
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 55, No. 1, 2007

Dominance relations for two-machine flow shop problem
with late work criterion

M. STERNA∗

Institute of Computing Science, Poznań University of Technology, 2 Piotrowo St., 60-965 Poznań, Poland

Abstract. The paper concerns the two-machine non-preemptive flow shop scheduling problem with a total late work criterion
and a common due date (F2|dj = d|Y). The late work performance measure estimates the quality of a solution with regard
to the duration of late parts of activities performed in the system, not taking into account the quantity of this delay. In the
paper, a few theorems are formulated and proven, describing features of an optimal solution for the problem mentioned, which is
NP-hard. These theorems can be used in exact exponential algorithms (as dominance relations reducing the number of solutions
enumerated explicitly), as well as in heuristic and metaheuristic methods (supporting the construction of sub-optimal schedules
of a good quality).

Key words: scheduling, flow shop, late work criterion, dominance relation.

1. Introduction
The performance measure is a crucial component of the
definition of any scheduling problem (cf. e.g. [1–3]). The
viewpoint from which the quality of a schedule is esti-
mated, i.e. the objective function, usually determines the
strategy of searching for this solution. In most practical
problems arising in different domains, the problem analy-
sis has to take into account various time restrictions. This
makes due date involving criteria, such as the late work
one, especially interesting subject of the research.

The late work performance measure, investigated in
this paper, evaluates schedules with regard to the num-
ber of tardy units of particular activities executed in a
system. It can be considered as a special case of the im-
precise computation model (cf. e.g. [4]), in which a job is
divided in the mandatory and optional part. In a feasi-
ble schedule, the mandatory part of a job has to be early,
while the optional part can be late, but the more its units
is tardy the worse solution is obtained. The late work
scheduling corresponds to the situation when the whole
processing time is optional.

Such a concept of an objective function finds practical
applications, for example, in the process of collecting data
in control systems, where the amount of information ex-
posed after a due date influences the accuracy of a steering
algorithm. Moreover, the late work criterion can be con-
sidered in industrial systems, where late parts of customer
orders should be minimized. It supports also production
planning in a certain time horizon, since it allows reducing
the amount of work not assigned to a particular time slot,
which has to be considered in the following one. Further-
more, the late work concept can be applied in agriculture
to optimize harvesting and land cultivation processes. In

the first case, the amount of wasted crop, in the latter
one, the amount of not spread fertilizers or plant protec-
tion substances should be minimized.

The late work concept was introduced in the context of
the scheduling problem on identical parallel machines [5]
and, next, it was applied to uniform [6] and single [7–15]
machine(s) cases. Then, the late work criteria were ana-
lyzed in the shop environment, i.e. in systems with ded-
icated machines [16–23], starting from the simplest two-
machine models with a common due date. All cases with
two machines and the weighted late work criterion ap-
peared to be binary NP-hard [24] (i.e. O2|dj = d|Yw [17],
F2|dj = d|Yw [18] and J2|dj = d, nj ≤ 2|Yw [19]). The
two-machine open shop without weights (O2|dj = d|Y
[17]) is solvable in polynomial time. The two machine
flow shop problem with a common due date and the to-
tal late work criterion, F2|dj = d|Y , being the subject
of this paper, has been recently classified as binary NP-
hard. Its intractability results from the transformation
from the partition problem [25]. Moreover, it is possible to
apply pseudo-polynomial time dynamic programming de-
veloped for the weighted case F2|dj = d|Yw [18]. Since the
job shop case is a generalization of the flow shop system
(cf. e.g. [1–3]), J2|dj = d, nj ≤ 2|Yw, is also computation-
ally hard.

In the paper, the features of an optimal solution for
problem F2|dj = d|Y are presented, which can be helpful
in constructing efficient exact and heuristic approaches
solving it. In Section 2, the formal definition of the case
under consideration is given, together with the description
of a general structure of an optimal solution of this prob-
lem. In Section 3, three dominance relations are formu-
lated and proven, which support the process of construct-

∗e-mail: malgorzata.sterna@cs.put.poznan.pl

59

M. Sterna

ing an optimal schedule for F2|dj = d|Y . Conclusions and
further research directions are given in Section 4.

2. Problem definition
The two machine flow shop problem with the late work
criterion and a common due date, F2|dj = d|Y , concerns
scheduling of a set of jobs J = {J1, . . . , Jj , . . . , Jn} on
two dedicated machines M1 and M2. Each job Jj has to
be performed first on machine M1 and then on M2 for p1j

and p2j time units, respectively. Hence, one can consider
a job as a sequence of two tasks, for which a precedence
constraint is defined. Each machine can process only one
job at a time and each job can be executed by only one
machine at a time. Moreover, a common due date d is de-
fined for all jobs in the system. The goal is to construct a
feasible non-preemptive schedule for which the total late
work is minimal, i.e. the amount of work executed after a
given common due date d is minimal.

Fig. 1. The late work Yj for job Jj in an exemplary solution
for F2|dj = d|Y

Denoting by Cij the completion time of job Jj on ma-
chine Mi, the late work Yj for this job is determined as
(cf. Fig. 1):

Yj =
∑

i=1,2

min {max {0, Cij − d} , pij} . (1)

The criterion value to be minimized, estimating the qual-
ity of a complete schedule for the whole set of n jobs, is
calculated as

Y =
n∑

j=1

Yj . (2)

The late work criterion represents slightly different
point of view than other classical performance measures.
If an activity is scheduled totally late, then the quantity
of its delay does not influence the criterion value (on the
contrary to the tardiness or lateness for example). Mini-
mizing this performance measure, one tends to execute as
many units of work before a common due date as possi-
ble, which is equivalent to minimizing idle time before d
[18,23]. Such a strategy usually does not result in a sched-
ule of the minimal length. Since early jobs are selected in
order to fill the gap between time zero and d in the best
way and jobs scheduled after a common due date are not
important for the objective function and are executed in
an arbitrary order, the whole solution can have quite large

makespan. On the contrary, all early activities have to be
processed in the order that minimizes the schedule length
[18,23]. Once it is decided which jobs are executed be-
fore a common due date, the set of such jobs should be
executed as soon as possible, i.e. in Johnson’s order [26].

Johnson’s algorithm, designed for problem F2‖Cmax,
divides the set of jobs J into two subsets: J1 containing
jobs Jj ∈ J with p1j ≤ p2j and J2 built by jobs Jj ∈ J
with p1j > p2j . In order to minimize the schedule length,
jobs from set J1 should be sequenced in non-decreasing
order of p1j and precede jobs from J2 processed in non-
increasing order of p2j .

Summing up, solving problem F2|dj = d|Y , one has
to divide the set of all jobs J into two subsets J = E ∪ L
(cf. Fig. 1), where E contains early jobs, while late jobs
(possibly partially) belong to L. Jobs from E have to be
processed in Johnson’s order, while the first late job in L
(job Jj in Fig. 1) has to be chosen in the way minimizing
idle time before d. The sequence of the remaining late jobs
from set L is arbitrary.

Although the general structure of an optimal solution
of problem F2|dj = d|Y , described above, is quite strict,
this scheduling case is NP-hard [24, 25]. The crucial de-
cision, difficult from the viewpoint of the computational
complexity, is to select the first late job in the system
and, first of all, to divide the set of jobs into two subsets
of early and late activities. In the paper, some dominance
relations are formulated and proven, which support the
process of constructing this division of the set of jobs.

3. Dominance relations
Since problem F2|dj = d|Y is NP-hard, a polynomial
time method solving it optimally is rather unlikely to exist
[24]. Exact approaches of the exponential time complex-
ity, such as a branch and bound algorithm for example,
can be efficiently applied only for small problem instances.
Exact methods have to explore the whole solution space
in the search for an optimal schedule, but not every pos-
sible sequence of jobs is analyzed explicitly. The efficiency
of such algorithms depends on their ability to discard par-
tial solutions which do not lead to the optimal one. The
careful analysis of the structure of an optimal schedule
often results in formulating dominance relations, which
justify discarding some parts of the solution space. On
the other hand, these relations make it possible to design
good heuristic or metaheuristic approaches, concentrating
their search in the most promising areas of the problem
space.

The optimal solution for problem F2|dj = d|Y can be
represented as a permutation of jobs. Thus, the solution
space contains all permutations of the set of jobs. But,
with regard to the fact that early jobs have to be exe-
cuted in Johnson’s order, all permutations of these activi-
ties which are not consistent with Johnson’s order can be
discarded. Obviously, the crucial decision is to select jobs
to this set of early activities. Three theorems formulated

60 Bull. Pol. Ac.: Tech. 55(1) 2007

Dominance relations for two-machine flow shop problem with late work criterion

and proven in the paper impose conditions, which may
be taken into account in this decision process. They show
that selecting jobs in non-decreasing order of processing
times on the first machine is usually profitable from the
late work point of view.

Theorem 1. In some optimal solution of problem
F2|dj = d|Y , there is no pair of jobs Jk, Js ∈ J1 such
that Js ∈ E ∧ Jk ∈ L ∧ p1k ≤ p1s.

Proof. Let assume that there exists an optimal so-
lution π, for which the condition of Theorem 1 does not
hold, i.e. there exist two jobs Js, Jk ∈ J1 (i.e. p1s ≤ p2s

and p1k ≤ p2k) such that Js ∈ E and p1k ≤ p1s, but
Jk ∈ L. Moreover, let assume, without the loss of gener-
ality, that Js is the first job in the sequence of early jobs
for which the theorem does not hold. There will be shown
that processing job Jk early, one obtains a schedule π′

satisfying the condition of Theorem 1 with the criterion
value not worse than π.

If Jk is processed early, then it has to be executed di-
rectly before Js in π′, due to the assumption that Js is
the first job contradicting Theorem 1, as well as to the
fact that all early jobs are sequenced in Johnson’s order
(p1k ≤ p1s and all jobs from J1, including Js and Jk, are
scheduled in non-decreasing order of the processing times
of their first tasks). Exemplary solutions π and π′ are de-
picted in Fig. 2 (obviously, some partial schedules π1, π2,
π3 can be empty, as well as some idle times can be equal
to zero).

Because minimizing late work is equivalent to mini-
mizing idle time before a common due date d, to prove
the theorem, it is enough to show that the total idle time
before d does not increase as a result of shifting Jk be-
fore Js and that no unit of idle time is shifted to the left
(especially before a due date d).

Fig. 2. Exemplary schedules π and π′, where Jk ∈ J1 is shifted
before Js ∈ J1 (p1k ≤ p1s)

Let’s denote with I1, I2, I3, Is the amount of idle time
within partial schedules π1, π2, π3, and before job Js in
schedule π, respectively (if there is idle time before Jk in
π, then it is included in I2). The values Î1, Î2, Î3, Îk, Îs

denote the corresponding idle times in schedule π′. In or-
der to avoid a possible violation of precedence constraints,
partial schedules π2 and π3 cannot be shifted to the left

on M2 in π′ with regard to π (cf. e.g. subschedule π3 in
Fig. 2).

The total idle times for schedules π and π′ are equal to
I = I1 + Is + I2 + I3 and Î = Î1 + Îk + Îs + Î2 + Î3. In con-
sequence, the change of the total idle time, representing
the change of the criterion value, is equal to

∆I = Î − I = (Î1 + Î2 + Î3 + Îk + Îs)
− (I1 + I2 + I3 + Is)

= (Î1 − I1) + (Î2 − I2) + (Î3 − I3)

+ (Îk + Îs − Is).

(3)

Because the partial schedule π1 is the same in π as in π′,
therefore (I1 = Î1) ⇒ (Î1 − I1 = 0) and

∆I = (Î2 − I2) + (Î3 − I3) + (Îk + Îs − Is) (4)

where
Is = max{0, p1s − ∆π1}, (5)

Îk = max{0, p1k − ∆π1}, (6)

Îs = max{0, p1k + p1s − max{∆π1, p1k} − p2k}. (7)

Since it is assumed that π2 cannot be shifted to the
left on M2, the change of idle time for π2 is equal to
the change of the difference between schedule lengths on
machines M1 and M2 before π2 (i.e. the change of the
schedule offset) in π′ and π, this means that

(Î2 − I2) = {(p1k + p1s) − (∆π1 + Îk + p2k + Îs + p2s)}
− {(p1s) − (∆π1 + Is + p2s)}
= p1k − Îk − p2k − Îs + Is

= (p1k − p2k) − (Îk + Îs − Is).
(8)

First, jobs Jk, Js and a partial schedule π2 will be
considered, then a partial schedule π3 will be analyzed.
Case 1. Let’s assume that

Îk = 0 ⇒ p1k − ∆π1 ≤ 0 ⇒ p1k ≤ ∆π1. (9)

Eq. (7) and (9) result in

Îs = max{0, p1k + p1s − max{∆π1, p1k} − p2k}
= max{0, p1k + p1s − ∆π1 − p2k}
= max{0, (p1k − p2k) + (p1s − ∆π1)}.

(10)

Subcase 1. Let’s assume that

Is = 0 ⇒ p1s − ∆π1 ≤ 0. (11)

Taking into account (11) and Jk ∈ J1 ⇒ p1k−p2k ≤ 0,
Eq. (10) reduces to Îs = max{0, (p1k − p2k) + (p1s −
∆π1)} = 0. In consequence, taking into account (9) and
(11), there is (Îk + Îs − Îs) = 0. This means that no new
idle time appears in a partial schedule before Js in π′.
Moreover, from (8) results (Î2 − I2) = (p1k − p2k)− (Îk +
Îs − Is) = (p1k − p2k) ≤ 0. It denotes that the schedule
offset between M1 and M2 before π2 can only increase in
π′ in comparison to π, possibly reducing the internal idle
time within π2.
Subcase 2. Let’s assume that

Is > 0 ⇒ p1s − ∆π1 > 0. (12)

Bull. Pol. Ac.: Tech. 55(1) 2007 61

M. Sterna

Eq. (5) and (12) result in

Is = p1s − ∆π1, (13)

while (10) and (13) lead to

Îs = max{0, (p1k − p2k) + (p1s − ∆π1)}
= max{0, p1k − p2k + Is}.

(14)

First, let’s assume that

Îs = 0 ⇒ p1k − p2k + Is ≤ 0. (15)

Equations (9), (12) and (15) lead to (Îk+ Îs−Is) = Is ≤ 0
and Eq. (8) reduces to (Î2 − I2) = (p1k − p2k)− (Îk + Îs −
Is) = p1k − p2k + Is ≤ 0.

Then, let’s assume that

Îs > 0 ⇒ p1k − p2k + Is > 0. (16)

Equations (14) and (16) denote that Îs = p1k − p2k + Is.
Combining this observation with (9) and then with (8),
one obtains (Îk + Îs − Is) = 0 + (p1k − p2k + Is) − Is =
p1k −p2k ≤ 0 and (Î2−I2) = (p1k −p2k)− (Îk + Îs−Is) =
(p1k − p2k) − (p1k − p2k) = 0, respectively.

Regardless of the value Îs in Subcase 2, idle time in
a partial schedule before Js cannot increase, because job
Jk may only reduce idle time before Js (Îk + Îs − Is ≤ 0).
Moreover, the schedule offset before π2 cannot become
smaller in π′ than in π ((Î2 − I2) ≤ 0), and, in conse-
quence, the internal idle time within π2 cannot increase
(actually, it can be possibly reduced, if (Î2 − I2) < 0).
Case 2. Let’s assume that

Îk > 0 ⇒ p1k − ∆π1 > 0 ⇒ p1k > ∆π1. (17)

Eq. (6) and (17) imply

Îk = p1k − ∆π1. (18)

Because p1s ≥ p1k, from Eq. (17) there is p1s > ∆π1 and
from (5)

Is = max{0, p1s − ∆π1} = p1s − ∆π1 > 0. (19)

From Eq. (7) and (17), there is

Îs = max{0, p1k + p1s − max{∆π1, p1k} − p2k}
= max{0, p1k + p1s − p1k − p2k}
= max{0, p1s − p2k}.

(20)

Subcase 1. Let’s assume that

Îs = 0 ⇒ p1s − p2k ≤ 0. (21)

Eq. (18), (19) and (21) lead to (Îk + Îs − Is) = (p1k −
∆π1) − (p1s − ∆π1) = p1k − p1s ≤ 0 and reduce (8) to
(Î2 − I2) = (p1k − p2k) − (Îk + Îs − Is) = (p1k − p2k) −
(p1k − p1s) = p1s − p2k ≤ 0.
Subcase 2. Let’s assume that

Îs > 0 ⇒ p1s − p2k > 0 ⇒ Îs = p1s − p2k. (22)

Eq. (18), (19) and (22) lead to (Îk + Îs − Is) = (p1k −
∆π1) + (p1s − p2k) − (p1s − ∆π1) = p1k − p2k ≤ 0 and
reduce (8) to (Î2 − I2) = (p1k − p2k) − (Îk + Îs − Is) =
(p1k − p2k) − (p1k − p2k) = 0.

Again, in both subcases of Case 2, idle time in a sched-
ule before Js cannot increase (Îk + Îs − Is ≤ 0) and the
schedule offset before π2 cannot decrease in π′ with regard
to π ((Î2 − I2) ≤ 0).

To complete the proof, a partial schedule π3 will be
considered. From the case study presented above it re-
sults that (Î2 − I2) ≤ 0. This means that the schedule
offset between M1 and M2 before π2 can only increase
in π′ with regard to π or it remains unchanged. In the
latter case the schedule offset after π2 does not change
too, ∆π2 = ∆π̂2. In the first case, the larger offset before
π2 may reduce the internal idle time in this subschedule
(if any) and, then, increase the offset between machine
M1 and M2 after π2, ∆π2 ≤ ∆π̂2. Summing up, there is
∆π2 ≤ ∆π̂2.

Similarly, as for π2, a partial schedule π3 cannot be
shifted to the left on M2 in π′ and, in consequence, (Î3−I3)
is equal to the change of the difference in the schedule off-
sets between machines M1 and M2 in π′ and π, i.e.:

(Î3 − I3) = {−∆π̂2} − {(p1k) − (∆π2 + p2k)}
= −(p1k − p2k) + ∆π2 − ∆π̂2.

(23)

Combining (23) with (8), the total idle time change
(4) is equal to

∆I = (Î2 − I2) + (Î3 − I3) + (Îk + Îs − Is)

= (p1k − p2k) − (Îk + Îs − Is) + (Î3 − I3)

+ (Îk + Îs − Is)

= (p1k − p2k) + (Î3 − I3)
= (p1k − p2k) − (p1k − p2k) + ∆π2 − ∆π̂2

= ∆π2 − ∆π̂2 ≤ 0.

(24)

This means that the total idle time cannot increase in
consequence of executing job Jk before Js. The possible
idle time which may appear in π′ before a subschedule π3

(if (Î3 − I3) > 0, cf. Fig. 2) is a result of shifting some
idle time units to the right. The total number of idle time
units does not increase; some of them can be shifted from
the left to the right part of a schedule. If this shift is large
enough, some idle time units can be moved after a com-
mon due date, causing an additional decrease of the late
work in the system.

Summing up, it is shown that ∆I ≤ 0 and no unit
of idle time is shifted to the left as a result of a sched-
ule modification. Executing job Jk before Js leads to the
new schedule π′, which is not worse than π with regard to
the total late work value. This analysis can be repeated
for the remaining pairs of jobs Js, Jk ∈ J1 such that
Js ∈ E∧Jk ∈ L∧p1k ≤ p1s proving Theorem 1 (note that
Theorem 1 holds, if Js is early as well as it is late in π′).

Theorem 2. In some optimal solution of problem
F2|dj = d|Y , there is no pair of jobs Jk ∈ J1, Js ∈ J2

such that Js ∈ E ∧ Jk ∈ L ∧ p1k ≤ p1s.
Proof. Let’s assume that there exists an optimal so-

lution π, for which the condition of Theorem 2 does not

62 Bull. Pol. Ac.: Tech. 55(1) 2007

Dominance relations for two-machine flow shop problem with late work criterion

hold, i.e. there exist two jobs Js ∈ J2 (i.e. p1s > p2s),
Jk ∈ J1 (i.e. p1k ≤ p2k), such that Js ∈ E and p1k ≤ p1s,
but Jk ∈ L. Moreover, let assume without the loss of gen-
erality, that Js is the first job in the sequence of early jobs
for which the theorem does not hold. It will be shown that
processing job Jk early, one obtains a schedule π′ satisfy-
ing the condition of Theorem 2 with the criterion value
not worse than π. Taking into account the assumptions
that Jk ∈ J1 and Js ∈ J2, if Jk is early, then it has to
be processed before Js in π′, because all early jobs from
set J1 (including Jk) precede all early jobs from set J2

(including Js) in Johnson’s order. Exemplary solutions
π and π′ are depicted in Fig. 3 (obviously, some partial
schedules π1, π2, π3, π4 can be empty as well as some idle
times can be equal to zero). To prove the theorem, it is
enough to show that the total idle time does not increase
as a result of shifting Jk before Js and that no unit of idle
time is shifted to the left (before a common due date d).

Fig. 3. Exemplary schedules π and π′, where Jk ∈ J1 is shifted
before Js ∈ J2(p1k ≤ p1s)

Let’s denote with I1, I2, I3, I4, Is the amount of idle
time within partial schedules π1, π2, π3, π4 and before job
Js in schedule π (a possible idle time before Jk is in-
cluded in I3). The values Î1, Î2, Î3, Î4, Îs, Îk denote the cor-
responding idle times in schedule π′. The total idle times
for schedules π and π′ are equal to I = I1+Is+I2+I3+I4

and Î = Î1 + Îk + Î2 + Îs + Î3 + Î4 respectively. In conse-
quence, the total idle time difference between π and π′ is
equal to:

∆I = (Î1 − I1) + (Î2 − I2) + (Î3 − I3)

+ (Î4 − I4) + (Îk + Îs − Is).
(25)

Because the partial schedule π1 does not change in π′

in comparison to π, there is (I1 = Î1) ⇒ (Î1−I1 = 0) and
Eq. (25) leads to

∆I = (Î2 − I2) + (Î3 − I3) + (Î4 − I4)

+ (Îk + Îs − Is).
(26)

Similarly as in the proof for Theorem 1, in order to
avoid a possible violation of precedence constraints within
jobs, the partial schedules π2, π3, π4 cannot be shifted to

the left on M2 in π′ with regard to π (cf. e.g. subschedule
π4 in Fig. 3). In consequence, the possible change in idle
time within π2, (Î2 − I2), is equal to the change of the
offsets between schedules on machines M1 and M2 in π′

and π, respectively, i.e.:

(Î2 − I2) = {p1k − (∆π1 + Îk + p2k)} − {−∆π1}
= p1k − p2k − Îk.

(27)

Taking into account the fact that Jk ∈ J1 ⇒ p1k ≤
p2k ⇒ p1k − p2k ≤ 0, as well as the fact that an idle time
value cannot be negative, Îk ≥ 0 ⇒ −Îk ≤ 0, Eq. (27)
and (26) lead to

(Î2 − I2) ≤ 0, (28)

∆I ≤ (Î3 − I3) + (Î4 − I4) + (Îk + Îs − Is). (29)

Equation (28) implies that the offset between partial
schedules on M1 and M2 before π2 cannot decrease in
π′ in comparison to π. In consequence, no additional idle
time appears before the first job of π2 in π′ and the inter-
nal idle time within π2 (if any) can be only reduced.

Moreover, the change of the schedule offset before a
subschedule π3, i.e. the possible idle time change for π3,
can be determined as

(Î3 − I3) = {(p1k + π2(1) + p1s)

− (∆π1 + Îk + p2k + π2(2) + Îs + p2s)}
− {(π2(1) + p1s) − (∆π1 + π2(2) + Is + p2s)}
= (p1k − p2k) − (Îk + Îs − Is),

(30)
where π2(i) denotes the length of a partial schedule π2 on
machine Mi and

Îk = max{0, p1k − ∆π1}, (31)

Îs = max{0, p1k + π2(1) + p1s − ∆π1 − Îk

− p2k − π2(2)}
= max{0, (p1k − p2k) − Îk + (π2(1) + p1s

− ∆π1 − π2(2))},

(32)

Is = max{0, π2(1) + p1s − ∆π1 − π2(2)}. (33)

To prove that the change of the schedule offset before π3,
(Î3 − I3), cannot be positive and to show that no unit of
idle time is shifted to the left, the following two cases have
to be considered.
Case 1. Let’s assume that

Îk = 0 ⇒ p1k − ∆π1 ≤ 0 ⇒ p1k ≤ ∆π1. (34)

Eq. (34) and (32) imply

Îs = max{0, (p1k − p2k) − Îk + (π2(1)
+ p1s − ∆π1 − π2(2))}
= max{0, (p1k − p2k) + (π2(1) + p1s

− ∆π1 − π2(2))}.

(35)

Subcase 1. Let’s assume that

Is = 0 ⇒ π2(1) + p1s − ∆π1 − π2(2) ≤ 0. (36)

Bull. Pol. Ac.: Tech. 55(1) 2007 63

M. Sterna

From Eq. (36) and p1k − p2k ≤ 0, Eq. (35) reduces to
Îs = max{0, (p1k−p2k)+(π2(1)+p1s−∆π1−π2(2))} = 0.
Combining this observation with (34) and (36), one ob-
tains (Îk + Îs−Is) = 0, and Eq. (30) reduces to (Î3−I3) =
(p1k − p2k) − (Îk + Îs − Is) = (p1k − p2k) ≤ 0.
Subcase 2. Let’s assume that

Is > 0 ⇒ π2(1) + p1s − ∆π1 − π2(2) > 0. (37)

Equations (33) and (37) denote that

Is = π2(1) + p1s − ∆π1 − π2(2), (38)

while Eq. (35) and (38) lead to

Îs = max{0, (p1k − p2k) + (π2(1) + p1s − ∆π1 − π2(2))}
= max{0, (p1k − p2k) + Is}.

(39)
First, let’s assume that

Îs = 0 ⇒ (p1k − p2k) + Is ≤ 0. (40)

Eq. (34), (37) and (40) lead to (Îk+Îs−Is) = 0+0−Is < 0,
and reduce Eq. (30) to (Î3 − I3) = (p1k −p2k)− (Îk + Îs −
Is) = (p1k − p2k) + Is ≤ 0.

Then, let’s assume that

Îs > 0 ⇒ (p1k − p2k) + Is > 0, (41)

which is equivalent to Îs = (p1k − p2k) + Is. This obser-
vation combined with Eq. (34) results in (Îk + Îs − Is) =
0 + (p1k − p2k + Is) − Is = p1k − p2k ≤ 0, and with
Eq. (30) in (Î3 − I3) = (p1k − p2k) − (Îk + Îs − Is) =
(p1k − p2k) − (p1k − p2k) = 0.

All subcases investigated within Case 1, showed that
(Î3 − I3) ≤ 0 and (Îk + Îs − Is) ≤ 0. Since (Î3 − I3) ≤ 0,
the schedule offset before π3 can only increase (or remain
the same) in π′ with regard to π, possibly reducing the in-
ternal idle time within π3. Moreover, no new idle time ap-
pears between time zero and the end of subschedule π3 in
π′, because in Eq. (25) there is (Î1−I1) = 0, (Î2−I2) ≤ 0,
(Î3 − I3) ≤ 0 and (Îk + Îs − Is) ≤ 0.
Case 2. Let’s assume that

Îk > 0 ⇒ p1k − ∆π1 > 0 ⇒ p1k > ∆π1. (42)

Equations (31) and (42) imply

Îk = p1k − ∆π1. (43)

Subcase 1. Let’s assume that

Is = 0 ⇒ π2(1) + p1s − ∆π1 − π2(2) ≤ 0. (44)

Taking into account (42), (44) and p1k − p2k ≤ 0, Eq.
(32) reduces to Îs = 0 and, in consequence, Eq. (30) is
reduced to (Î3 − I3) = (p1k − p2k) − (Îk + Îs − Is) =
(p1k − p2k)− (Îk +0− 0) ≤ 0. This means that the sched-
ule offset before π3 cannot decrease in π′ with regard to π,
there is rather possible a reduction of an internal idle time
within π3. Moreover, idle time between time zero and the
end of subschedule π3 is not larger in π′ than in π, because
(Î1−I1)+(Î2−I2)+(Îk + Îs−Is)+(Î3−I3) = 0+(p1k −
p2k−Îk)+(Îk+0−0)+(Î3−I3) = (p1k−p2k)+(Î3−I3) ≤ 0.

Subcase 2. Let’s assume that

Is > 0 ⇒ π2(1) + p1s − ∆π1 − π2(2) > 0. (45)

Equations (33) and (45) imply

Is = π2(1) + p1s − ∆π1 − π2(2), (46)

while Eq. (32) and (46) result in

Îs = max{0, (p1k − p2k) − Îk + (π2(1) + p1s

− ∆π1 − π2(2))}
= max{0, (p1k − p2k) − Îk + Is}.

(47)

First, let’s assume that

Îs = 0 ⇒ (p1k − p2k) + Is − Îk ≤ 0. (48)

Equations (30) and (43), (46) and (48) result in

(Î3 − I3) = (p1k − p2k) − (Îk + Îs − Is)

= (p1k − p2k) − (Îk + 0 − Is)
= (p1k − p2k) − (p1k − ∆π1)
+ (π2(1) + p1s − ∆π1 − π2(2))
= π2(1) + p1s − p2k − π2(2).

(49)

Because according to Eq. (42) there is idle time before
Jk in π′(Îk > 0), Eq. (49) determines idle time before
Js in π′, i.e. Îs (note, that there is assumed that a par-
tial schedule π2 cannot be shifted to the left on M2 in
π′ in comparison to π). Eq. (48) states that Îs = 0,
and in consequence (Î3 − I3) = Îs = 0. This means
that the schedule offset before π3 is the same in π′ as
in π. Moreover, idle time between time zero and the
end of subschedule π3 is not larger in π′ than in π, be-
cause (Î1 − I1) + (Î2 − I2) + (Îk + Îs − Is) + (Î3 − I3) =
0+(p1k −p2k − Îk)+(Îk +0−Is)+0 = p1k −p2k −Is ≤ 0.

Now, let’s assume that

Îs > 0 ⇒ p1k − p2k + Is − Îk > 0. (50)

Equations (47) and (50) imply that

Îs = p1k − p2k + Is − Îk. (51)

Equations (51) results in (Îk + Îs − Is) = Îk + p1k −
p2k + Is− Îk −Is = p1k −p2k ≤ 0, and Eq. (30) reduces to
(Î3−I3) = (p1k−p2k)−(Îk+ Îs−Is) = (p1k−p2k)−(p1k−
p2k) = 0. In consequence, the idle time change between
time zero and the end of subschedule π3 can be estimated
as (Î1 − I1) + (Î2 − I2) + (Îk + Îs − Is) + (Î3 − I3) ≤ 0.

All subcases investigated within Case 2, showed that
the schedule offset before π3 cannot decrease in π′ with
regard to π, because (Î3 − I3) ≤ 0. Actually, the internal
idle time within π3 may become smaller, if (Î3 − I3) < 0.
Moreover, idle time between time zero and the end of sub-
schedule π3 in π′ can be only reduced (or it remains the
same) in π′ in comparison to π, because (Î1 − I1) + (Î2 −
I2) + (Îk + Îs − Is) + (Î3 − I3) ≤ 0.

Finally, it is necessary to show that the proposed mod-
ification of a schedule does not increase the criterion value
within a partial schedule π4.

64 Bull. Pol. Ac.: Tech. 55(1) 2007

Dominance relations for two-machine flow shop problem with late work criterion

Equations (29) and (30) result in

∆I ≤ (p1k − p2k) − (Îk + Îs − Is) + (Î4 − I4)

+ (Îk + Îs − Is)

= (p1k − p2k) + (Î4 − I4).

(52)

Similarly as for π2, it is proven that the offset between par-
tial schedules on M1 and M2 before π3 cannot decrease
(because (Î3−I3) ≤ 0) and, in consequence, no additional
idle time before the first job of π3 in π′ appears. The offset
increase before π3 can only reduce an internal idle time
within this subschedule (if any) or make the difference be-
tween the schedule lengths on M1 and M2 after π3 larger
in π′(∆π̂3) than in π (∆π3), i.e. ∆π̂3 ≥ ∆π3.

In consequence, the change of the schedule offset be-
fore π4, equivalent to the change of idle time, can be cal-
culated as (note, that if there is an idle time before Jk in
π, then it is included in I3):

(Î4 − I4) = (−∆π̂3) − (p1k − ∆π3 − p2k)
= (∆π3 − ∆π̂3) − (p1k − p2k).

(53)

Applying (53) to Eq. (52), one obtains

∆I ≤ (p1k − p2k) + (Î4 − I4)
= (p1k − p2k) + (∆π3 − ∆π̂3) − (p1k − p2k)
= ∆π3 − ∆π̂3 ≤ 0.

(54)

Summing up, the total idle time in the system can-
not increase, ∆I ≤ 0, and no unit of idle time is shifted
to the left as a result of a schedule modification (actu-
ally, some idle time can be shifted to the right, before
π4, if Î4 − I4 > 0, cf. Fig. 3). Shifting job Jk before
Js leads to the schedule π′ not worse than π with re-
gard to the total late work value. The repeated analysis
of the remaining pairs of jobs Js ∈ J2, Jk ∈ J1 such that
Js ∈ E∧Jk ∈ L∧p1k ≤ p1s, proves Theorem 2 (note that
Theorem 2 holds if Js is early as well as it is late in π′).

Theorems 1 and 2 state that, if one decides to execute
a certain job Js ∈ J early, then executing all jobs Jk ∈ J1

with p1k ≤ p1s early leads to a schedule not worse than
an original one.

Unfortunately, this rule cannot be applied for jobs
Jk ∈ J2 straightforwardly. If there is a solution with two
jobs Js ∈ E and Jk ∈ J2 ∩ L, and Jk precedes Js in
Johnson’s order, Jk → Js, (where Jk ∈ J2 and Jk → Js

imply that Js ∈ J2 and p2s ≤ p2k), then introducing job
Jk into a sequence of early jobs may lead to a schedule
worse than an original one. The quality of a schedule may
deteriorate, if there is idle time before Js in an original
sequence (cf. Fig. 4), as well as if there is no idle time
before this job (cf. Fig. 5).

Nevertheless, for such a pair of jobs Jk, Js ∈ J2 and
p2s ≤ p2k a dominance relation analogous to Theorems 1
and 2 can be still formulated. In the case of activities from
set J2 it is profitable to interchange job Js with Jk (The-
orem 3) instead of shifting Jk before Js (cf. Theorems 1
and 2).

Fig. 4. Exemplary schedules π and π′, where Jk ∈ J2 is shifted
before Js ∈ J2(p1k ≤ p1s) and there is idle time before Js in π

Fig. 5. Exemplary schedules π and π′, where Jk ∈ J2 is shifted
before Js ∈ J2(p1k ≤ p1s) and there is no idle time before

Js in π

Theorem 3. In some optimal solution of problem
F2|dj = d|Y , there is no pair of jobs Jk, Js ∈ J2 such
that Js ∈ E ∧ Jk ∈ L ∧ p1k ≤ p1s ∧ p2s ≤ p2k.

Proof. Let’s assume that there exists an optimal so-
lution π, for which the condition of Theorem 3 does not
hold, i.e. there exist two jobs Jk, Js ∈ J2, such that
Js ∈ E, p1k ≤ p1s, p2s ≤ p2k, but Jk ∈ L. Moreover,
let assume that Js is the first such a job in a sequence
of early jobs. It will be shown that interchanging job Js

with Jk leads to a schedule π′ satisfying the condition of
Theorem 3 with the criterion value not worse than π.

With regard to the assumption that Js is the first job
contradicting Theorem 3, as well as to the fact that all
early jobs are sequenced in Johnson’s order, if Jk is early,
then it starts in π′ not later than Js in π (all early jobs
from J2, are scheduled in non-increasing order of process-
ing times of second tasks and p2s ≤ p2k). There are two
cases possible, that after interchanging job Js with Jk, job
Jk starts at the same time in π′ as Js in π (i.e. there is
no early job from J2 that is processed before Js in π and
after Jk in π′, cf. Fig. 6) or Jk starts earlier in π′ than
Js in π (i.e. there are some early jobs from J2 that are
processed before Js in π and after Jk in π′, cf. Fig. 7).
Case 1. Let’s assume that Js in π and Jk in π′ starts at
the same time. Exemplary solutions π and π′ are depicted
in Fig. 6. Some partial schedules π1, π3, π4 can be empty
as well as some idle times Is, Ik, Îs and Îk can be equal to
zero.

Bull. Pol. Ac.: Tech. 55(1) 2007 65

M. Sterna

Fig. 6. Exemplary schedules π and π′, where Jk ∈ J2 is inter-
changed with Js ∈ J2(p1k ≤ p1s ∧ p2s ≤ p2k) and there is no

job executed before Js in π and after Jk in π′

Let’s assume at the beginning that the structures of
subsequences π3 and π4 do not change after interchanging
jobs Js and Jk. This means that the offset between M1

and M2 is kept in both cases, as it is depicted in Fig. 6
(cf. π3 on M1 and π4 on M2). Hence, the criterion value
is influenced only by the change of idle times before jobs
Js and Jk and by the change of the schedule offsets after
these jobs before π3 and π4.

First, the schedule from time zero to the end of π3 will
be considered. The difference between idle time before Js

in π and Jk in π′ is equal to

(Is− Îk) = max{0, p1s−∆π1}−max{0, p1k−∆π1}. (55)

The assumption that p1s ≥ p1k implies that Is ≥ Îk

and (Is − Îk) ≥ 0. This means that idle time before Jk in
π′ is not larger than before Js in π. Moreover, the schedule
offset before π3 changes by the value

∆πs − ∆π̂k = (max{0,∆π1 − p1s} + p2s)
− (max{0, ∆π1 − p1k} + p2k)
= max{0, ∆π1 − p1s}
− max{0, ∆π1 − p1k} − (p2k − p2s).

(56)

Since p1s ≥ p1k, there is, in Eq. (56), max{0, ∆π1 −
p1s} ≤ max{0,∆π1 − p1k} ⇒ max{0, ∆π1 − p1s} −
max{0, ∆π1 − p1k} ≤ 0. Because Js succeeds Jk in John-
son’s order, there is p2s ≤ p2k ⇒ p2s − p2k ≤ 0 ⇒
−(p2k − p2s) ≤ 0 and Eq. (56) reduces to ∆πs −∆π̂k ≤ 0.
This means that the schedule offset before π3 in π′ is not
smaller than in π. The possible increase of the schedule
offset can reduce idle time at the beginning of π3 or within
this subschedule (actually, the value −(∆πs − ∆π̂k) cor-
responds to the length of the artificial idle time before π3

on M1 in Fig. 6).
Now, let’s consider the remaining part of the sched-

ule from the end of π3 to the beginning of π4. Since it is
assumed that π3 is the same in π′ as in π, the schedule
offset before Jk in π and Js in π′ is identical and equal
to ∆π3. The difference between idle times before Jk in π
and Js in π′ is equal to

(Ik− Îs) = max{0, p1k−∆π3}−max{0, p1s−∆π3}. (57)

Because p1s ≥ p1k, idle time before Js in π′ is not smaller
than before Jk in π and (Ik − Îs) ≤ 0. Additionally, the
schedule offset before π4 changes by the value

∆πk − ∆π̂s = (max{0, ∆π3 − p1k} + p2k)
− (max{0,∆π3 − p1s} + p2s)
= max{0, ∆π3 − p1k}
− max{0, ∆π3 − p1s} − (p2s − p2k).

(58)

The assumptions that p1s ≥ p1k and p2s ≤ p2k implies
that ∆πk −∆π̂s ≥ 0. This means that the offset before Js

in π′ is not larger than before Jk in π. It may result in an
additional idle time before π4 (cf. Fig. 6).

Summing up, before the schedule π3 the solution im-
proves as a result of interchanging jobs Js and Jk, and it
deteriorates after π3. The possible reduction of idle time
at the beginning of the schedule (Is − Îk ≥ 0) has to be
decreased by the additional idle time which appears at the
end of it (Ik − Îs ≤ 0). Moreover, shifting π3 to the left
on M1 (cf. Fig. 6), no precedence constraint is violated.
In consequence, the schedule offset before π3 increases by
the value −(∆πs − ∆π̂k) ≥ 0. A larger schedule offset
can result only in a smaller idle time in the succeeding
part of schedule π′, i.e. between Jk and π3. However, this
criterion improvement is reduced before π4 by the value
−(∆πk − ∆π̂s) ≤ 0. In consequence, the total change in
idle time is equal to:

∆I = (Is − Îk) + (Ik − Îs) − (∆πs − ∆π̂k)
− (∆πk − ∆π̂s).

(59)

Combining Eq. (59) with (55–58), one obtains

∆I = (max{0, p1s − ∆π1} − max{0, p1k − ∆π1})
+ (max{0, p1k − ∆π3} − max{0, p1s − ∆π3})
− (max{0,∆π1 − p1s} − max{0,∆π1 − p1k}
− (p2k − p2s))
− (max{0,∆π3 − p1k} − max{0, ∆π3 − p1s}
− (p2s − p2k))
= max{0, p1s − ∆π1} − max{0, ∆π1 − p1s}
+ max{0, ∆π1 − p1k} − max{0, p1k − ∆π1}
+ max{0, p1k − ∆π3} − max{0,∆π3 − p1k}
+ max{0, ∆π3 − p1s} − max{0, p1s − ∆π3}
+ (p2k − p2s) + (p2s − p2k).

(60)

Taking into account that for any integer x

max{0, x} − max{0,−x} = x, (61)

Equation (60) reduces to ∆I = p1s−∆π1+∆π1−p1k+
p1k − (π3 + (π3 − p1s + (p2k − p2s)− (p2k − p2s) = 0. The
total idle time does not change after interchanging jobs
Js and Jk. Moreover, some idle time units are shifted to
the right, possibly after a common due date, reducing in
this way the total late work in the system. In consequence
the schedule π′ is not worse than π.
Case 2. Let’s assume that Jk in π′ starts earlier than Js

in π. This means that there exists a sequence π2 which
is scheduled before Js in π and after Jk in π′. Exemplary

66 Bull. Pol. Ac.: Tech. 55(1) 2007

Dominance relations for two-machine flow shop problem with late work criterion

solutions π and π′ are depicted in Fig. 7. Some partial
schedules π1, π3, π4 can be empty. Actually, the proof for
Case 2 is a straightforward consequence of Case 1. In the
analysis for Case 1, no assumption on the structure of a
subschedule preceding Js in π was formulated. Particu-
larly, the assumption that all early jobs are sequenced in
Johnson’s order was not crucial for the correctness of the
proof for Case 1.

Fig. 7. Exemplary schedules π, π′ and π′′, where Jk ∈ J2 is
interchanged with Js ∈ J2(p1k ≤ p1s ∧ p2s ≤ p2k) and there
exists at least one job executed before Js in π and after Jk

in π′

In consequence, interchanging jobs Js and Jk in π,
one obtain a new solution π′ as depicted in Fig. 7, corre-
sponding to Case 1 (where Jk and π2 are not in Johnson’s
order). Case 1 shows that the total idle time in π′ is not
larger than in π. Actually, in π′ some idle time can be
shifted to the right in comparison to π causing the pos-
sible decrease of the criterion value. In consequence π′ is
not worse than π.

Imposing Johnson’s order on all early jobs causes shift-
ing subschedule π2 after Jk in a final schedule π′′. The
starting times of π3 and the succeeding subschedules on
M1 do not change after such a modification. Since John-
son’s order is optimal from the schedule length point of
view, the completion time of π2 can be only smaller in
π′′ than the completion time of Jk in π′. This means that
some idle time can be shifted to the right, possibly after
a common due date, reducing the criterion value in this
way.

Summing up, π′′ is not worse than π′, and, conse-
quently, it is not worse than the original schedule π.
The repeated analysis of the remaining pairs of jobs Js,
Jk ∈ J2 such that Js ∈ E∧Jk ∈ L∧p1k ≤ p1s∧p2k ≥ p2s,
proves Theorem 3.

The presented theorems suggest a strategy of con-
structing an optimal solution for problem F2|dj = d|Y . If
there is a pair of jobs Jk, Js such that p1k ≤ p1s and Jk

precedes Js in Johnson’s order (Jk → Js), and in a certain
solution Js is processed early, while Jk is late, then one
can improve a current schedule by executing Jk before a
common due date by:

– shifting Jk before Js, if Jk ∈ J1 (for Js ∈ J1 based on
Theorem 1, for Js ∈ J2 based on Theorem 2),

– interchanging Jk and Js, if Jk ∈ J2 (it has to be
Js ∈ J2, based on Theorem 3).

These two cases can be intuitively justified. The
shorter processing time on the first machine (p1k ≤ p1s),
denotes that the possible idle time before job Jk can be
smaller than before job Js. Moreover, processing a job
from J1 early is usually profitable for the criterion value,
because it does not decrease the offset between machines
in a succeeding subschedule: the larger offset the smaller
idle time before a succeeding job. On the contrary, jobs
from J2 processed early may cause the offset decrease,
since they have shorter second task than the first one.
However, if Jk ∈ J2, then the offset decrease for Jk is
smaller than for Js, because p1k ≤ p1s and p2k ≥ p2s, it
makes interchanging these jobs profitable for the criterion
value.

All the theorems presented in the paper concern pairs
of jobs Jk and Js such that p1k ≤ p1s and Jk precedes Js

in Johnson’s order (Jk → Js). If Jk succeeds Js in John-
son’s order (Js → Jk), then executing Jk early does not
influence the schedule before Js and one cannot estimate,
whether moving Jk to the set of early jobs is profitable for
the schedule quality or not with regard to Js. On the other
hand, interchanging Js with Jk does not always result in
the improvement of the criterion value, as it is shown in
Fig. 8 (for Jk ∈ J2 and Js ∈ J1) and in Fig. 9 (for Jk,
Js ∈ J2 and p2s > p2k).

Fig. 8. Exemplary schedules with Jk ∈ J2∧Js ∈ J1∧p1k ≤ p1s,
where executing Jk early instead of Js is not profitable for the

total late work value

These observations complete the analysis of all possi-
ble cases for jobs Jk and Js with p1k ≤ p1s, which are as
follows:

– Jk → Js ∧ Jk ∈ J1 ∧ Js ∈ J1: shifting Jk before Js is
profitable, cf. Theorem 1,

– Jk → Js ∧ Jk ∈ J1 ∧ Js ∈ J2: shifting Jk before Js is
profitable, cf. Theorem 2,

Bull. Pol. Ac.: Tech. 55(1) 2007 67

M. Sterna

– Jk → Js ∧Jk ∈ J2 ∧Js ∈ J1: the case is impossible, J1

precedes J2 in Johnson’s order,
– Jk → Js ∧ Jk ∈ J2 ∧ Js ∈ J2: interchanging Jk and Js

is profitable, cf. Theorem 3,
– Js → Jk ∧ Jk ∈ J1 ∧ Js ∈ J1: the case is impossible,

Js → Jk in Johnson’s order means that p1s ≤ p1k (if
p1s = p1k, then Theorem 1 can be applied),

– Js → Jk ∧Jk ∈ J1 ∧Js ∈ J2: the case is impossible, J1

precedes J2 in Johnson’s order,
– Js → Jk ∧Jk ∈ J2∧Js ∈ J1: processing Jk early might

not be profitable, cf. Fig. 8,
– Js → Jk ∧Jk ∈ J2∧Js ∈ J2: processing Jk early might

not be profitable, cf. Fig. 9.

Fig. 9. Exemplary schedules with Jk, Js ∈ J2∧p1k ≤ p1s∧p2s >
p2k, where executing Jk early instead of Js is not profitable

for the total late work value

4. Conclusions
The paper presents three dominance relations for the two-
machine flow shop problem with a common due date and
the late work criterion, F2|dj = d|Y , which describe the
special features of an optimal solution of this scheduling
case. They state that constructing an optimal sequence of
jobs one should select early jobs based on their process-
ing times on the first machine, preferring activities with
a shorter first task.

These results make it possible to continue the research
on problem F2|dj = d|Y in two interesting directions.
First, the efficiency of dominance relations will be checked
in practice, by implementing a branch and bound ap-
proach. The presented theorems enable to truncate some
branches in the search tree representing the solution pro-
cess of the B&B method. Partial solutions, partial permu-
tations, which are dominated in terms of the rules formu-
lated in the paper can be discarded, usually reducing the
run time of the exact approach.

On the other hand, the features of an optimal solu-
tion pointed out in the considered theorems will be impor-
tant components of heuristic or metaheuristic approaches,
whose efficiency will be validated mainly in the computa-
tional experiments. However, in the case of heuristic al-
gorithms, the results given in the work might be also the
basis for the theoretical analysis of their behavior in the
worst case.

Thus, the results on F2|dj = d|Y presented in the pa-
per are the starting point for the further theoretical and
computational studies on this scheduling problem.

Acknowledgements. The author has been supported by
a KBN grant.

References

[1] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, and J.
Węglarz, Scheduling Computer and Manufacturing Pro-
cesses, 2nd ed., Springer, Berlin, 2001.

[2] P. Brucker, Scheduling Algorithms, Springer, Berlin, 1998.
[3] M. Pinedo and X. Chao, Operation Scheduling with Ap-

plications in Manufacturing and Services, McGraw-Hill,
Boston, 1999.

[4] J.Y-T. Leung, “Minimizing total weighted error for impre-
cise computation tasks and related problems”, in: Hand-
book of Scheduling: Algorithms, Models, and Performance
Analysis, pp. 1–16, edited by J.Y-T Leung, CRC Press,
Boca Raton, 2004.

[5] J. Błażewicz, “Scheduling preemptible tasks on parallel
processors with information loss”, Recherche Technique
et Science Informatiques 3(6), 415–420 (1984).

[6] J. Błażewicz and G. Finke, “Minimizing mean weighted
execution time loss on identical and uniform processors”,
Information Processing Letters 24, 259-263 (1987).

[7] C.N. Potts and L.N. Van Wassenhove, “Single machine
scheduling to minimize total late work”, Operations Re-
search 40(3), 586–595 (1991).

[8] C.N. Potts and L.N. Van Wassenhove, “Approximation
algorithms for scheduling a single machine to minimize
total late work”, Operations Research Letters 11, 261–266
(1991).

[9] A.M.A. Hariri, C.N. Potts, and L.N. Van Wassenhove,
“Single machine scheduling to minimize total late work”,
INFORMS Journal on Computing 7, 232–242 (1995).

[10] M.Y. Kovalyov, C.N. Potts, and L.N. Van Wassenhove,
“A fully polynomial approximation scheme for scheduling
a single machine to minimize total weighted late work”,
Mathematics of Operations Research 19(1), 86–93 (1994).

[11] D.S. Hochbaum and R. Shamir, “Minimizing the number
of tardy job unit under release time constraints”, Discrete
Applied Mathematics 28, 45–57 (1990).

[12] J.Y-T. Leung, V.K.M. Yu, and W-D. Wei, “Minimizing
the weighted number of tardy task units”, Discrete Ap-
plied Mathematics 51, 307–316 (1994).

[13] R.B. Kethley and B. Alidaee, “Single machine scheduling
to minimize total late work: a comparison of scheduling
rules and search algorithms”, Computers & Industrial En-
gineering 43, 509–528 (2002).

[14] S.G. Kolliopoulos and G. Steiner, “Approximation algo-
rithms for minimizing total weighted tardiness on a sin-

68 Bull. Pol. Ac.: Tech. 55(1) 2007

Dominance relations for two-machine flow shop problem with late work criterion

gle machine”, Lectures Notes in Computer Science 2996,
176–186 (2004).

[15] G.J. Woeginger, “When does a dynamic programming for-
mulation guarantee the existence of an FPTAS?” in: Elec-
tronic Colloquium on Computational Complexity Report
TR01-084, University of Trier, 2001.

[16] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “Total
late work criteria for shop scheduling problems”, in: Oper-
ations Research Proceedings edited by K. Inderfurth, G.
Schwödiauer, W. Domschke, F. Juhnke, P. Kleinschmidt,
G. Wäscher, pp. 354–359, Springer, Berlin, 2000.

[17] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “Open
shop scheduling problems with late work criteria”, Dis-
crete Applied Mathematics 134, 1–24 (2004).

[18] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “The
two-machine flow-shop problem with weighted late work
criterion and common due date”, European Journal of Op-
erational Research 165(2), 408–415 (2005).

[19] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “A
note on two-machine job shop with late work criterion”,
Journal of Scheduling 10 (2), 87–97 (2007).

[20] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “Flow
shop scheduling with late work criterion - choosing the

best solution strategy”, Lecture Notes in Computer Sci-
ence 3285, 68–75 (2004).

[21] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “A
comparison of solution procedures for two-machine flow
shop scheduling with late work criterion”, Computers &
Industrial Engineering 49, 611–624 (2005).

[22] J. Błażewicz, E. Pesch, M. Sterna, and F. Werner, “Meta-
heuristics for late work minimization in two-machine flow
shop with common due date”, Lecture Notes in Artificial
Intelligence 3698, 222–234 (2005).

[23] M. Sterna, Problems and Algorithms in Non-Classical
Shop Scheduling, Scientific Publishers of the Polish
Academy of Sciences, Poznań, 2000.

[24] M.R. Garey and D.S. Johnson, Computers and In-
tractability. A Guide to the Theory of NP-completeness,
W.H. Freeman and Co., San Francisco, 1979.

[25] B.M.T. Lin, F.C. Lin, and R.C.T. Lee, “Two-machine flow
shop scheduling to minimize total late work”, Engineering
Optimization 38(4), 501–509 (2006).

[26] S.M. Johnson, “Optimal two- and three-stage production
schedules with setup times included”, Naval Research Lo-
gistics Quarterly 1, 61–68 (1954).

Bull. Pol. Ac.: Tech. 55(1) 2007 69

