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Abstract. In the paper the thermal processes proceeding in the solidifying metal are analyzed. The basic energy equation
determining the course of solidification contains the component (source function) controlling the phase change. This component
is proportional to the solidification rate ∂fS/∂t(fS ∈ [0, 1], is a temporary and local volumetric fraction of solid state). The value
of fS can be found, among others, on the basic of laws determining the nucleation and nuclei growth. This approach leads to the
so called micro/macro models (the second generation models). The capacity of internal heat source appearing in the equation
concerning the macro scale (solidification and cooling of domain considered) results from the phenomena proceeding in the
micro scale (nuclei growth). The function fS can be defined as a product of nuclei density N and single grain volume V (a linear
model of crystallization) and this approach is applied in the paper presented. The problem discussed consists in the simultaneous
identification of two parameters determining a course of solidification. In particular it is assumed that nuclei density N (micro
scale) and volumetric specific heat of metal (macro scale) are unknown. Formulated in this way inverse problem is solved using
the least squares criterion and gradient methods. The additional information which allows to identify the unknown parameters
results from knowledge of cooling curves at the selected set of points from solidifying metal domain. On the stage of numerical
realization the boundary element method is used. In the final part of the paper the examples of computations are presented.
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1. Introduction

The thermal processes proceeding in domain of solidi-
fying metal or (more generally) in the system casting-
mould are described by the Fourier-Kirchhoff equation,
this means a nonlinear parabolic partial differential equa-
tion (or the system of such equations) supplemented by
the adequate physical, geometrical, boundary and initial
conditions. The energy equation for casting domain con-
tains the term describing the capacity of internal heat
source (source function) and this term controls the evo-
lution of latent heat connected with the phase change.
The solidification models basing on the Fourier-Kirchhoff
equation can be divided (according to the classification
proposed by Stefanescu [1]) into two groups, namely the
macro models and the micro/macro ones. The difference
between macro and micro/macro models consists in the
way of source function modelling. The typical procedure
in the case of macro approach reduces to the assumption
that the dependence between a local volumetric fraction
of solid state fS and temperature T is known and then
after the mathematical manipulations one obtains the en-
ergy equation referring to the whole, conventionally ho-
mogeneous, metal domain in which the parameter called
a substitute thermal capacity appears (e.g. [2,3]). In the
case of micro/macro models (used in this paper) the func-
tion fS is determined on the basis of laws concerning the
nucleation and nuclei growth, this means the phenomena

proceeding on the micro level (e.g. [4–8]). The direct prob-
lems concerning the solidification and cooling processes in
the casting-mould system can be solved using the numer-
ical methods and in literature (among others the books
and papers quoted previously) one can find the precise
information in this scope both for the case of macro and
micro/macro modelling.

The inverse problems appearing in the thermal the-
ory of foundry processes consist in the identification of
casting-mould internal parameters (e.g. specific heats or
thermal conductivities [9,10]), boundary conditions or ini-
tial temperatures. In the case of micro/macro models the
nuclei density [11], growth coefficient or grains shape co-
efficient can be also identified. In this paper ‘a mixed task’
is considered. On the basis of cooling curves at selected
set of points from metal domain simultaneously the macro
and micro/macro internal parameters are determined. As
an example the volumetric specific heat of metal (a macro
parameter) and the nuclei density (a micro one) are taken
into account. The details concerning the mathematical de-
scription of the problem, the method of inverse problem
solution and the results of computation will be presented
in the next chapters.

2. Governing equations
The equation describing the solidification process (only
heat conduction is taken into account) can be written in
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the following form

c (T )
∂T (x, t)

∂t
= ∇ [λ (T )∇T (x, t)] + Q(x, t) (1)

where c is a volumetric specific heat, λ is a thermal con-
ductivity, Q is a source term, T, x, t denote the temper-
ature, geometrical co-ordinates and time. Function Q is
proportional to a solidification rate, this means

Q(x, t) = L
∂fS(x, t)

∂t
(2)

where L is a volumetric latent heat, fS is a volumetric
solid state fraction at the considered point from metal
domain. Finally

c (T )
∂T (x, t)

∂t
= ∇ [λ (T )∇T (x, t)] + L

∂fS(x, t)
∂t

(3)

On the outer surface of the system the condition in gen-
eral form

Φ
[
T (x, t) ,

∂T (x, t)
∂n

]
= 0 (4)

is given, where ∂/∂n denotes a normal derivative. The
initial condition

t = 0 : T (x, 0) = T0 (5)

is also known.
The equations above presented constitute (as was

mentioned previously) a base of numerical simulation
both in the case of macro models of solidification and
in the case of micro/macro ones.

The micro/macro model of solidification (the second
generation one [1]) basing on the assumption that the ki-
netics of nucleation and nuclei growth is proportional to
the undercooling below the solidification point is consid-
ered. So, the driving force of the process is a difference
between solidification point Tcr and temporary local tem-
perature – Fig. 1.

∆T (x, t) = Tcr − T (x, t) (6)

Fig. 1. Undercooling ∆T

At first, the following function is introduced

ω(x, t) = N(x, t)V (x, t) (7)

where N is a grains density [grains/m3 ], V is a single
grain volume. If one considers the spherical grains and
u = ∂R/∂t is a crystallization rate (R is a grain radius)
then

V (x, t) =
4
3
π

 t∫
0

u (x, τ)dτ

3

(8)

In the case of the others types of crystallization (e.g.
dendritic growth) the shape coefficient v < 1 can be in-
troduced [6] and then

ω (x, t) =
4
3
πνN (x, t)

 t∫
0

u (x, τ) dτ

3

(9)

In the case of so-called linear [5] model the function
fS is assumed to be equal directly to ω(x, t)

fS(x, t) = N(x, t)V (x, t) (10)

and if fS = 1 then the crystallization process stops. The
derivative of fS with respect to time equals

∂fS (x, t)
∂t

= 4πv

[
R (x, t)3

3
∂N (x, t)

∂t
+ R (x, t)2

∂R (x, t)
∂t

N (x, t)

]
(11)

Assuming the constant number of nuclei (e.g. [8]) we
obtain

∂fS (x, t)
∂t

= 4πνNR (x, t)2
∂R (x, t)

∂t
(12)

and this case will be below discussed.
In literature the exponential model resulting from the

theory proposed by Mehl, Johnson, Avrami and Kolmogo-
roff (e.g. [4,7]) can be also found. Then

fS (x, t) = 1 − exp [−ω (x, t)] (13)

For the small geometrical volumes exp(−ω) = 1 − ω and
then the formulas (10), (13) lead to the same results. In
this paper the linear model is considered because the nu-
merical approximation of source function in the energy
equation and equations resulting from the sensitivity anal-
ysis (see: next chapter) is essentially simpler, while the
results are very close.

Additionally it is assumed that the nuclei growth is
determined by the formula [7,8]

∂R (x, t)
∂t

= µ [Tcr − T (x, t)]2 = µ∆T (x, t)2 (14)

where µ is the growth coefficient.
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Finally, the local value of source term for N = const
results from the following equation

L
∂fS (x, t)

∂t
= 4πνLNµ∆T (x, t)2

 t∫
0

µ∆T (x, τ)2 dτ

2

.

(15)

3. Sensitivity with respect to nuclei
density and specific heat

The presented solution of inverse problem bases on the
sensitivity coefficients [12]. Because the nuclei density N
and volumetric specific heat c(T ) = c = const are identi-
fied therefore the sensitivity models concerning these pa-
rameters must be constructed (the direct approach is used
[12–14]).

Differentiating the energy equation with respect to N
one has

c
∂

∂N

[
∂T (x, t)

∂t

]
=

∂

∂N
{∇ [λ (T )∇T (x, t)]}

+ L
∂

∂N

[
∂fS(x, t)

∂t

]
.

(16)

Using the Schwarz theorem and denoting ∂T/∂N =
U1 one obtains

c
∂U1(x, t)

∂t
= ∇ [λ (T )∇U1(x, t)] + QU . (17)

The source function QU in equation (17) equals

QU (x, t) = 4πνLµ∆T (x, t)

×

 t∫
0

µ∆T (x, τ)2 dτ

2

[∆T (x, t) − 2NU1 (x, t)]

− 16πνLNµ∆T (x, t)2
t∫

0

µ∆T (x, τ)2 dτ

×
t∫

0

µ∆T (x, τ)U1 (x, τ) dτ.

(18)

Denoting

R (x, t) =

t∫
0

µ∆T (x, τ)2 dτ,

RU (x, t) =

t∫
0

µ∆T (x, τ) U1 (x, τ) dτ

(19)

one has

QU (x, t) = 4πνLµ∆T (x, t)R (x, t)2

× [∆T (x, t) − 2NU1 (x, t)]

− 16πνLNµ∆T (x, t)2 R (x, t)RU (x, t) .
(20)

The expression determining source term QU is rather
complex, but in numerical realization it does not cause
the essential difficulties.

Sensitivity equation is supplemented by the initial con-
dition U1(x, 0) = 0, and the boundary one in general form

Φ
[
U1 (x, t) ,

∂U1 (x, t)
∂n

]
= 0. (21)

For example, in the case of Robin boundary condition
−λ∂T/∂n = α(T − Ta) (α is a heat transfer coefficient,
Ta is an ambient temperature) we have −λ∂U1/∂n = αU1.

Sensitivity model concerning the volumetric specific
heat requires the differentiation of energy equation and
boundary-initial conditions with respect to c. So

∂T (x, t)
∂t

+ c
∂U2(x, t)

∂t
= ∇ [λ (T )∇U2(x, t)] + QU (22)

where U2 = ∂T/∂c and

QU (x, t) = − 8πνLNµ∆T (x, t)R (x, t)
× [U2 (x, t)R (x, t) + 2∆T (x, t) RU (x, t)]

(23)
at the same time

R (x, t) =

t∫
0

µ∆T (x, τ)2 dτ,

RU (x, t) =

t∫
0

µ∆T (x, τ) U2 (x, τ) dτ.

(24)

The boundary and initial conditions are the same as pre-
viously.

Both the sensitivity model with respect to N and c
are strongly coupled with the basic one and the sensitiv-
ity problems can be solved under the condition that the
basic solution is known.

4. Identification of unknown parameters
If Td(x, t) is the ‘measured’ (postulated) temperature field
in the domain Ω, while T (x, t) is a temperature field found
for the assumed values of unknown parameters then the
best solution corresponds to the minimum of functional
[15,16]

S =

tF∫
0

∫
Ω

[T (x, t) − Td (x, t)]2 dΩdt ⇒ MIN (25)

where [0, tF ] is a time interval considered.
Because, as a rule, the information concerning Td is

given in discrete form (the values of temperature at the
set of control points – sensors xi, i = 1, 2, ...,M for times
t0, t1, ..., tF ) therefore the criterion (25) is formulated in
the form

S =
F∑

f=0

M∑
i=1

[
T

(
xi, t

f
)
− Td

(
xi, t

f
)]2 ⇒ MIN (26)
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or more generally

S =
F∑

f=0

M∑
i=1

γi

[
T

(
xi, t

f
)
− Td

(
xi, t

f
)]2 ⇒ MIN (27)

where γi > 0 are the tapering functions.
The necessary condition of functional (26) minimum

leads to the equations
∂S
∂N = 2

M∑
i=1

F∑
f=1

(
T f

i − T f
di

)
∂T f

i

∂N

∣∣∣∣∣
N=Nk

= 0

∂S
∂c = 2

M∑
i=1

F∑
f=1

(
T f

i − T f
di

)
∂T f

i

∂c

∣∣∣∣∣
c=ck

= 0

(28)

where T f
di = Td(xi, t

f ), T f
i = T (xi, t

f ), Nk , ck for k = 0
are the initial values (start point), while for k > 1 result
from the previous computations. Introducing the sensitiv-
ity functions we have

M∑
i=1

F∑
f=1

(
T f

i − T f
di

)(
Uf

1i

)k

= 0

M∑
i=1

F∑
f=1

(
T f

i − T f
di

)(
Uf

2i

)k

= 0
(29)

Now the function T f
i is expanded into Taylor series,

namely

T f
i =

(
T f

i

)k

+
(
Uf

1i

)k (
Nk+1 − Nk

)
+

(
Uf

2i

)k (
ck+1 − ck

)
.

(30)
Introducing (30) into (29) one obtains

M∑
i=1

F∑
f=1

[(
Uf

1i

)k
]2 M∑

i=1

F∑
f=1

(
Uf

1i

)k (
Uf

2i

)k

M∑
i=1

F∑
f=1

(
Uf

2i

)k (
Uf

1i

)k M∑
i=1

F∑
f=1

[(
Uf

2i

)k
]2



×
[

Nk+1 − Nk

ck+1 − ck

]
=


M∑
i=1

F∑
f=1

(
Uf

1i

)k
[
T f

di −
(
T f

i

)k
]

M∑
i=1

F∑
f=1

(
Uf

2i

)k
[
T f

di −
(
T f

i

)k
]

 .

(31)
This system of equations allows to determine Nk+1

and ck+1. If the iteration process is convergent then the
sequences

{
Nk

}
and

{
ck

}
tend towards the real values of

N and c.

5. Boundary element method
The primary and also the additional problems resulting
from the sensitivity analysis have been solved using the
1st scheme of the BEM for transient heat diffusion [17–
19]. So, the following Fourier equation will be considered

c
∂F (x, t)

∂t
= λ∇2F (x, t) + Z(x, t) (32)

where F (x, t) denotes the temperature or functions re-
sulting from the sensitivity analysis, while Z(x, t) is the
source function (for primary problem: Z(x, t) = Q(x, t),

for additional problems: Z(x, t) = QU (x, t)). One can see
that both c and λ are assumed to be the constant values.
Taking into account the rather small temperature interval
in which the process discussed proceeds, such assumption
is entirely acceptable. The details concerning the BEM
application in the case c = c(T ) and λ = λ(T ) can be
found in [17].

So, at first, the time grid is introduced

0 = t0 < t1 < ... < tf−1 < tf < ... < tF < ∞,

∆t = tf − tf−1.
(33)

If the 1st scheme of the BEM is taken into account
then the boundary integral equation corresponding to
transition tf−1 → tf is of the form

B (ξ)F
(
ξ, tf

)
+

1
c

tf∫
tf−1

∫
Γ

F ∗ (
ξ, x, tf , t

)
J (x, t)dΓdt

=
1
c

tf∫
tf−1

∫
Γ

J∗ (
ξ, x, tf , t

)
F (x, t)dΓdt

+
x
Ω

F ∗ (
ξ, x, tf , tf−1

)
F

(
x, tf−1

)
dΩ

+
1
c

tf∫
tf−1

x
Ω

Z (x, t)F ∗ (
ξ, x, tf , t

)
dΩdt.

(34)
In Eq. (34) F ∗ is the fundamental solution [17–19] and

F ∗ (
ξ, x, tf , t

)
=

1

[4πa (tf − t)]d/2
exp

[
− r2

4a (tf − t)

]
(35)

where d is the dimension of the problem, r is the distance
from the point under consideration x to the observation
point ξ, a = λ/c, while

J∗ (
ξ, x, tf , t

)
= −λ

∂F ∗ (
ξ, x, tf , t

)
∂n

,

J (x, t) = −λ
∂F (x, t)

∂n

(36)

and B(ξ) is the coefficient from the interval (0, 1).
We use the constant elements with respect to time

[17,18] and then the boundary integral Eq. (34) takes a
form

B (ξ)F
(
ξ, tf

)
+

∫
Γ

J
(
x, tf

)
g (ξ, x) dΓ

=
∫
Γ

F
(
x, tf

)
h (ξ, x)dΓ +

x
Ω

J∗ (
ξ, x, tf , tf−1

)
×F

(
x, tf−1

)
dΩ+

x
Ω

Z
(
x, tf−1

)
g (ξ, x) dΩ

(37)

where

h (ξ, x) =
1
c

tf∫
tf−1

J∗ (
ξ, x, tf , t

)
dt (38)
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and

g (ξ, x) =
1
c

tf∫
tf−1

F ∗ (
ξ, x, tf , t

)
dt. (39)

In numerical realization the following discrete form of
the boundary integral Eq. (37) is considered

N∑
j=1

GijJ
f
j =

N∑
j=1

HijF
f
j +

L∑
l=1

PilF
f−1
l +

L∑
l=1

WilZ
f−1
l (40)

where

Gij =
∫
Γj

g
(
ξi, x

)
dΓj , Hij =

{ ∫
Γj

h
(
ξi, x

)
dΓj , i 6= j

−0.5, i = j
(41)

and
Pil =

x
Ωl

F ∗ (
ξi, x, tf , tf−1

)
dΩl,

Wil =
x
Ωl

g
(
ξi, x

)
dΩl.

(42)

The system of Eq. (40) can be written in the matrix
form, namely

G · Jf = H · Ff + P · Ff−1 + W · Zf−1. (43)

After determining the ‘missing’ boundary values of F
and J , the values of function F at the internal points
ξi for time tf are calculated using the formula (i =
N + 1, ..., N + L):

F f
i =

N∑
j=1

HijF
f
j −

N∑
j=1

GijJ
f
j +

L∑
l=1

PilF
f−1
l +

L∑
l=1

WilZ
f−1
l .

(44)

6. Example of computations

The algorithm above presented can be used both in the
case od 1D problem and 2D or 3D ones. It is only the
problem of adequate computer program construction. Be-
low the solution concerning the aluminium plate (G = 3
cm – 1D task) will be shown. The influence of mould is
taken into account by the Robin condition for x = −1.5
and x = 1.5 (heat transfer coefficient α = 250 W/(m2K)).
Nuclei density N = 1010, volumetric specific heat c =
2.875 MJ/(m3K), the others parameters of material [2]:
λ = 150 W/(mK), L = 975 MJ/m3, µ = 3 ·10−6 m/(sK2),
solidification point Tcr = 660◦C, pouring temperature
T0 = 670◦C. The cooling curves corresponding to the ba-
sic solution are shown in Fig. 2. The inverse problem has
been solved under the assumption that the cooling curves
are known, at the same time the different initial values of
estimated parameters have been taken into account, for
example N0 = 108, c0 = 2 (variant 1) and N0 = 108,

Fig. 2. Cooling curves

Fig. 3. Simultaneous identification of N and c – variant 1
(1 − Nk/Nd, 2 − ck/cd)

c0 = 3.5 (variant 2). In Figs. 3,4 the results of iden-
tification this means the values of Nk/Nd and ck/cd

(Nd = 1010, cd = 2.875 denote the real values of parame-
ters) for successive iterations are shown. It is visible that
the iteration process is convergent and real values of iden-
tified parameters are obtained after a few iterations. The
testing computations show that iteration process is con-
vergent even for initial value of nuclei N0 = 1 and from
numerical point of view it is very important information.
It appears that the values N0 = 1 and c0 ∈ [1, 6] assure
the convergence of simultaneous identification of the pa-
rameters N and c. Figs. 5 and 6 illustrate the solutions
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of inverse problem for N0 = 1, c0 = 6 (variant 3) and
N0 = 1, c0 = 1 (variant 4).

Fig. 4. Simultaneous identification of N and c – variant 2
(1 − Nk/Nd, 2 − ck/cd)

Fig. 5. Simultaneous identification of N and c – variant 3
(1 − Nk/Nd, 2 − ck/cd)

In the next version of computations in the place of
Td(xi, t

f ) the disturbed data (in relation to the basic solu-
tion) have been introduced. The ‘exact’ solution has been
transformed randomly using the procedure described in
[20]. In Fig. 7 the example of cooling curves obtained in
this way is presented. The results of identification cor-
responding to successive iterations are shown in Fig. 8

(N0 = 1, c0 = 1). One can see that the iterative process
is convergent and the final values of N and c are suffi-
ciently exact.

Fig. 6. Simultaneous identification of N and c – variant 4
(1 − Nk/Nd, 2 − ck/cd)

Fig. 7. Disturbed cooling curves (σ = 1)

7. Conclusions
Summing up, the information concerning the cooling
curves at the selected set of points from casting domain
allows to reconstruct parameters determining the solidifi-
cation process even in the case when they belong to differ-
ent (macro and micro) levels. The least squares criterion
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in which the sensitivity coefficients are introduced consti-
tutes a very effective tool for numerical solution of inverse
problems from the scope of thermal theory of foundry pro-
cesses (the same approach has been used by the authors of
this paper also in the case of others problems). It should
be pointed out that the model of solidification presented
here concerns a small superheating of metal because only
heat conduction is considered. The simplification consist-
ing in ‘rejection’ of mould subdomain and approximation
of the mould influence by the Robin condition on the ex-
ternal surface of casting is not necessary (e.g. [8]). It was
introduced here in order to simplify the theoretical con-
siderations connected with the main subject of this paper.

Fig. 8. Simultaneous identification of N and c – disturbed data
(1 − Nk/Nd, 2 − ck/cd)
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