of singular systems.

Assuming now that the Laurent expansion at zero of

G (z1, z2)
−1

exists, is unique and is given by

G (z1, z2)
−1 =

ℓ1∑

i=−∞

ℓ2∑

j=−∞

Vi,jz
−i
1 z−j

2 |z1| < σ1, |z2| < σ2

(16)

where the matrix sequence {Vi,j} is known as the backward

fundamental matrix. We shall propose in this paper a neces-

sary and sufficient condition for the uniqueness of the back-

ward fundamental matrix sequence, in terms of the least de-

gree of |G (z1, z2)| in zi and the least degree of |G (z, z)|
in z. A generalized Leverrier technique for computing the

forward fundamental matrix sequence is available [23,24], so

that we may assume that this matrix sequence is given. An

algorithm for the computation of the backward fundamental

matrix is proposed in Section 3, either by using the forward

fundamental matrix of the inverse of the dual polynomial ma-

trix G̃ (z1, z2) = z1z2G
(

1
z1

, 1
z2

)

= z2EI + z1EII − Az1z2

of G (z1, z2) or directly in terms of the coefficient matrices

of the adjoint matrix of G−1 (z1, z2) and the coefficients of

the determinant of G (z1, z2) [12].

A forward solution to the 2-D GSM and the implicit

Roesser model respectively, in terms of the forward funda-

mental matrix sequence {Ti,j} have been proposed in [11,12].

Following similar methods to those of [13], we produce in

Section 4 a closed formula for the backward and symmetric

solution of the implicit Roesser model (9) in terms of the

forward fundamental matrix sequence {Ti,j} and backward

fundamental sequence {Vi,j} of G (z1, z2).

3. Computation of the backward fundamental

matrix sequence of a two-variable

polynomial matrix

In [12] the inverse of the polynomial matrix G (z1, z2) =
z1EI + z2EII − A has been obtained by

(z1EI + z2EII − A)
−1

=
R (z1, z2)

d (z1, z2)
(17)

where

R (z1, z2) =

fu
1∑

i=fd
1

fu
2∑

j=fd
2

Ri,jz
i
1z

j
2,

fu
i = degzi

R (z1, z2) , i = 1, 2

(18)

d (z1, z2) =

du
1∑

i=dd
1

du
2∑

j=dd
2

di,jz
i
1z

j
2,

du
i = degzi

d (z1, z2) , i = 1, 2

(19)

where fd
i and dd

i are the lower degrees of R(z1, z2) and

d(z1, z2) respectively in zi. Then we have that





du
1∑

i=dd
1

du
2∑

j=dd
2

di,jz
i
1z

j
2





︸ ︷︷ ︸

d(z1,z2)





ℓ1∑

i=−∞

ℓ2∑

j=−∞

Vi,jz
−i
1 z−j

2





︸ ︷︷ ︸

(z1E1+z2E11−A)−1

=

fu
1∑

i=fd
1

fu
2∑

j=fd
2

Ri,jz
i
1z

j
2

︸ ︷︷ ︸

R(z1,z2)

(20)

or equivalently, by replacing the indices i, j on the backward

fundamental matrix sequences Vi,j by −i,−j, we get





du
1∑

i=dd
1

du
2∑

j=dd
2

di,jz
i
1z

j
2





︸ ︷︷ ︸

d(z1,z2)





∞∑

i=−ℓ1

∞∑

j=−ℓ2

V−i,−jz
i
1z

j
2





︸ ︷︷ ︸

(z1E1+z2E11−A)−1

=

fu
1∑

i=fd
1

fu
2∑

j=fd
2

Ri,jz
i
1z

j
2

︸ ︷︷ ︸

R(z1,z2)

and thus fd
i = −ℓi + dd

i , i = 1, 2 (by equating the lowest

degrees of both sides). By equating the coefficient matrices

of the corresponding powers of zi
1z

j
2, on both sides of the re-

sulting equation (first for the pairs (i, j) where fd
1 ≤ i ≤ fu

1
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and fd
2 ≤ j ≤ fu

2 , since then Ri,j is not necessarily zero and

then for all other pairs of (i, j) since then Ri,j = 0), yields

Ri,j =

du
1∑

l=dd
1

du
2∑

m=dd
2

dl,mVl−i,m−j ,

(fd
1 ≤ i ≤ fu

1 and fd
2 ≤ j ≤ fu

2 )

(21)

0 =

du
1∑

l=dd
1

du
2∑

m=dd
2

dl,mVl−i,m−j

for every other pair (i, j)

(22)

which allows the computation of Vi,j in the stated region in

terms of its values for smaller i, j. Thus (22) constitutes an-

other form of the Cayley Hamilton theorem for the 2-D matrix

pencils. In the case where ddd
1
,dd

2
= 0, then the Laurent ex-

pansion at zero of G (z1, z2)
−1

may not be unique as we can

see in the following Theorem.

Theorem 1. Suppose that dd = dd
1 + dd

2, where dd is the

less degree in z of detG (z, z) = det (zEI + zEII − A)
and dd

i are the least degrees of d(z1, z2) in zi, or equiva-

lently that ddd
1
,dd

2
6= 0. Then the Laurent expansion at zero of

G (z1, z2)
−1

is unique.

Proof. Let

G̃ (z1, z2) ≡ z1z2G

(
1

z1
,

1

z2

)

= z1EII + z2EI − Az1z2.

(23)

Since

d̃ (z1, z2) = det
[

G̃ (z1, z2)
]

= det

[

z1z2G

(
1

z1
,

1

z2

)]

=

= zn
1 zn

2





du
1∑

i=dd
1

du
2∑

i=dd
2

di,jz
−i
1 z−j

2



 =

du
1∑

i=dd
1

du
2∑

i=dd
2

di,jz
n−i
1 zn−j

2

the above condition is equivalent to the condition d̃ = d̃1 + d̃2

where d̃i = degzi
|z1EII + z2EI − Az1z2| , i = 1, 2 and

d̃ = degz |zEII + zEI − Az1z2|. The proof of this Theorem

follows from the unique construction of an explicit formu-

la for the computation of the Laurent expansion at zero of

G (z1, z2)
−1

. Equation (21) may be rewritten as



















ddd
1
,dd

2
In 0

ddd
1
+1,dd

2
In ddd

1
,dd

2
In 0

...
...

. . .

ddu
1

,dd
2
In ddu

1
−1,dd

2
In

. . .
. . .

0 ddu
1

,dd
2
In

. . .
. . .

0
. . .

. . .

ddu
1

,dd
2
In · · · ddd

1
,dd

2
In



















︸ ︷︷ ︸

P
dd
2









Vℓ1,ℓ2

Vℓ1−1,ℓ2

...

Vℓ1−(fu
1
−fd

1
),ℓ2









︸ ︷︷ ︸

Vℓ2

=









Rfd
1

,fd
2

Rfd
1
+1,fd

2

...

Rfu
1

,fd
2









︸ ︷︷ ︸

R
fd
2

and



















Pdd
2
In 0

Pdd
2
+1In Pdd

2
In 0

...
...

. . .

Pdu
2
In Pdu

2
−1In

. . .
. . .

0 Pdu
2
In

. . .
. . .

0
. . .

. . .

Pdu
2
In · · · Pdd

2
In



















︸ ︷︷ ︸

P








Vℓ2

Vℓ2−1

...

Vℓ2−(fu
2
−fd

2
)









︸ ︷︷ ︸

V

=









Rfd
2

Rfd
2
+1

...

Rfu
2









︸ ︷︷ ︸

R

where

Pi =




















ddd
1

,iIn 0

ddd
1
+1,iIn ddd

1
,iIn 0

.

..
.
..

. . .

ddu
1

,iIn ddu
1
−1,iIn

. . .
. . .

0 ddu
1

,iIn

. . .
. . .

0
. . .

. . .

ddu
1

,iIn · · · ddd
1

,iIn




















i = d
d
2, d

d
2 + 1, ..., d

u
2
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Vi =









Vℓ1,i

Vℓ1−1,i

...

Vℓ1−(fu
1
−fd

1
),i









, i = ℓ2, ℓ2 − 1, ..., ℓ2 − (fu
2 − fd

2 )

and

Ri =









Rfd
1

,i

Rfd
1
+1,i

...

Rfu
1

,i









, i = fd
2 , fd

2 + 1, ..., fu
2

Due to the special Toeplitz form of Pdd
2
, we find that the

unique (i.e. detPdd
2
6= 0) inverse of Pdd

2
is

D = P−1
dd
2

=









r0In 0

r1In r0In

...
...

. . .
...

rfu
1
−fd

1
In rfu

1
−fd

1
−1In · · · r0In









where

r0 =
1

ddd
1
,dd

2

and

rj = (−1)j
(

1

ddd
1
,dd

2

)j+1

det












ddd
1
+1,dd

2
ddd

1
+2,dd

2
· · · ddd

1
+j,dd

2

ddd
1
,dd

2
ddd

1
+1,dd

2
· · · ddd

1
+j−1,dd

2

ddd
1
,dd

2
· · · ddd

1
+2,dd

2
+j−2

. . .
...

0 ddd
1
,dd

2
ddd

1
+1,dd

2












or equivalently

rj = −
1

ddd
1
,dd

2

j−1
∑

i=0

[

ddd
1
+j−i,dd

2
× ri

]

,

j = 1, 2, ..., fu
1 − fd

1

so that we may write for the elements of Vi,ℓ2 the expressions

Vi,ℓ2 =

ℓ1−i∑

j=0

rjRdd
i
−i−j,dd

2
,

i = ℓ1 − (fu
1 − fd

1 ), .., ℓ1 − 1, ℓ1.

(24)

Due to the special Toeplitz form of P , we find also that the

unique P−1 is

P−1 =









D0In 0

D1In D0In

...
...

. . .
...

D(fu
2
−fd

2
)In Dfu

2
−fd

2
−1In · · · D0In









where

D0 = P−1
fd
2

and

Di = −





i−1∑

j=0

DjPfd
2
−j+i



P−1
fd
2

, i = 1, 2, ..., (fu
2 − fd

2 ).

Thus

Vi =

ℓ2−i∑

j=0

DjRdd
2
−i−j , i = ℓ2 − (fu

2 − fd
2 ), .., ℓ2 − 1, ℓ2.

For the calculation of Vi,j for less values of i and/or j we

rewrite (22) as

0 =

du
1∑

l=dd
1

du
2∑

m=dd
2

dl,mV−i+l,−j+m =⇒

V−i,−j =
1

ddd
1
,dd

2

du
1∑

l=dd
1

du
2∑

m=dd
2

dl,mV−i+l,−j+m

(l, m) 6=
(
dd
1, d

d
2

)

(25)

From (24) and (25) we obtain a unique form of the Laurent

expansion of G (z1, z2)
−1

and thus the Theorem has been

proved.

Since (25) allows the computation of Vi,j in the stated

region, it constitutes the Cayley-Hamilton theorem for the 2-

D singular system (9) in terms of the backward fundamental

matrix sequence. Condition dd = dd
1 + dd

2 is nothing but the

requirement that the least degrees of z1 and z2 in |G (z1, z2)|
both appear in the same term. Systems (9) satisfying the above

condition constitute a particular class of implicit Roesser mod-

els that is both nonempty and potentially interesting i.e. non-

recursible masks (see example at the end of the paper). We

shall call such systems co-principal.

The Laurent expansion about zero of G (z1, z2)
−1

given

in (16) is related with the Laurent expansion at infinity given

in (15) of the inverse of the dual matrix G̃ (z1, z2) as we can

see in the following Lemma.

Lemma 2. Let the Laurent expansion at infinity of

G̃ (z1, z2)
−1

be

G̃ (z1, z2)
−1 =

∞∑

p=−f1

∞∑

q=−f2

T̃p,qz
−p
1 z−q

2 (26)

and (16) be the Laurent expansion at zero of G (z1, z2)
−1

.

Then
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fi + 1 = ℓi and V−i,−j = T̃i+1,j+1

i = ℓ1, ℓ1 − 1, .... and j = ℓ2, ℓ2 − 1, ....
(27)

Proof. We have that

G (z1, z2) = z1z2G̃

(
1

z1
,

1

z2

)

⇔

G (z1, z2)
−1

= z−1
1 z−1

2 G̃

(
1

z1
,

1

z2

)
−1

= z−1
1 z−1

2

∞∑

p=−f1

∞∑

q=−f2

T̃p,q

(
1

z1

)
−p(

1

z2

)
−q

=

∞∑

p=−f1

∞∑

q=−f2

T̃p,qz
p−1
1 zq−1

2

≡

ℓ1∑

p1=−∞

ℓ2∑

q1=−∞

Vp1,q1
z−p1

1 z−q1

2

q1=−q+1
=

p1=−p+1

∞∑

p=−ℓ1+1

∞∑

q=−ℓ2+1

V−p+1,−q+1z
p−1
1 zq−1

2 .

(28)

Equating the coefficients of the powers of zi, i = 1, 2 we

obtain the proof of Lemma.

We conclude from the above Lemma that the Lau-

rent expansion at zero of G (z1, z2)
−1

exists and is unique

iff the Laurent expansion at infinity of G̃ (z1, z2)
−1

exists

and is unique or otherwise when d̃d = d̃1 + d̃2 ,where

d̃i = degzi
|z1EII + z2EI − Az1z2| , i = 1, 2 and d̃d =

degz |zEII + zEI − Az1z2|. A direct result of Lemma 2 is

that the Leverrier algorithm presented in [12,23] may also be

used for the computation of both the forward and backward

fundamental matrix sequence. Therefore, Lemma 2 give us an

alternative method from the algorithm presented in Theorem

1 for the computation of the backward fundamental matrix

sequence.

4. Solutions of the implicit Roesser model

An interesting result that connects the solutions of (10) and

the ones of the dual 2-D implicit Roesser model

EI x̃ (i, j + 1) + EII x̃ (i + 1, j)

= Ax̃ (i + 1, j + 1) + Bũ (i + 1, j + 1)
(29)

in the closed interval [0, N ]× [0, M ] is given by the following

Lemma.

Lemma 3. (a) If x̃ (i, j) is a solution of (29) for the non-zero

input ũ (i, j), then the sequence x (i, j) = x̃ (N − i, M − j)
is a solution of the dual Eq. (10) for the nonzero input

u (i, j) = ũ (N − i, M − j).
(b) If x (i, j) is a solution of (10) for the non-zero in-

put u (i, j), then the sequence x̃ (i, j) = x (N − i, M − j)
is a solution of the dual equation (29) for the nonzero input

ũ (i, j) = u (N − i, M − j).

Proof. (a) Let x̃ (i, j) be a solution of (29) for the non-zero

input ũ (i, j). This implies that (29) is satisfied. Now con-

sider equation (10). If we set x (i, j) = x̃ (N − i, M − j),
u (i, j) = ũ (N − i, M − j) we have

EIx (i + 1, j) + EIIx (i, j + 1)

= EI x̃ (N − (i + 1) , M − j) + EII x̃ (N − i, M − (j + 1))

(29)
= Ax̃ (N − i, M − j) + Bũ (N − i, M − j)

(x(i,j)=x̃(N−i,M−j))
=

u(i,j)=ũ(N−i,M−j)
Ax (i, j) + Bu (i, j)

(b) In the same way we can prove the second part of the

Theorem.

A direct result of Lemma 3 is that the backward solu-

tion of the singular Roesser model (10) comes directly from

the forward solution of the dual singular Roesser model (29).

In the next three subsections we give the forward, backward

and symmetric solution of the singular Roesser model (10)

in terms of the matrix coefficients EI , EII , A, B and the for-

ward/backward fundamental matrix sequence {Ti,j} / {Vi,j}

of G (z1, z2)
−1

.

4.1. The forward solution of the implicit Roesser model.

Consider the singular Roesser model (10) and the Laurent ma-

trix expansion at infinity of G (z1, z2)
−1

given in (15). Then

the unique forward solution to (10) with admissible (11) is

given according to [12] by:

x (i, j) =

i+n1∑

p=0

j+n2∑

q=0

Ti−p,j−qBu (p, q)

+

i+n2∑

q=0

Ti+1,j−qEIx (0, q) +

i+n1∑

p=0

Ti−p,j+1EIIx (p, 0)

(30)

for (−n1,−n2) ≤ (i, j). It is important to note that (10) does

not always have a solution. A necessary and sufficient condi-

tion for (10) to have a solution is that the initial conditions

(11) satisfy the relation (30) for (i = 0&j = 0, 1, 2, ..., M )

and (j = 0&i = 0, 1, ..., N ).

4.2. The backward solution of the implicit Roesser model.

Let F (z1, z2) be the 2−D Z-transform of a function f (i, j)
satisfying the condition f (i, j) = 0 for i < 0 or/and j < 0
defined by [25]

F (z1, z2) = Z [f (i, j)] :=

∞∑

i=0

∞∑

j=0

f (i, j) z−i
1 z−j

2 . (31)

Lemma 4. [25] If F (z1, z2) = Z [f (i, j)], then

Z [f (i + 1, j)] = z1 [F (z1, z2) − F (0, z2)] (32)

Z [f (i, j + 1)] = z2 [F (z1, z2) − F (z1, 0)] (33)
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Z [f (i + 1, j + 1)] =

z1z2{F (z1, z2) − F (z1, 0) − F (0, z2) + f (0, 0)}
(34)

where F (z1, 0) =
∑
∞

i=0 f (i, 0) z−i
1 , F (0, z2) =

∑
∞

j=0 f (0, j) z−j
2 .

Consider the dual Roesser model of (10). Let also

X̃ (z1, z2) = Z [x̃ (i, j)] and Ũ (z1, z2) = Z [ũ (i, j)]. Using

(32), (33) and (34) for (29) we obtain

EI x̃ (i, j + 1) + EII x̃ (i + 1, j)

= Ax̃ (i + 1, j + 1) + Bũ (i + 1, j + 1)
Z[•]
=⇒

EIz2

[

X̃ (z1, z2) − X̃ (z1, 0)
]

+EIIz1

[

X̃ (z1, z2) − X̃ (0, z2)
]

=

= A
{

z1z2

[

X̃ (z1, z2) − X̃ (z1, 0) − X̃ (0, z2) + x̃ (0, 0)
]}

+

+B
{

z1z2

[

Ũ (z1, z2) − Ũ (z1, 0) − Ũ (0, z2) + ũ (0, 0)
]}

or equivalently

X̃ (z1, z2) =





∞∑

p=−f1

∞∑

q=−f2

T̃p,qz
−p
1 z−q

2





︸ ︷︷ ︸

(EIz2+EIIz1−Az1z2)
−1

×

×{Bz1z2Ũ (z1, z2) − Bz1z2Ũ (z1, 0) − Bz1z2Ũ (0, z2)

+Bz1z2ũ (0, 0) + Az1z2x̃ (0, 0)+

+EIz2X̃ (z1, 0) − Az1z2X̃ (z1, 0) + EIIz1X̃ (0, z2)

−Az1z2X̃ (0, z2)}.
(35)

Using the inverse 2-D transformation [25] for (35) and taking

into account that T̃p,q = 0 for p < −f1 or q < −f2, we obtain

x̃ (i, j) =

i+f1+1
∑

p=0

j+f2+1
∑

q=0

T̃i−p+1,j−q+1Bũ (p, q)

+

i+f1∑

p=0

T̃i−p,j+1EI x̃ (p, 0) +

j+f2∑

q=0

T̃i+1,j−qEII x̃ (0, q)

−

i+f1+1
∑

p=1

T̃i−p+1,j+1

[

A B
]
[

x̃ (p, 0)

ũ (p, 0)

]

−

j+f2+1
∑

q=1

T̃i+1,j−q+1

[

A B
]
[

x̃ (0, q)

ũ (0, q)

]

+ T̃i+1,j+1

[

A B
]
[

x̃ (0, 0)

ũ (0, 0)

]

.

(36)

Now by using the part (a) of Lemma 3 and the solution of

the dual Roesser model (36) we can easily prove the following

Theorem.

Theorem 5. If det [G (z1, z2)] 6= 0, and the condition of The-

orem 1 is satisfied, then the unique backward solution to (10)

with admissible boundary conditions (12) is given by

x (i, j) =

N−i+ℓ1∑

p=0

M−j+ℓ2∑

q=0

Vp−i−N,q−j−MBu (N − p, M − q)

+

N−i+ℓ1−1∑

p=0

V1+p+i−N,j−MEIx (N − p, M)

+

M−j+ℓ2−1
∑

q=0

Vi−N,1+q+j−MEIIx (N, M − q)

−

N−i+ℓ1∑

p=1

Vp+i−N,j−M

[

A B
]
[

x (N − p, M)

u (N − p, M)

]

−

M−j+ℓ2∑

q=1

Vi−N,q+j−M

[

A B
]
[

x (N, M − q)

u (N, M − q)

]

+ Vi−N,j−M

[

A B
]
[

x (N, M)

u (N, M)

]

(37)

where Vi,j is the backward fundamental matrix sequence of

G(z1, z2)
−1 given in (16).

Proof. Let x̃ (i, j) be the solution of (29) for the non-zero

input ũ (i, j) presented in (36). Then the sequence x (i, j) =
x̃ (N − i, M − j) is a solution of the dual Eq. (10) for the

nonzero input u (i, j) = ũ (N − i, M − j) or otherwise

x (i, j) = x̃ (N − i, M − j)

=

N−i+f1+1
∑

p=0

M−j+f2+1
∑

q=0

T̃N−i−p+1,M−j−q+1Bu (N − p, M − q)

+

N−i+f1∑

p=0

T̃N−i−p,M−j+1EIx (N − p,M)

+

M−j+f2∑

q=0

T̃N−i+1,M−j−qEIIx (N, M − q)

−

N−i+f1+1
∑

p=1

T̃N−i−p+1,M−j+1

[

A B
]
[

x (N − p, M)

u (N − p,M)

]

−

M−j+f2+1
∑

q=1

T̃N−i+1,M−j−q+1

[

A B
]
[

x (N, M − q)

u (N, M − q)

]

+ T̃N−i+1,M−j+1

[

A B
]
[

x (N, M)

u (N, M)

]

or by using (27) we have (37).

A necessary and sufficient condition for (10) to have

a solution is that the final conditions (12) satisfy (37) for

(i = N&j = 0, 1, ..., M ) and (i = 0, 1, ...., N&j = M ).
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4.3. The symmetric solution of the implicit Roesser mod-

el. Consider the Laurent expansion at infinity of G−1 (z1, z2)
given in (15). Then the following relations

−Tp−1,q−1A + Tp,q−1EI + Tp−1,qEII = δp−1,q−1In

follow from comparison of coefficient matrices at like powers

of z1 and z2 of the equality

(
∞∑

p=−n1

∞∑

q=−n2

Tp,qz
−p
1 z−q

2

)

︸ ︷︷ ︸

G(z1,z2)
−1

× (EIz1 + EIIz2 − A)
︸ ︷︷ ︸

G(z1,z2)

= In.

Define now the matrices

A0 =











E1 −A · · · 0 0

0 EI · · · 0 0
...

...
. . .

...
...

0 0 · · · −A 0

0 0 · · · EI −A











∈ RnN×n(N+1)

A1 =











0 EII · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · EII 0

0 0 · · · 0 EII











∈ RnN×n(N+1)

B =











0 B · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · B 0

0 0 · · · 0 B











∈ RnN×m(N+1)

and the vectors

yi =











xN,i

xN−1,i

...

x1,i

x0,i











∈ R(N+1)n,

ui =











uN,i

uN−1,i

...

u1,i

u0,i











∈ R(N+1)m

i = 0, 1, ..., M.

Then (10) may be rewritten in the form











A1 A0 · · · 0 0 0

0 A1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · A1 A0 0

0 0 · · · 0 A1 A0











︸ ︷︷ ︸

ÃN











yM

yM−1

...

y1

y0











︸ ︷︷ ︸

y0,M

=











0 B · · · 0 0 0

0 0 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 0 B 0

0 0 · · · 0 0 B











︸ ︷︷ ︸

B̃N











uM

uM−1

...

u1

u0











︸ ︷︷ ︸

v0,M

(38)

Let also

Hi =











T1,i T2,i · · · TN−1,i TN,i

T0,i T1,i · · · TN−2,i TN−1,i

...
...

. . .
...

...

T−N+1,i T−N+2,i · · · T0,i T1,i

T−N,i T−N+1,i · · · T−1,i T0,i











Then we can check that












T1,i T2,i · · · TN−1,i TN,i

T0,i T1,i · · · TN−2,i TN−1,i

...
...

. . .
...

...

T−N+2,i T−N+3,i · · · T1,i T2,i

T−N+1,i T−N+2,i · · · T0,i T1,i












︸ ︷︷ ︸

Hi










0 EII · · · 0 0

0 0 · · · 0 0
.
..

.

..
. . .

.

..
.
..

0 0 · · · EII 0

0 0 · · · 0 EII












︸ ︷︷ ︸

A1

+












T1,i−1 T2,i−1 · · · TN−1,i−1 TN,i−1

T0,i−1 T1,i−1 · · · TN−2,i−1 TN−1,i−1

...
...

. . .
...

...

T−N+2,i−1 T−N+3,i−1 · · · T1,i−1 T2,i−1

T−N+1,i−1 T−N+2,i−1 · · · T0,i−1 T1,i−1












︸ ︷︷ ︸











EI −A · · · 0 0

0 EI · · · 0 0
.
..

.

..
. . .

.

..
.
..

0 0 · · · −A 0

0 0 · · · EI −A












︸ ︷︷ ︸

= Si

A0

Hi−1
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where

Si =











F1,i 0 · · · 0 QN,i

F0,i δi−1I · · · 0 QN−1,i

...
...

. . .
...

...

F−N+2,i 0 · · · δi−1I Q2,i

F−N+1,i 0 · · · 0 Q1,i











Fk,i = Tk,i−1EI

Qk,i = Tk,iEII − Tk,i−1A.

Premultiplying (38) by the matrix

ÃL
N =











H1 H2 H3 · · · HM

H0 H1 H2 · · · HM−1

H−1 H0 H1 · · · HM−2

...
...

...
. . .

...

H−M+1 H−M+2 H−M+3 · · · H0











we obtain that

ÃL
N ÃNy0,M = ÃL

N B̃Nv0,M ⇔












H1A1 S2 · · · SM HMA0

H0A1 S1 · · · SM−1 HM−1A0

H−1A1 S0 · · · SM−2 HM−2A0

...
...

. . .
...

...

H−M+1A1 S−M+2 · · · S0 H0A0























yM

yM−1

..

.

y1

y0












︸ ︷︷ ︸

y0,M

=

=












0 H1B · · · HMB

0 H0B · · · HM−1B

0 H−1B · · · HM−2B
..
.

..

.
. . .

..

.

0 H−M+1B · · · H0B























uM

uM−1

...

u1

u0












︸ ︷︷ ︸

v0,M

.

(39)

From the first and last block equation we get boundary condi-

tions that must be satisfied in order for (10) to have a solution:

H1A1yM + S2yM−1 + · · · + SMy1 + HMA0y0

= (H1B)uM−1 + · · · + (HM−1B)u1 + (HMB)u0

(40)

and

H−M+1A1yM + S−M+2yM−1 + · · · + S0y1 + H0A0y0

= (H−M+1B)uM−1 + · · · + (H0B)u1 + (H0B)u0.
(41)

Note that the matrices Si, i = 0, 2, 3, ..., M in (40) and (41)

have all their block columns, except of the first and the last

one, filled with zero entries and therefore the above equations

gives rise only to boundary conditions of the form (13). Now

consider the remaining equations that arise from (39)

(H−qA1) yM + S−q+1yM−1 + · · · + S−q+M−1y1

+ (H−q+M−1A0) y0 = (H−qB)uM−1 + · · ·

+ (H−q+M−2B)u1 + (H−q+M−1B)u0

where q = 0, 1, ..., M − 2, or equivalently












T1,−q T2,−q · · · TN,−q

T0,−q T1,−q · · · TN−1,−q

...
...

. . .
...

T−N+2,−q T−N+3,−q · · · T2,−q

T−N+1,−q T−N+2,−q · · · T1,−q























0 EII · · · 0 0

0 0 · · · 0 0
..
.

..

.
. . .

..

.
..
.

0 0 · · · EII 0

0 0 · · · 0 EII























xN,M

xN−1,M

..

.

x1,M

x0,M












+

−q+M−1
∑

j=−q+1












F1,j 0 · · · 0 QN,j

F0,j δi−1I · · · 0 QN−1,j

.

..
.
..

. . .
.
..

.

..

F−N+2,j 0 · · · δi−1I Q2,j

F−N+1,j 0 · · · 0 Q1,j























xN,M−1−j

xN−1,M−1−j

...

x1,M−1−j

x0,M−1−j












+












T1,−q+M−1 T2,−q+M−1 · · · TN,−q+M−1

T0,−q+M−1 T1,−q+M−1 · · · TN−1,−q+M−1

...
...

. . .
...

T−N+2,−q+M−1 T−N+3,−q+M−1 · · · T2,−q+M−1

T−N+1,−q+M−1 T−N+2,−q+M−1 · · · T1,−q+M−1























EI −A · · · 0 0

0 EI · · · 0 0
..
.

..

.
. . .

..

.
..
.

0 0 · · · −A 0

0 0 · · · EI −A























xN,0

xN−1,0

..

.

x1,0

x0,0












=

−q+M−2
∑

j=−q

{












T1,j T2,j · · · TN,j

T0,j T1,j · · · TN−1,j

.

..
.
..

. . .
.
..

T−N+2,j T−N+3,j · · · T2,j

T−N+1,j T−N+2,j · · · T1,j











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










0 B · · · 0 0

0 0 · · · 0 0
..
.

..

.
. . .

..

.
..
.

0 0 · · · B 0

0 0 · · · 0 B












+












T1,−q+M−1 T2,−q+M−1 · · · TN,−q+M−1

T0,−q+M−1 T1,−q+M−1 · · · TN−1,−q+M−1

...
...

. . .
...

T−N+2,−q+M−1 T−N+3,−q+M−1 · · · T2,−q+M−1

T−N+1,−q+M−1 T−N+2,−q+M−1 · · · T1,−q+M−1























0 B · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · B 0

0 0 · · · 0 B























uN,0

uN−1,0

...

u1,0

u0,0












(42)

or equivalently by taking the i−th row of the above equations

i.e. for q = 0, 1, ..., M − 2 and i = 0, 1, ..., N − 2

T−i+N−1,−qEIIx0,M +
N−2∑

k=0

(T−i+k,−qEII)xN−1−k,M

+

M−q
∑

j=1−q

{(T−i,j−1EI)xN,M−q+1−j

+ (T−i+N−1,jEII − T−i+N−1,j−1A) x0,M−q+1−j}

+xN−1+i,M−1−q + T−i,M−1−qEIxN,0

−
N−2∑

k=0

(T−i+k,M−1−qA − T−i+k+1,M−1−qEI)xN−1−k,0

−T−i+N−1,M−1−qAx0,0 =

=

M−2−q
∑

j=−q

N−2∑

k=0

{T−i+k,jB}uN−k−1,M−1−j

+ (T−i+N−1,jB)u0,M−1−j} + (T−i+N−1,M−1−qB)u0,0

+

N−2∑

k=0

(T−i+k,M−1−qB)uN−1−k,0.

Now by substituting N − 1 + i with p, and M − 1 − q with

q, we can easily get the following Theorem.

Theorem 6. If det [G (z1, z2)] 6= 0, and degz |G (z, z)| =
degz1

|G (z1, z2)|+degz2
|G (z1, z2)| is satisfied [12], then the

unique symmetric solution to (10) with admissible boundary

conditions (13) is given by

xp,q = −T2(N−1)−p,1+q−MEIIx0,M

−

N−2∑

k=0

TN−1−p+k,1+q−MEIIxN−1−k,M

+

q+1
∑

j=q+2−M

{−TN−1−p,j−1EIxN,q+2−j

+{T2(N−1)−p,jEII − T2(N−1)−p,j−1A}x0,q+2−j}

−TN−1−p,qEIxN,0 +
N−2∑

k=0

{TN−1−p+k,qA − TN−p+k,qEI}

xN−1−k,0 + T2(N−1)−p,qAx0,0

+

q−1
∑

j=q+1−M

N−2∑

k=0

TN−1−p+k,jBuN−k−1,M−1−j

+

q−1
∑

j=q+1−M

T2(N−1)−p,jBu0,M−1−j + T2(N−1)−p,qBu0,0

+
N−2∑

k=0

{TN−1+p+k,qB}uN−1−k,0.

Using now the first and last block row equations of (42)

we get the following extra boundary conditions for (i =
−1, N − 1 & q = 0, 1, ..., M − 2), or (q = −1, M − 1 &

i = −1, 0, ..., N − 2, N − 1) (the boundary equations that we

have described before in terms of block matrices)

T−i+N−1,−qEIIx0,M +

N−2∑

k=0

T−i+k,−qEIIxN−1−k,M

+

M−q
∑

j=1−q

{T−i,j−1EIxN,M−q+1−j

+ (T−i+N−1,jEII − T−i+N−1,j−1A) x0,M−q+1−j}

−T−i,M−1−qEIxN,0 − T−i+N−1,M−1−qAx0,0

−

N−2∑

k=0

{T−i+k,M−1−qA − T−i+k+1,M−1−qEI}xN−1−k,0

=

M−2−q
∑

j=−q

N−2∑

k=0

T−i+k,jBuN−k−1,M−1−j

+

M−2−q
∑

j=−q

T−i+N−1,jBu0,M−1−j + (T−i+N−1,M−1−qB) u0,0

+

N−2∑

k=0

T−i+k,M−1−qBuN−1−k,0.

(43)

Therefore, a necessary and sufficient condition so that (10)

has a solution is that the initial conditions, final conditions

and input sequences satisfy the relations (13), (40), (41) and

(43).
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5. Example

Consider a nonrecursible mask described by the difference

equation [12]

yi,j = yi−1,j−1 + yi−1,j+1 + yi+1,j−1 + yi+1,j+1 + ui,j

where ui,j the input and yi,j the output

Fig. 1. Nonrecursible mask

A singular realization according to [12] of the above nonre-

cusrible mask is the following:













1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0

























x
h1

i+1,j

x
h2

i+1,j

x
h3

i+1,j

x
v1

i,j+1

x
v2

i,j+1

x
v3

i,j+1













︸ ︷︷ ︸

EI xi+1,j+EIIxi,j+1

=













0 0 0 1 1 0

0 1 0 0 0 0

0 0 1 −1 −1 0

1 1 0 0 0 0

0 0 0 0 1 0

−1 −1 0 0 0 1













︸ ︷︷ ︸

A













x
h1

i,j

x
h2

i,j

x
h3

i,j

x
v1

i,j

x
v2

i,j

x
v3

i,j













︸ ︷︷ ︸

xi,j

+













1

0

−1

0

0

0













︸ ︷︷ ︸

B

ui,j

yi,j =
[

0 0 0 1 1 0
]

︸ ︷︷ ︸

C

xi,j + ui,j

where

xi,j =

[

xh
i,j

xv
i,j

]

=













xh1

i,j

xh2

i,j

xh3

i,j

xv1

i,j

xv2

i,j

xv3

i,j













EI =













1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0













,

EII =













0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0













.

Note that nonrecursible masks cannot be represented using

state-space Roesser models. Define the 2-D matrix pencil

G (z1, z2) = z1EI + z2EII − A

=













z1 0 0 −1 −1 0

0 −1 z1 0 0 0

0 0 −1 1 1 0

−1 −1 0 z2 0 0

0 0 0 0 −1 z2

1 1 0 0 0 −1













.

Using the algorithm presented in [12], we have that

detG (z1, z2) =
2∑

i=0

2∑

j=0

di,jz
i
1z

j
2 = −z

2
1z

2
2 − z

2
1 + z1z2 − z

2
2 − 1

R (z1, z2) =
2∑

i=0

2∑

j=0

Ri,jz
i
1z

j
2 =

=













−z1z
2
2 + z2 − z1 −z2

2 − 1 −z1z
2
2 − z1

z1z
2
2 + z1 z2

2 − z1z2 + 1 −z2z
2
1 + z2

2z1 + z1

z2
2 + 1 −z1z

2
2 − z1 z2

2 − z1z2 + 1

1 −z1 −z2
1

z2
2 −z1z

2
2 −z2

1z2
2

z2 −z1z2 −z2
1z2

1 −z2 −z2
2

z2
1 −z2

1z2 −z2
1z2

2

z1 −z1z2 −z1z
2
2

−z2z
2
1 + z1 − z2 −z2

1 − 1 −z2z
2
1 − z2

z2z
2
1 + z2 z2

1 − z1z2 + 1 z2
1z2 − z1z

2
2 + z2

z2
1 + 1 −z2

1z2 − z2 z2
1 − z1z2 + 1













and since 4 = degz |G (z, z)| = degz1
|G (z1, z2)| +

degz2
|G (z1, z2)| = 2 + 2 is satisfied therefore the Laurent

expansion at infinity of G (z1, z2)
−1

exists, and is unique.

Similarly since 0 = dd = dd
1 + dd

2 = 0 + 0, where dd is the

least degree in z of detG (z, z) = det (zEI + zEII − A)
and dd

i are the least degrees of d(z1, z2) in zi, or equivalently

that −1 = d0,0 = ddd
1
,dd

2
6= 0, the Laurent expansion at zero

of G (z1, z2)
−1

is unique. We have also that
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D0 = P−1
0 =






d0,0I6 0 0

d1,0I6 d0,0I6 0

d2,0I6 d1,0I6 d0,0I6






−1

=






r0I6 0 0

r1I6 r0I6 0

r2I6 r1I6 r0I6






where

r0 =
1

d0,0
= −1

r1 = −
1

d0,0
[d1,0 × r0] = 0

r2 = −
1

d0,0
[d2,0 × r0 + d1,0 × r1] = 1.

Then by setting

R0 =






R0,0

R1,0

R2,0




 ; R1 =






R0,1

R1,1

R2,1




 ; R2 =






R0,2

R1,2

R2,2






and

P1 =






d0,1I6 0 0

d1,1I6 d0,1I6 0

d2,1I6 d1,1I6 d0,1I6




 ;

P2 =






d0,2I6 0 0

d1,2I6 d0,2I6 0

d2,2I6 d1,2I6 d0,2I6






we get

V0 : =






V0,0

V−1,0

V−2,0




 = D0R0

V−1 : =






V0,−1

V−1,−1

V−2,−1




 = D0R1 + D1R0

V−2 : =






V0,−2

V−1,−2

V−2,−2




 = D0R2 + D1R1 + D2R0

and thus

V0,0 =













0 1 0 −1 0 0

0 −1 0 0 0 0

−1 0 −1 0 0 0

−1 0 0 0 1 0

0 0 0 0 −1 0

0 0 0 −1 0 −1













;

V−1,0 =













1 0 1 0 0 0

−1 0 −1 0 0 0

0 1 0 −1 0 0

0 1 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0













;

V−2,0 =













0 −1 0 1 0 0

0 1 0 −1 0 0

1 0 1 0 0 0

1 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0













;

V0,−1 =













−1 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

0 0 0 −1 0 −1

−1 0 0 0 1 0













.

...........

The rest terms of the Laurent expansion at zero of

G (z1, z2)
−1

are given by

V−i,−j = −
1

d0,0

2∑

l=0

2∑

m=0

dl,mV−i+l,−j+m (l, m) 6= (0, 0)

= d2,0V−i+2,−j + d0,2V−i,−j+2 + d1,1V−i+1,−j+1

+ d2,2V−i+2,−j+2 =

= −V−i+2,−j − V−i,−j+2 + V−i+1,−j+1

− V−i+2,−j+2
i←−i
⇐⇒
j←−j

Vi,j = −Vi+2,j − Vi,j+2 + Vi+1,j+1 − Vi+2,j+2.
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For example

V−3,−2 = −V−1,−2 − V−3,0 + V−2,−1 − V−1,0 =

= −V−1,−2 − (−V−1,0 − V−3,2 + V−2,−2 − V−1,2)

+V−2,−1 − V−1,0 =

= −V−1,−2 − (−V−1,0 + V−2,−2) + V−2,−1 − V−1,0 =

= −V−1,−2 + V−2,−2 + V−2,−1 =

=













3 0 1 0 −2 0

−1 0 0 0 1 0

0 1 0 −2 0 −1

0 2 0 −4 0 −2

0 −1 0 1 0 0

2 0 1 0 −1 0













.

Note that the backward fundemental matrix sequence may

be used to compute x (i, j) using (37). For instance, sup-

pose that we are interested for the backward solution of the

system in the interval [0, 5] × [0, 5] and we know the fi-

nal conditions x (5, i) , x (i, 5) , i = 0, 1, .., 5 and the input

u (i, j) , i, j ∈ {0, 1, .., 5}. Then

x (4, 4) = V−9,−9Bu (5, 5) + V−9,−8Bu (5, 4)

+V−8,−9Bu (4, 5) + V−8,−8Bu (4, 4)

+V0,−1EIx (5, 5) + V−1,0EIIx (5, 5)− V0,−1Ax (4, 5)

−V0,−1Bu (4, 5) − V−1,0Ax (5, 4)

−V0,−1Bu (5, 4) + V−1,−1Ax (5, 5) + V−1,−1Bu (5, 5) =

=













354u5,4 − 375u4,5 − 2xh1

5,5 + xv1

4,5 − xh3

5,4

−153u5,4 + 143u4,5 + xh3

5,4

−377u5,5 − 153u4,4 − 2xv1

5,5 + xh1

5,4

−578u5,5 − 233u4,4 − 2xv1

5,5 − xv3

4,5 + xh1

5,4

201u5,5 + 80u4,4 + xv3

4,5

201u5,4 − 232u4,5 − 2xh1

5,5 + xv1

4,5













.

A computer program for the computation of the fundamental

matrix sequence and its use in the computation of the local

semistate is extremely useful.

6. Conclusions

In the case of discrete time implicit Roesser models, exact

solutions where proposed in two different forms: a) backward

solutions, and b) symmetric solutions. All the closed formula

solutions were represented in terms of the forward and back-

ward fundamental matrix of the implicit Roesser model. It

is easily seen that the proposed solutions: a) are extensions

of the ones proposed in [13] for 1-D discrete time singular

systems, and b) accomplish the work that have been done by

[11] and [12] for the forward solution of the general singu-

lar model and the implicit Roesser model respectively. An

algorithm has also been provided for the computation of the

backward fundamental matrix sequence, that is useful in the

implementation of the proposed closed solution formulae. The

computation of the forward and backward fundamental ma-

trix sequence of a non-causal system might be useful in the

solution of the descriptor system realization problem as has

been studied by [26]. Certain controllability and observability

criteria based on the proposed solutions are being studied and

will be discussed in a future work.
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