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Abstract. The goal of this paper is to explore and to provide tools for the investigation of the problems of unit-length scheduling of incompat-
ible jobs on uniform machines. We present two new algorithms that are a significant improvement over the known algorithms. The first one is 
Algorithm 2 which is 2-approximate for the problem Qmj pj = 1, G = bisubquarticjCmax. The second one is Algorithm 3 which is 4-approximate 
for the problem Qmj pj = 1, G = bisubquarticjΣCj, where m 2 {2, 3, 4}. The theory behind the proposed algorithms is based on the properties 
of 2-coloring with maximal coloring width, and on the properties of ideal machine, an abstract machine that we introduce in this paper.
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partite subcubic (subquartic) graph is said to be bisubcubic (bi-
subquartic). The symbol α(G) stands for the size of a maximum 
independent set in G. We say that a graph is k-colorable if its 
vertices can be partitioned into k independent sets, called color 
classes, and by a k-coloring of G we mean such a partition of its 
vertices. The width of a coloring is the difference between the 
sizes of the largest and the smallest color class of the coloring. 
For other definitions the reader is referred to [10]. Conflicts 
between jobs can be modeled by an incompatibility graph, i.e. 
by a graph which has exactly one unique vertex assigned to 
each of the jobs and which has an edge between a pair of ver-
tices if the corresponding jobs cannot be processed on the same 
machine. We say that jobs in a given set are compatible if the 
vertices corresponding to them form an independent set in the 
incompatibility graph.

Now let us introduce some definitions concerning sched-
uling theory. Let us denote the set of jobs by J = { j1, …, jn}. Let 
us also denote the set of the machines by M = {M1, …, Mm}. By 
s(M ) we denote the speed of machine M. Without loss of gener-
ality we assume that s(M1) ¸ … ¸ s(Mm), i.e. that the machines 
are ordered according to their speeds. By stotal = ∑ M 2 M s(M ) 
we denote the sum of the speeds of all machines. A schedule 
is for each job an allocation of a time interval to a machine 
[2]. A subschedule is a schedule for a restricted set of jobs 
J 0 µ J  on a restricted set of machines M 0 µ M . By nS(M ) 
we denote the number of jobs scheduled on machine M in 
a schedule S. By CS(M ) we denote the latest completion time 
of the jobs scheduled on machine M in a schedule S. We have 
CS(M ) = nS(M )/s(M ). Thus the schedule length is equivalent 
to maxCS(M ). Symbol ΣS(N ) stands for the total completion 
time of jobs from a set N µ J  in a schedule S, therefore the 
total completion time is denoted by ΣS(J). By a greedy as-
signment of compatible jobs to machines we understand an 
assignment in which the jobs are scheduled one by one and 
each job is assigned to the machine that guarantees the shortest 
completion time at the moment of scheduling this job. In the 

1. Introduction

Suppose we have to process n bins of chemical substances 
and we have m parallel uniform machines, i.e. machines that 
have identical functionality but may have different processing 
speeds. On no machine can we process two substances that may 
react with each other in order to guarantee machines safety or 
due to spacial reasons. The aim is such an assignment of the 
bins to the machines that the processing time of all bins is as 
short as possible or the mean flow time of a bin is as short as 
possible. We assume here that each of the bins has to be pro-
cessed on exactly one machine without interruptions.

The problem can be expressed as the following scheduling 
problem. Let us assume that we have n identical jobs with unit 
execution times. We also have m parallel uniform machines. 
They are uniform in the sense that the execution of a job on 
a machine takes time inversely proportional to the speed of 
the machine to be completed. There may be incompatibilities 
between some jobs, that is, jobs belonging to incompatible 
pairs cannot be scheduled on the same machine. We consider 
two criteria of optimality: the length of schedule and the total 
completion time.

Let us recall definitions of graph theory used further in this 
paper. For a graph G = (V, E) by n(G) = jV j we denote the 
number of its vertices (nodes) and by e(G) = jEj the number of 
its edges. We denote by ∆(G) the maximum degree of a vertex 
in G. By V0(G) we mean the set of all vertices of a graph G 
with degree 0. A graph G is said to be a cubic (quartic) graph 
if it is 3-regular (4-regular). If, however, G fulfills ∆(G) ∙ 3 
(∆(G) ∙ 4) then it is called subcubic (subquartic). A bipartite 
cubic (quartic) graph is said to be bicubic (biquartic), and a bi-
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following algorithms all the assignments of jobs to machines 
should be performed greedily, e.g. using an Algorithm given 
in [3].

For a set of the machines K µ M  by an ideal machine Mid we  
mean a machine with the speed equal to ∑M 2 K s(M ), that can 
ignore incompatibilities between jobs. By Cid(N ) we denote the 
latest completion time of the jobs from set N µ J  scheduled 
on the ideal machine Mid, hence Cid(N ) = jN j/∑M  2 K s(M ). 
By Σid(N ) we denote the total completion time of jobs from 
a set N µ J  scheduled on the ideal machine Mid, hence 
Σid(N ) = 0.5jN j(jN j + 1)/∑M 2 K s(M ).

There are several papers addressing the problem of sched-
uling with incompatible job constraints on identical machines. 
However, to the best of our knowledge, there are few results 
involving uniform machines. The problem is hard even for 
identical machines. The authors of [1] have proved that even 
if there are only three identical machines and the incompati-
bilities between jobs can be modeled by a bipartite graph then 
the problem P3jpj = 1, G = bipartite jCmax remains NP-hard.

There is a review of known algorithms for unit-length 
scheduling with incompatible jobs presented in [4]. The au-
thors of [4] have also considered a model of more powerful 
machines that are called parallel batching machines (for details 
of this model see e.g. [2]). They presented optimal polyno-
mial algorithms for the problems Q3jbatch, pj = 1, G = bicu-
bic jΣCj and Q4jbatch, pj = 1, G = biquartic jΣCj. Based 
on [7], they also presented optimal polynomial algorithms 
for the problem Q3jbatch, pj = 1, G = bipartite jΣCj when 
s(M1) = s(M2) ¸ s(M3) and for the problem Q3jbatch, pj = 1, 
G = bisubquartic jΣCj when s(M1) = 2s(M2) = 3s(M3). An 
optimal Algorithm for the problem Q3j pj = 1, G = connected 
bicubic jCmax with time complexity O(n2) was presented in 
[6]. Also in that paper there has been given a ¹⁰⁄7-approxima-
tion Algorithm for the NP-hard problem Q3j pj = 1, G = con-
nected 3-colorable cubic jCmax when the machines have speeds 
s(M1) > s(M2) = s(M3). This Algorithm has time complexity 
O(n3). There is a O(n2) Algorithm for optimal scheduling in 
the Q4j pj = 1, G = bisubcubic jCmax problem if the machines 
have speeds s(M1) ¸ 12s(M2) = 12s(M3) = 12s(M4) [5].  
The authors have also discussed an extension of this algo-
rithm, that is a O(mn1.5) Algorithm for the problem Qmj pj = 1, 
G = bipartite, ∆(G) ∙ m jCmax and machines with speeds 
s(M1) ¸ m(m ¡ 1)s(Mm), s(M2) = … = s(Mm).

In this paper we analyze the problem of the scheduling of 
incompatible unit-length jobs with respect to two criteria of 
optimality. The first criterion is the schedule length minimiza-
tion. The second one is the total completion time minimization. 
The remainder of the paper is organized as follows. In the next 
section we describe a procedure for 2-coloring of G with max-
imum coloring width. In Section 3 we give a 2-approximation 
Algorithm for the problem Qmj pj = 1, G = bisubquartic jCmax. 
This Algorithm is better than Algorithm 4 in [5] in the sense 
that it has a smaller approximation ratio, it runs in O(n) time 
rather than O(n1.5) time and requires no assumptions as to the 
machine speeds. In Section 4 we give a 4-approximation Algo-
rithm for the problem Qmj pj = 1, G = bisubquartic jΣCj, where 
m 2 {2, 3, 4}.

2. 2-coloring with maximal coloring width

We present a simple Algorithm that constructs a 2-coloring of 
a bipartite graph with maximal coloring width.

Algorithm 1 Non-Equitable Coloring
Input: A bipartite graph G.
Output: A two-coloring with maximal coloring width

1. Col1 = Col2 = 
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N ⊆ J scheduled on the ideal machine Mid , hence Cid(N) =
|N|/∑M∈K s(M). By Σid(N) we denote the total completion
time of jobs from a set N ⊆J scheduled on the ideal machine
Mid , hence Σid(N) = 0.5|N|(|N|+1)/∑M∈K s(M).

There are several papers addressing the problem of schedul-
ing with incompatible job constraints on identical machines.
However, to the best of our knowledge, there are few results
involving uniform machines. The problem is hard even for
identical machines. The authors of [1] have proved that even if
there are only three identical machines and the incompatibili-
ties between jobs can be modeled by a bipartite graph then the
problem P3|p j = 1,G = bipartite|Cmax remains NP-hard.

There is a review of known algorithms for unit-length
scheduling with incompatible jobs presented in [4]. The au-
thors of [4] have also considered a model of more power-
ful machines that are called parallel batching machines (for
details of this model see e.g. [2]). They presented optimal
polynomial algorithms for the problems Q3|batch, p j = 1,G =
bicubic|ΣCj and Q4|batch, p j = 1,G = biquartic|ΣCj. Based
on [7], they also presented optimal polynomial algorithms
for the problem Q3|batch, p j = 1,G = bipartite|ΣCj when
s(M1) = s(M2) ≥ s(M3) and for the problem Q3|batch, p j =
1,G = bisubquartic|ΣCj when s(M1) = 2s(M2) = 3s(M3).
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approximation algorithm for the NP-hard problem Q3|p j =
1,G = connected 3-colorable cubic|Cmax when the machines
have speeds s(M1) > s(M2) = s(M3). This algorithm has time
complexity O(n3). There is a O(n2) algorithm for optimal
scheduling in the Q4|p j = 1,G = bisubcubic|Cmax problem
if the machines have speeds s(M1) ≥ 12s(M2) = 12s(M3) =
12s(M4) [5]. The authors have also discussed an extension of
this algorithm, that is a O(mn1.5) algorithm for the problem
Qm|p j = 1,G = bipartite,∆(G) ≤ m|Cmax and machines with
speeds s(M1) ≥ m(m−1)s(Mm),s(M2) = . . . = s(Mm).

In this paper we analyze the problem of the scheduling of in-
compatible unit-length jobs with respect to two criteria of opti-
mality. The first criterion is the schedule length minimization.
The second one is the total completion time minimization. The
remainder of the paper is organized as follows. In the next sec-
tion we describe a procedure for 2-coloring of G with maxi-
mum coloring width. In Section 3 we give a 2-approximation
algorithm for the problem Qm|p j = 1,G = bisubquartic|Cmax.
This algorithm is better than Algorithm 4 in [5] in the sense
that it has a smaller approximation ratio, it runs in O(n) time
rather than O(n1.5) time and requires no assumptions as to the
machine speeds. In Section 4 we give a 4-approximation al-
gorithm for the problem Qm|p j = 1,G = bisubquartic|ΣCj,
where m ∈ {2,3,4}.

2. 2-coloring with maximal coloring width
We present a simple algorithm that constructs a 2-coloring of
a bipartite graph with maximal coloring width.

Lemma 1. Let G be a bisubquartic graph. For the set Col2
returned by Algorithm 1 we have |Col2| ≤ 2(n(G)−α(G)).

Algorithm 1 Non-Equitable Coloring
Input: A bipartite graph G.
Output: A two-coloring with maximal coloring width

1. Col1 = Col2 = /0
2. Let G1, ...,Gc be connected components of G.
3. for i = 1 to c do
4. Split V (Gi) into color classes Col1(Gi) and Col2(Gi),

where |Col1(Gi)| ≥ |Col2(Gi)|.
5. Col1 = Col1 ∪Col1(Gi).
6. Col2 = Col2 ∪Col2(Gi).
7. end for
8. return (Col1,Col2)

Proof. The set of vertices of G can be split into V0(G) and
V (G) \V0(G). Since no isolated vertex belongs to Col2, we
will consider the set V (G)\V0(G) only.

Let H be a graph with at least one edge. The following in-
equality is well known in graph theory (see e.g. [11]).

α(H) ≤
⌊

n(H)− e(H)
∆(H)

⌋
.

Let us notice that for a connected component Gi we have

α(Gi) ≤
⌊

3
4

n(Gi)+
1
4

⌋
,

because Gi is connected and subquartic. Now we show how
the number of vertices in Col2(Gi) is related to n(Gi)−α(Gi).
For this reason, let n(Gi) = 4l +r, where l ∈ N, r ∈ {0,1,2,3}.
Consider four cases, as follows.

• If r = 0, we have α(Gi) ≤ 3l. From this we obtain n(Gi)−
α(Gi) ≥ l. Thus |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−α(Gi)).

• If r = 1, we have α(Gi)≤ 3l +1. From this we have n(Gi)−
α(Gi) ≥ l, and also we obtain |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−
α(Gi)).

• If r = 2, we have α(Gi) ≤ 3l + 1. From this we have
n(Gi)−α(Gi) ≥ l +1, so in this case |Col2(Gi)| ≤ 2l +1 ≤
2(n(Gi)−α(Gi)).

• Finally, let us assume that r = 3. Then we have α(Gi) ≤
3l + 2. Like in the previous case we have n(Gi)−α(Gi) ≥
l + 1, and similarly we conclude that |Col2(Gi)| ≤ 2l + 1 ≤
2(n(Gi)−α(Gi)).

So for each connected component Gi, Col2(Gi) contains no
more than 2(n(Gi)−α(Gi)) vertices. From these observations
it follows that |Col2| ≤ 2(n(G)−α(G)).

3. 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Observation 1. For a set K ⊆ M and a set N ⊆ J and the
ideal machine Mid for K, Cid(N) is a lower bound on the length
of any subschedule for N on K.

Lemma 2. Let K ⊆ M and let N ⊆ J be a set of compatible
unit-time jobs. Let Mid be the ideal machine for K and Sopt be
a subschedule for N on K with the minimal length. Then

maxCSopt (K)
Cid(N)

≤ 1+
|K|−1
|N|

.
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2. Let G1, …, Gc be connected components of G.
3. for i = 1 to c do
4.    Split V(Gi) into color classes Col1(Gi) and Col2(Gi), 

where jCol1(Gi)j  ¸ jCol2(Gi)j .
5.   Col1 = Col1 [ Col1(Gi).
6.   Col2 = Col2 [ Col2(Gi).
7. end for
8. return (Col1, Col2)

Lemma 1. Let G be a bisubquartic graph. For the set Col2 re-
turned by Algorithm 1 we have jCol2j ∙ 2(n(G) ¡ α(G)).

Proof. The set of vertices of G can be split into V0(G) and 
V(G)nV0(G). Since no isolated vertex belongs to Col2, we will 
consider the set V(G)nV0(G) only.

Let H be a graph with at least one edge. The following in-
equality is well known in graph theory (see e.g. [11]).
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mality. The first criterion is the schedule length minimization.
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algorithm for the problem Qm|p j = 1,G = bisubquartic|Cmax.
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rather than O(n1.5) time and requires no assumptions as to the
machine speeds. In Section 4 we give a 4-approximation al-
gorithm for the problem Qm|p j = 1,G = bisubquartic|ΣCj,
where m ∈ {2,3,4}.

2. 2-coloring with maximal coloring width
We present a simple algorithm that constructs a 2-coloring of
a bipartite graph with maximal coloring width.

Lemma 1. Let G be a bisubquartic graph. For the set Col2
returned by Algorithm 1 we have |Col2| ≤ 2(n(G)−α(G)).

Algorithm 1 Non-Equitable Coloring
Input: A bipartite graph G.
Output: A two-coloring with maximal coloring width

1. Col1 = Col2 = /0
2. Let G1, ...,Gc be connected components of G.
3. for i = 1 to c do
4. Split V (Gi) into color classes Col1(Gi) and Col2(Gi),

where |Col1(Gi)| ≥ |Col2(Gi)|.
5. Col1 = Col1 ∪Col1(Gi).
6. Col2 = Col2 ∪Col2(Gi).
7. end for
8. return (Col1,Col2)

Proof. The set of vertices of G can be split into V0(G) and
V (G) \V0(G). Since no isolated vertex belongs to Col2, we
will consider the set V (G)\V0(G) only.

Let H be a graph with at least one edge. The following in-
equality is well known in graph theory (see e.g. [11]).

α(H) ≤
⌊

n(H)− e(H)
∆(H)

⌋
.

Let us notice that for a connected component Gi we have

α(Gi) ≤
⌊

3
4

n(Gi)+
1
4

⌋
,

because Gi is connected and subquartic. Now we show how
the number of vertices in Col2(Gi) is related to n(Gi)−α(Gi).
For this reason, let n(Gi) = 4l +r, where l ∈ N, r ∈ {0,1,2,3}.
Consider four cases, as follows.

• If r = 0, we have α(Gi) ≤ 3l. From this we obtain n(Gi)−
α(Gi) ≥ l. Thus |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−α(Gi)).

• If r = 1, we have α(Gi)≤ 3l +1. From this we have n(Gi)−
α(Gi) ≥ l, and also we obtain |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−
α(Gi)).

• If r = 2, we have α(Gi) ≤ 3l + 1. From this we have
n(Gi)−α(Gi) ≥ l +1, so in this case |Col2(Gi)| ≤ 2l +1 ≤
2(n(Gi)−α(Gi)).

• Finally, let us assume that r = 3. Then we have α(Gi) ≤
3l + 2. Like in the previous case we have n(Gi)−α(Gi) ≥
l + 1, and similarly we conclude that |Col2(Gi)| ≤ 2l + 1 ≤
2(n(Gi)−α(Gi)).

So for each connected component Gi, Col2(Gi) contains no
more than 2(n(Gi)−α(Gi)) vertices. From these observations
it follows that |Col2| ≤ 2(n(G)−α(G)).

3. 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Observation 1. For a set K ⊆ M and a set N ⊆ J and the
ideal machine Mid for K, Cid(N) is a lower bound on the length
of any subschedule for N on K.

Lemma 2. Let K ⊆ M and let N ⊆ J be a set of compatible
unit-time jobs. Let Mid be the ideal machine for K and Sopt be
a subschedule for N on K with the minimal length. Then

maxCSopt (K)
Cid(N)

≤ 1+
|K|−1
|N|

.
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because Gi is connected and subquartic. Now we show how 
the number of vertices in Col2(Gi) is related to n(Gi) ¡ α(Gi). 
For this reason, let n(Gi) = 4l + r, where l 2 N, r 2 {0, 1, 2, 3}. 
Consider four cases, as follows.
● If r = 0, we have α(Gi) ∙ 3l. From this we obtain n(Gi) ¡  
¡ α(Gi) ¸ l. Thus jCol2(Gi)j ∙ 2l ∙ 2(n(Gi) ¡ α(Gi)).

● If r = 1, we have α(Gi) ∙ 3l + 1. From this we have n(Gi) ¡  
¡ α(Gi) ¸ l, and also we obtain jCol2(Gi)j ∙ 2l ∙ 2(n(Gi) ¡  
¡ α(Gi)).

● If r = 2, we have α(Gi) ∙ 3l + 1. From this we have n(Gi) ¡  
¡ α(Gi) ¸ l + 1, so in this case jCol2(Gi)j ∙ 2l + 1 ∙  
∙ 2(n(Gi) ¡ α(Gi)).

● Finally, let us assume that r = 3. Then we have α(Gi) ∙ 3l + 2. 
Like in the previous case we have n(Gi) ¡ α(Gi) ¸ l + 1, and 
similarly we conclude that jCol2(Gi)j ∙ 2l + 1 ∙ 2(n(Gi) ¡  
¡ α(Gi)).

So for each connected component Gi, Col2(Gi) contains no 
more than 2(n(Gi) ¡ α(Gi)) vertices. From these observations 
it follows that jCol2j ∙ 2(n(G) ¡ α(G)). □
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3. 2-approximation Algorithm for the problem 
Qmj pj = 1, G = bisubquartic jCmax

Observation 1. For a set K µ M  and a set N µ J  and the ideal 
machine Mid for K, Cid(N ) is a lower bound on the length of 
any subschedule for N on K.

Lemma 2. Let K µ M  and let N µ J  be a set of compatible 
unit-time jobs. Let Mid be the ideal machine for K and Sopt be 
a subschedule for N on K with the minimal length. Then

Tytus Pikies, Marek Kubale

N ⊆ J scheduled on the ideal machine Mid , hence Cid(N) =
|N|/∑M∈K s(M). By Σid(N) we denote the total completion
time of jobs from a set N ⊆J scheduled on the ideal machine
Mid , hence Σid(N) = 0.5|N|(|N|+1)/∑M∈K s(M).

There are several papers addressing the problem of schedul-
ing with incompatible job constraints on identical machines.
However, to the best of our knowledge, there are few results
involving uniform machines. The problem is hard even for
identical machines. The authors of [1] have proved that even if
there are only three identical machines and the incompatibili-
ties between jobs can be modeled by a bipartite graph then the
problem P3|p j = 1,G = bipartite|Cmax remains NP-hard.

There is a review of known algorithms for unit-length
scheduling with incompatible jobs presented in [4]. The au-
thors of [4] have also considered a model of more power-
ful machines that are called parallel batching machines (for
details of this model see e.g. [2]). They presented optimal
polynomial algorithms for the problems Q3|batch, p j = 1,G =
bicubic|ΣCj and Q4|batch, p j = 1,G = biquartic|ΣCj. Based
on [7], they also presented optimal polynomial algorithms
for the problem Q3|batch, p j = 1,G = bipartite|ΣCj when
s(M1) = s(M2) ≥ s(M3) and for the problem Q3|batch, p j =
1,G = bisubquartic|ΣCj when s(M1) = 2s(M2) = 3s(M3).
An optimal algorithm for the problem Q3|p j = 1,G =
connected bicubic|Cmax with time complexity O(n2) was pre-
sented in [6]. Also in that paper there has been given a 10

7 -
approximation algorithm for the NP-hard problem Q3|p j =
1,G = connected 3-colorable cubic|Cmax when the machines
have speeds s(M1) > s(M2) = s(M3). This algorithm has time
complexity O(n3). There is a O(n2) algorithm for optimal
scheduling in the Q4|p j = 1,G = bisubcubic|Cmax problem
if the machines have speeds s(M1) ≥ 12s(M2) = 12s(M3) =
12s(M4) [5]. The authors have also discussed an extension of
this algorithm, that is a O(mn1.5) algorithm for the problem
Qm|p j = 1,G = bipartite,∆(G) ≤ m|Cmax and machines with
speeds s(M1) ≥ m(m−1)s(Mm),s(M2) = . . . = s(Mm).

In this paper we analyze the problem of the scheduling of in-
compatible unit-length jobs with respect to two criteria of opti-
mality. The first criterion is the schedule length minimization.
The second one is the total completion time minimization. The
remainder of the paper is organized as follows. In the next sec-
tion we describe a procedure for 2-coloring of G with maxi-
mum coloring width. In Section 3 we give a 2-approximation
algorithm for the problem Qm|p j = 1,G = bisubquartic|Cmax.
This algorithm is better than Algorithm 4 in [5] in the sense
that it has a smaller approximation ratio, it runs in O(n) time
rather than O(n1.5) time and requires no assumptions as to the
machine speeds. In Section 4 we give a 4-approximation al-
gorithm for the problem Qm|p j = 1,G = bisubquartic|ΣCj,
where m ∈ {2,3,4}.

2. 2-coloring with maximal coloring width
We present a simple algorithm that constructs a 2-coloring of
a bipartite graph with maximal coloring width.

Lemma 1. Let G be a bisubquartic graph. For the set Col2
returned by Algorithm 1 we have |Col2| ≤ 2(n(G)−α(G)).

Algorithm 1 Non-Equitable Coloring
Input: A bipartite graph G.
Output: A two-coloring with maximal coloring width

1. Col1 = Col2 = /0
2. Let G1, ...,Gc be connected components of G.
3. for i = 1 to c do
4. Split V (Gi) into color classes Col1(Gi) and Col2(Gi),

where |Col1(Gi)| ≥ |Col2(Gi)|.
5. Col1 = Col1 ∪Col1(Gi).
6. Col2 = Col2 ∪Col2(Gi).
7. end for
8. return (Col1,Col2)

Proof. The set of vertices of G can be split into V0(G) and
V (G) \V0(G). Since no isolated vertex belongs to Col2, we
will consider the set V (G)\V0(G) only.

Let H be a graph with at least one edge. The following in-
equality is well known in graph theory (see e.g. [11]).

α(H) ≤
⌊

n(H)− e(H)
∆(H)

⌋
.

Let us notice that for a connected component Gi we have

α(Gi) ≤
⌊

3
4

n(Gi)+
1
4

⌋
,

because Gi is connected and subquartic. Now we show how
the number of vertices in Col2(Gi) is related to n(Gi)−α(Gi).
For this reason, let n(Gi) = 4l +r, where l ∈ N, r ∈ {0,1,2,3}.
Consider four cases, as follows.

• If r = 0, we have α(Gi) ≤ 3l. From this we obtain n(Gi)−
α(Gi) ≥ l. Thus |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−α(Gi)).

• If r = 1, we have α(Gi)≤ 3l +1. From this we have n(Gi)−
α(Gi) ≥ l, and also we obtain |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−
α(Gi)).

• If r = 2, we have α(Gi) ≤ 3l + 1. From this we have
n(Gi)−α(Gi) ≥ l +1, so in this case |Col2(Gi)| ≤ 2l +1 ≤
2(n(Gi)−α(Gi)).

• Finally, let us assume that r = 3. Then we have α(Gi) ≤
3l + 2. Like in the previous case we have n(Gi)−α(Gi) ≥
l + 1, and similarly we conclude that |Col2(Gi)| ≤ 2l + 1 ≤
2(n(Gi)−α(Gi)).

So for each connected component Gi, Col2(Gi) contains no
more than 2(n(Gi)−α(Gi)) vertices. From these observations
it follows that |Col2| ≤ 2(n(G)−α(G)).

3. 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Observation 1. For a set K ⊆ M and a set N ⊆ J and the
ideal machine Mid for K, Cid(N) is a lower bound on the length
of any subschedule for N on K.

Lemma 2. Let K ⊆ M and let N ⊆ J be a set of compatible
unit-time jobs. Let Mid be the ideal machine for K and Sopt be
a subschedule for N on K with the minimal length. Then

maxCSopt (K)
Cid(N)

≤ 1+
|K|−1
|N|

.
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.

Proof. Without loss of generality we may assume that Sopt was 
created greedily, i.e. by the application of the Algorithm given 
in [3]. The completion time on Mid is equal to

 Cid(N ) = maxCSopt
(K ) ¡ t , (1)

for some t ¸ 0. Let Mi 2 K be any machine such that 
CSopt

(Mi) = maxCSopt
(K). Let n(M ) for M 2 K means the max-

imal number of jobs that M can execute in time equal to Cid(N ). 
Then
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Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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for any machine Mj  6= i 2 K. The above bound results from the 
following observation. Each Mj  6= i 2 K can complete at most 
nSopt

(Mj) + 1 jobs in time equal to maxCSopt
(K). Otherwise, it 

would provide a faster completion of the last job on Mi than Mi 
does. But this is not possible due to the Algorithm for schedule 
construction. Mi can complete n(Mi) = nSopt

(Mi) ¡ s(Mi)t jobs 
in time equal to Cid(N ). So we have
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Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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Applying the equality

Better polynomial algorithms for scheduling unit-length jobs

Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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we obtain

Better polynomial algorithms for scheduling unit-length jobs

Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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Substituting the above inequality to (1) we get
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Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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It follows immediately that
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Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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. □

Observation 2. Let G be an incompatibility graph and let 
S be a subschedule for the unit-time jobs corresponding to 
V(G) ¡ V0(G) on M . Let S be k ¸ 1 times longer than a sub-
schedule for V(G) ¡ V0(G) on M  with the minimal length and 
let a schedule S 0 be an extension of S created by the greedy 
assignment of the jobs corresponding to V0(G). Then the length 
of S 0 is at most k times greater than the minimal schedule length 
for G.

Therefore we assume V0(G) = 

Tytus Pikies, Marek Kubale

N ⊆ J scheduled on the ideal machine Mid , hence Cid(N) =
|N|/∑M∈K s(M). By Σid(N) we denote the total completion
time of jobs from a set N ⊆J scheduled on the ideal machine
Mid , hence Σid(N) = 0.5|N|(|N|+1)/∑M∈K s(M).

There are several papers addressing the problem of schedul-
ing with incompatible job constraints on identical machines.
However, to the best of our knowledge, there are few results
involving uniform machines. The problem is hard even for
identical machines. The authors of [1] have proved that even if
there are only three identical machines and the incompatibili-
ties between jobs can be modeled by a bipartite graph then the
problem P3|p j = 1,G = bipartite|Cmax remains NP-hard.

There is a review of known algorithms for unit-length
scheduling with incompatible jobs presented in [4]. The au-
thors of [4] have also considered a model of more power-
ful machines that are called parallel batching machines (for
details of this model see e.g. [2]). They presented optimal
polynomial algorithms for the problems Q3|batch, p j = 1,G =
bicubic|ΣCj and Q4|batch, p j = 1,G = biquartic|ΣCj. Based
on [7], they also presented optimal polynomial algorithms
for the problem Q3|batch, p j = 1,G = bipartite|ΣCj when
s(M1) = s(M2) ≥ s(M3) and for the problem Q3|batch, p j =
1,G = bisubquartic|ΣCj when s(M1) = 2s(M2) = 3s(M3).
An optimal algorithm for the problem Q3|p j = 1,G =
connected bicubic|Cmax with time complexity O(n2) was pre-
sented in [6]. Also in that paper there has been given a 10

7 -
approximation algorithm for the NP-hard problem Q3|p j =
1,G = connected 3-colorable cubic|Cmax when the machines
have speeds s(M1) > s(M2) = s(M3). This algorithm has time
complexity O(n3). There is a O(n2) algorithm for optimal
scheduling in the Q4|p j = 1,G = bisubcubic|Cmax problem
if the machines have speeds s(M1) ≥ 12s(M2) = 12s(M3) =
12s(M4) [5]. The authors have also discussed an extension of
this algorithm, that is a O(mn1.5) algorithm for the problem
Qm|p j = 1,G = bipartite,∆(G) ≤ m|Cmax and machines with
speeds s(M1) ≥ m(m−1)s(Mm),s(M2) = . . . = s(Mm).

In this paper we analyze the problem of the scheduling of in-
compatible unit-length jobs with respect to two criteria of opti-
mality. The first criterion is the schedule length minimization.
The second one is the total completion time minimization. The
remainder of the paper is organized as follows. In the next sec-
tion we describe a procedure for 2-coloring of G with maxi-
mum coloring width. In Section 3 we give a 2-approximation
algorithm for the problem Qm|p j = 1,G = bisubquartic|Cmax.
This algorithm is better than Algorithm 4 in [5] in the sense
that it has a smaller approximation ratio, it runs in O(n) time
rather than O(n1.5) time and requires no assumptions as to the
machine speeds. In Section 4 we give a 4-approximation al-
gorithm for the problem Qm|p j = 1,G = bisubquartic|ΣCj,
where m ∈ {2,3,4}.

2. 2-coloring with maximal coloring width
We present a simple algorithm that constructs a 2-coloring of
a bipartite graph with maximal coloring width.

Lemma 1. Let G be a bisubquartic graph. For the set Col2
returned by Algorithm 1 we have |Col2| ≤ 2(n(G)−α(G)).

Algorithm 1 Non-Equitable Coloring
Input: A bipartite graph G.
Output: A two-coloring with maximal coloring width

1. Col1 = Col2 = /0
2. Let G1, ...,Gc be connected components of G.
3. for i = 1 to c do
4. Split V (Gi) into color classes Col1(Gi) and Col2(Gi),

where |Col1(Gi)| ≥ |Col2(Gi)|.
5. Col1 = Col1 ∪Col1(Gi).
6. Col2 = Col2 ∪Col2(Gi).
7. end for
8. return (Col1,Col2)

Proof. The set of vertices of G can be split into V0(G) and
V (G) \V0(G). Since no isolated vertex belongs to Col2, we
will consider the set V (G)\V0(G) only.

Let H be a graph with at least one edge. The following in-
equality is well known in graph theory (see e.g. [11]).

α(H) ≤
⌊

n(H)− e(H)
∆(H)

⌋
.

Let us notice that for a connected component Gi we have

α(Gi) ≤
⌊

3
4

n(Gi)+
1
4

⌋
,

because Gi is connected and subquartic. Now we show how
the number of vertices in Col2(Gi) is related to n(Gi)−α(Gi).
For this reason, let n(Gi) = 4l +r, where l ∈ N, r ∈ {0,1,2,3}.
Consider four cases, as follows.

• If r = 0, we have α(Gi) ≤ 3l. From this we obtain n(Gi)−
α(Gi) ≥ l. Thus |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−α(Gi)).

• If r = 1, we have α(Gi)≤ 3l +1. From this we have n(Gi)−
α(Gi) ≥ l, and also we obtain |Col2(Gi)| ≤ 2l ≤ 2(n(Gi)−
α(Gi)).

• If r = 2, we have α(Gi) ≤ 3l + 1. From this we have
n(Gi)−α(Gi) ≥ l +1, so in this case |Col2(Gi)| ≤ 2l +1 ≤
2(n(Gi)−α(Gi)).

• Finally, let us assume that r = 3. Then we have α(Gi) ≤
3l + 2. Like in the previous case we have n(Gi)−α(Gi) ≥
l + 1, and similarly we conclude that |Col2(Gi)| ≤ 2l + 1 ≤
2(n(Gi)−α(Gi)).

So for each connected component Gi, Col2(Gi) contains no
more than 2(n(Gi)−α(Gi)) vertices. From these observations
it follows that |Col2| ≤ 2(n(G)−α(G)).

3. 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Observation 1. For a set K ⊆ M and a set N ⊆ J and the
ideal machine Mid for K, Cid(N) is a lower bound on the length
of any subschedule for N on K.

Lemma 2. Let K ⊆ M and let N ⊆ J be a set of compatible
unit-time jobs. Let Mid be the ideal machine for K and Sopt be
a subschedule for N on K with the minimal length. Then

maxCSopt (K)
Cid(N)

≤ 1+
|K|−1
|N|

.
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 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy assign-
ment of N µ J  to K µ M . If a number k is such that

 k
∑M 2 K s(M )

stotal
 > 

jN j
jJ j

 and jN j ¸ 
jK j ¡ 1

k
∑M 2 K s(M )

stotal
 ¡ 

jN j
jJ j

, (2)

or

 jK j = 1 and k
∑M 2 K s(M )

stotal
 = 

jN j
jJ j

, (3)

then
maxCS(K) ∙ kCid(J) ,

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid 0 be the ideal ma-
chine for K. By Lemma 2, we have

Better polynomial algorithms for scheduling unit-length jobs

Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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maximal number of jobs that M can execute in time equal to
Cid(N). Then
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for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have
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M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality
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nSopt (M) = |N|,
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(1− s(M)t)− s(Mi)t ≥ 0,
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s(M),

so
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.
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.

It follows immediately that
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≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.

and substituting the bound on jN j into the above inequality, we 
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply 
compare the maxCS(K) and Cid(J) and the thesis follows im-
mediately. □

In the rest of the paper we use this corollary with k = 2.
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Theorem 1. Algorithm 2 is 2-approximate for the problem 
Qmj pj = 1, G = bisubquartic jCmax.

Proof. Let S be a schedule produced by the algorithm. Let Sopt 
be a schedule with the minimal length. If s(M1) 2 [²⁄5 stotal, stotal) 
then we may estimate CS(M1) using Corollary 1. By Lemma 1, 
maxCS({M2, …, Mm}) ∙ 2maxCSopt

(M ) since at most twice the 
minimal number of jobs is scheduled on M2, …, Mm.

If s(M1) 2 [¼ stotal, ²⁄5 stotal) then we may estimate CS(M1) 
using Corollary 1, because ½ n ¸ jCol2j. If the number of 
jobs scheduled on M2, …, Mm in Sopt is greater than ²⁄5 n, then 
maxCS({M2, …, Mm}) ∙ 2maxCSopt

(M ), because we schedule 
on M2, …, Mm at most twice the number of jobs assigned to them 
in Sopt, since ⁴⁄5 n ¸ α(G) ¸ jCol1j [5]. If the number of jobs 
scheduled on M2, …, Mm in Sopt is less than or equal to ²⁄5 n, then 
maxCSopt

(M ) ¸ CSopt
(M1) ¸ ³⁄2 n

stotal
. Let us bound the ratio of  

maxCS({M2, …, Mm}) to maxCSopt
(M ) in this case. Let Mid 0 

be the ideal machine for {M2, …, Mm}. By Lemma 2, we have
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1. By Lemma 1, maxCS({M2, . . . ,Mm}) ≤ 2maxCSopt (M )
since at most twice the minimal number of jobs is scheduled
on M2, . . . ,Mm.

If s(M1) ∈ [ 1
4 stotal ,

2
5 stotal) then we may estimate CS(M1)

using Corollary 1, because 1
2 n ≥ |Col2|. If the number of

jobs scheduled on M2, . . . ,Mm in Sopt is greater than 2
5 n, then

maxCS({M2, . . . ,Mm}) ≤ 2maxCSopt (M ), because we sched-
ule on M2, . . . ,Mm at most twice the number of jobs assigned
to them in Sopt , since 4

5 n ≥ α(G) ≥ |Col1| [5]. If the number
of jobs scheduled on M2, . . . ,Mm in Sopt is less than or equal to
2
5 n, then maxCSopt (M )≥CSopt (M1)≥ 3

2
n

stotal
. Let us bound the

ratio of maxCS({M2, . . . ,Mm}) to maxCSopt (M ) in this case.
Let Mid′ be the ideal machine for {M2, . . . ,Mm}. By Lemma 2,
we have

maxCS({M2, . . . ,Mm})
Cid′(Col1)

≤ 1+
m−2
|Col1|

.

We also have
Cid′(Col1)

maxCSopt (M )
≤ 10

9
|Col1|

n
.

By combining both inequalities we obtain,

maxCS({M2, . . . ,Mm})
maxCSopt (M )

≤ 10
9

(
|Col1|

n
+

m−2
n

).

Without loss of generality we may assume that n ≥ m. By this
assumption and by the fact that 4

5 n ≥ α(G) ≥ |Col1| we obtain

maxCS({M2, . . . ,Mm})
maxCSopt (M )

≤ 2.

For the last case we may bound the ratio of maxCS(K)
to Cid(J ) and that of maxCS(M \ K) to Cid(J ), where
Mid is the ideal machine for M . By the way k is estab-
lished, we have 14

20 stotal > ∑M∈K s(M) ≥ 9
20 stotal and 11

20 stotal ≥
∑M∈M \K s(M) > 6

20 stotal . These inequalities are obtained us-
ing the condition that 1

4 stotal > maxs(M ). The value 9
20 stotal

that is present in the inequality determining k is a conveniently
chosen constant that asserts that 2(∑M∈K s(M)) > 4

5 stotal and
that 2(∑M∈M \K s(M)) > 1

2 stotal . By Corollary 1, if n ≥ 10(k−
1), then the ratio of maxCS(K) to Cid(J ) is at most 2. Simi-
larly, if n ≥ 10(m− k−1), then the ratio of maxCS(M \K) to
Cid(J ) is at most 2. If n ≥ 10(m− 2), then all the ratios are
less than or equal to 2.

The approximation coefficient 2 is the best possible value
in the sense that for jobs with the conflict graph in the shape
of three double-stars S3,3, presented in Fig. 1(a), the schedule
constructed by the algorithm has the length exactly twice the
optimal (cf. Fig. 1(b), 1(c)).

4. 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈
{2,3,4}

We begin this section with the following.

Lemma 3. Let K ⊆ M and N ⊆ J . Σid(N) is a lower bound
on the total completion time of any subschedule for N on K,
where Mid is the ideal machine for K.

Fig. 1. The worst-case example for Algorithm 2: (a) a graph 3S3,3
and machines with speeds s(M1) = 9,s(M2) = s(M3) = s(M4) = 1;
(b) Gantt chart for the suboptimal schedule; (c) Gantt chart for an
optimal schedule.

Proof. We prove the lemma for a 2-element set K = {Mi,Mj}.
Let S be any subschedule for N on K and Ni,Nj be the sets of
the jobs assigned to the corresponding machines in S. We show
that Σid(N) ≤ ΣS(N). We first transform the inequality

(s(Mi)|Nj|− s(Mj)|Ni|)2 ≥ 0

to the following form

2s(Mi)s(Mj)|Ni||Nj| ≤ s(Mi)2|Nj|2 + s(Mj)2|Ni|2 ≤
≤ s(Mi)2|Nj|(|Nj|+1)+ s(Mj)2|Ni|(|Ni|+1).

By adding s(Mi)s(Mj)(|Ni|2 + |Nj|2 + |Ni|+ |Nj|) to both sides
and by a simple transformation we obtain

s(Mi)s(Mj)(|Ni|+ |Nj|)(|Ni|+ |Nj|+1) ≤
(s(Mi)+ s(Mj))(s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)).
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We also have
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1. By Lemma 1, maxCS({M2, . . . ,Mm}) ≤ 2maxCSopt (M )
since at most twice the minimal number of jobs is scheduled
on M2, . . . ,Mm.

If s(M1) ∈ [ 1
4 stotal ,

2
5 stotal) then we may estimate CS(M1)

using Corollary 1, because 1
2 n ≥ |Col2|. If the number of

jobs scheduled on M2, . . . ,Mm in Sopt is greater than 2
5 n, then
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ule on M2, . . . ,Mm at most twice the number of jobs assigned
to them in Sopt , since 4

5 n ≥ α(G) ≥ |Col1| [5]. If the number
of jobs scheduled on M2, . . . ,Mm in Sopt is less than or equal to
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2
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. Let us bound the

ratio of maxCS({M2, . . . ,Mm}) to maxCSopt (M ) in this case.
Let Mid′ be the ideal machine for {M2, . . . ,Mm}. By Lemma 2,
we have
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assumption and by the fact that 4

5 n ≥ α(G) ≥ |Col1| we obtain
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≤ 2.

For the last case we may bound the ratio of maxCS(K)
to Cid(J ) and that of maxCS(M \ K) to Cid(J ), where
Mid is the ideal machine for M . By the way k is estab-
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20 stotal and 11
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∑M∈M \K s(M) > 6
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ing the condition that 1
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Cid(J ) is at most 2. If n ≥ 10(m− 2), then all the ratios are
less than or equal to 2.
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in the sense that for jobs with the conflict graph in the shape
of three double-stars S3,3, presented in Fig. 1(a), the schedule
constructed by the algorithm has the length exactly twice the
optimal (cf. Fig. 1(b), 1(c)).

4. 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈
{2,3,4}

We begin this section with the following.

Lemma 3. Let K ⊆ M and N ⊆ J . Σid(N) is a lower bound
on the total completion time of any subschedule for N on K,
where Mid is the ideal machine for K.

Fig. 1. The worst-case example for Algorithm 2: (a) a graph 3S3,3
and machines with speeds s(M1) = 9,s(M2) = s(M3) = s(M4) = 1;
(b) Gantt chart for the suboptimal schedule; (c) Gantt chart for an
optimal schedule.

Proof. We prove the lemma for a 2-element set K = {Mi,Mj}.
Let S be any subschedule for N on K and Ni,Nj be the sets of
the jobs assigned to the corresponding machines in S. We show
that Σid(N) ≤ ΣS(N). We first transform the inequality

(s(Mi)|Nj|− s(Mj)|Ni|)2 ≥ 0

to the following form

2s(Mi)s(Mj)|Ni||Nj| ≤ s(Mi)2|Nj|2 + s(Mj)2|Ni|2 ≤
≤ s(Mi)2|Nj|(|Nj|+1)+ s(Mj)2|Ni|(|Ni|+1).

By adding s(Mi)s(Mj)(|Ni|2 + |Nj|2 + |Ni|+ |Nj|) to both sides
and by a simple transformation we obtain

s(Mi)s(Mj)(|Ni|+ |Nj|)(|Ni|+ |Nj|+1) ≤
(s(Mi)+ s(Mj))(s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)).
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By combining both inequalities we obtain,
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1. By Lemma 1, maxCS({M2, . . . ,Mm}) ≤ 2maxCSopt (M )
since at most twice the minimal number of jobs is scheduled
on M2, . . . ,Mm.

If s(M1) ∈ [ 1
4 stotal ,

2
5 stotal) then we may estimate CS(M1)

using Corollary 1, because 1
2 n ≥ |Col2|. If the number of

jobs scheduled on M2, . . . ,Mm in Sopt is greater than 2
5 n, then

maxCS({M2, . . . ,Mm}) ≤ 2maxCSopt (M ), because we sched-
ule on M2, . . . ,Mm at most twice the number of jobs assigned
to them in Sopt , since 4

5 n ≥ α(G) ≥ |Col1| [5]. If the number
of jobs scheduled on M2, . . . ,Mm in Sopt is less than or equal to
2
5 n, then maxCSopt (M )≥CSopt (M1)≥ 3

2
n

stotal
. Let us bound the

ratio of maxCS({M2, . . . ,Mm}) to maxCSopt (M ) in this case.
Let Mid′ be the ideal machine for {M2, . . . ,Mm}. By Lemma 2,
we have

maxCS({M2, . . . ,Mm})
Cid′(Col1)

≤ 1+
m−2
|Col1|

.

We also have
Cid′(Col1)

maxCSopt (M )
≤ 10

9
|Col1|

n
.

By combining both inequalities we obtain,

maxCS({M2, . . . ,Mm})
maxCSopt (M )
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9

(
|Col1|

n
+

m−2
n

).

Without loss of generality we may assume that n ≥ m. By this
assumption and by the fact that 4

5 n ≥ α(G) ≥ |Col1| we obtain

maxCS({M2, . . . ,Mm})
maxCSopt (M )

≤ 2.

For the last case we may bound the ratio of maxCS(K)
to Cid(J ) and that of maxCS(M \ K) to Cid(J ), where
Mid is the ideal machine for M . By the way k is estab-
lished, we have 14

20 stotal > ∑M∈K s(M) ≥ 9
20 stotal and 11

20 stotal ≥
∑M∈M \K s(M) > 6

20 stotal . These inequalities are obtained us-
ing the condition that 1

4 stotal > maxs(M ). The value 9
20 stotal

that is present in the inequality determining k is a conveniently
chosen constant that asserts that 2(∑M∈K s(M)) > 4

5 stotal and
that 2(∑M∈M \K s(M)) > 1

2 stotal . By Corollary 1, if n ≥ 10(k−
1), then the ratio of maxCS(K) to Cid(J ) is at most 2. Simi-
larly, if n ≥ 10(m− k−1), then the ratio of maxCS(M \K) to
Cid(J ) is at most 2. If n ≥ 10(m− 2), then all the ratios are
less than or equal to 2.

The approximation coefficient 2 is the best possible value
in the sense that for jobs with the conflict graph in the shape
of three double-stars S3,3, presented in Fig. 1(a), the schedule
constructed by the algorithm has the length exactly twice the
optimal (cf. Fig. 1(b), 1(c)).

4. 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈
{2,3,4}

We begin this section with the following.

Lemma 3. Let K ⊆ M and N ⊆ J . Σid(N) is a lower bound
on the total completion time of any subschedule for N on K,
where Mid is the ideal machine for K.

Fig. 1. The worst-case example for Algorithm 2: (a) a graph 3S3,3
and machines with speeds s(M1) = 9,s(M2) = s(M3) = s(M4) = 1;
(b) Gantt chart for the suboptimal schedule; (c) Gantt chart for an
optimal schedule.

Proof. We prove the lemma for a 2-element set K = {Mi,Mj}.
Let S be any subschedule for N on K and Ni,Nj be the sets of
the jobs assigned to the corresponding machines in S. We show
that Σid(N) ≤ ΣS(N). We first transform the inequality

(s(Mi)|Nj|− s(Mj)|Ni|)2 ≥ 0

to the following form

2s(Mi)s(Mj)|Ni||Nj| ≤ s(Mi)2|Nj|2 + s(Mj)2|Ni|2 ≤
≤ s(Mi)2|Nj|(|Nj|+1)+ s(Mj)2|Ni|(|Ni|+1).

By adding s(Mi)s(Mj)(|Ni|2 + |Nj|2 + |Ni|+ |Nj|) to both sides
and by a simple transformation we obtain

s(Mi)s(Mj)(|Ni|+ |Nj|)(|Ni|+ |Nj|+1) ≤
(s(Mi)+ s(Mj))(s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)).
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to them in Sopt , since 4
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ratio of maxCS({M2, . . . ,Mm}) to maxCSopt (M ) in this case.
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we have

maxCS({M2, . . . ,Mm})
Cid′(Col1)

≤ 1+
m−2
|Col1|

.

We also have
Cid′(Col1)

maxCSopt (M )
≤ 10

9
|Col1|

n
.

By combining both inequalities we obtain,
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Without loss of generality we may assume that n ≥ m. By this
assumption and by the fact that 4

5 n ≥ α(G) ≥ |Col1| we obtain
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maxCSopt (M )

≤ 2.

For the last case we may bound the ratio of maxCS(K)
to Cid(J ) and that of maxCS(M \ K) to Cid(J ), where
Mid is the ideal machine for M . By the way k is estab-
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ing the condition that 1
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chosen constant that asserts that 2(∑M∈K s(M)) > 4
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larly, if n ≥ 10(m− k−1), then the ratio of maxCS(M \K) to
Cid(J ) is at most 2. If n ≥ 10(m− 2), then all the ratios are
less than or equal to 2.

The approximation coefficient 2 is the best possible value
in the sense that for jobs with the conflict graph in the shape
of three double-stars S3,3, presented in Fig. 1(a), the schedule
constructed by the algorithm has the length exactly twice the
optimal (cf. Fig. 1(b), 1(c)).

4. 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈
{2,3,4}

We begin this section with the following.

Lemma 3. Let K ⊆ M and N ⊆ J . Σid(N) is a lower bound
on the total completion time of any subschedule for N on K,
where Mid is the ideal machine for K.

Fig. 1. The worst-case example for Algorithm 2: (a) a graph 3S3,3
and machines with speeds s(M1) = 9,s(M2) = s(M3) = s(M4) = 1;
(b) Gantt chart for the suboptimal schedule; (c) Gantt chart for an
optimal schedule.

Proof. We prove the lemma for a 2-element set K = {Mi,Mj}.
Let S be any subschedule for N on K and Ni,Nj be the sets of
the jobs assigned to the corresponding machines in S. We show
that Σid(N) ≤ ΣS(N). We first transform the inequality

(s(Mi)|Nj|− s(Mj)|Ni|)2 ≥ 0

to the following form

2s(Mi)s(Mj)|Ni||Nj| ≤ s(Mi)2|Nj|2 + s(Mj)2|Ni|2 ≤
≤ s(Mi)2|Nj|(|Nj|+1)+ s(Mj)2|Ni|(|Ni|+1).

By adding s(Mi)s(Mj)(|Ni|2 + |Nj|2 + |Ni|+ |Nj|) to both sides
and by a simple transformation we obtain

s(Mi)s(Mj)(|Ni|+ |Nj|)(|Ni|+ |Nj|+1) ≤
(s(Mi)+ s(Mj))(s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)).
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5 n ≥ α(G) ≥ |Col1| we obtain
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The approximation coefficient 2 is the best possible value
in the sense that for jobs with the conflict graph in the shape
of three double-stars S3,3, presented in Fig. 1(a), the schedule
constructed by the algorithm has the length exactly twice the
optimal (cf. Fig. 1(b), 1(c)).

4. 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈
{2,3,4}

We begin this section with the following.

Lemma 3. Let K ⊆ M and N ⊆ J . Σid(N) is a lower bound
on the total completion time of any subschedule for N on K,
where Mid is the ideal machine for K.

Fig. 1. The worst-case example for Algorithm 2: (a) a graph 3S3,3
and machines with speeds s(M1) = 9,s(M2) = s(M3) = s(M4) = 1;
(b) Gantt chart for the suboptimal schedule; (c) Gantt chart for an
optimal schedule.

Proof. We prove the lemma for a 2-element set K = {Mi,Mj}.
Let S be any subschedule for N on K and Ni,Nj be the sets of
the jobs assigned to the corresponding machines in S. We show
that Σid(N) ≤ ΣS(N). We first transform the inequality

(s(Mi)|Nj|− s(Mj)|Ni|)2 ≥ 0

to the following form

2s(Mi)s(Mj)|Ni||Nj| ≤ s(Mi)2|Nj|2 + s(Mj)2|Ni|2 ≤
≤ s(Mi)2|Nj|(|Nj|+1)+ s(Mj)2|Ni|(|Ni|+1).

By adding s(Mi)s(Mj)(|Ni|2 + |Nj|2 + |Ni|+ |Nj|) to both sides
and by a simple transformation we obtain

s(Mi)s(Mj)(|Ni|+ |Nj|)(|Ni|+ |Nj|+1) ≤
(s(Mi)+ s(Mj))(s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)).
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For the last case we may bound the ratio of maxCS(K) to Cid(J)  
and that of maxCS(M nK) to Cid(J), where Mid is the ideal 
machine for M . By the way k is established, we have ¹⁴⁄20 stotal >  
> ∑M  2 K s(M ) ¸ ⁹⁄20 stotal and ¹¹⁄20 stotal ¸ ∑M  2 M nK s(M ) >  
> ⁶⁄20 stotal. These inequalities are obtained using the condition 
that ¹⁄4 stotal > max s(M ). The value ⁹⁄20 stotal that is present 
in the inequality determining k is a conveniently chosen 
constant that asserts that 2(∑M  2 K s(M )) > ⁴⁄5 stotal and that 
2(∑M 2 M nK s(M )) > ¹⁄2 stotal. By Corollary 1, if n   ̧10(k ¡ 1), 
then the ratio of maxCS(K) to Cid(J) is at most 2. Similarly, if 
n   ̧10(m ¡ k ¡ 1), then the ratio of maxCS(M nK) to Cid(J) 
is at most 2. If n   ̧10(m ¡ 2), then all the ratios are less than 
or equal to 2. □

The approximation coefficient 2 is the best possible value 
in the sense that for jobs with the conflict graph in the shape 
of three double-stars S3,3, presented in Fig. 1a, the schedule 
constructed by the Algorithm has the length exactly twice the 
optimal (cf. Fig. 1b, 1c).

Fig. 1. The worst-case example for Algorithm 2: a) a graph 3S3,3 
and machines with speeds s(M1) = 9, s(M2) = s(M3) = s(M4) = 1; 
b) Gantt chart for the suboptimal schedule; c) Gantt chart for an 

optimal schedule
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Proof. Without loss of generality we may assume that Sopt was
created greedily, i.e. by the application of the algorithm given
in [3]. The completion time on Mid is equal to

Cid(N) = maxCSopt (K)− t, (1)

for some t ≥ 0. Let Mi ∈ K be any machine such that
CSopt (Mi) = maxCSopt (K). Let n(M) for M ∈ K means the
maximal number of jobs that M can execute in time equal to
Cid(N). Then

n(Mj) ≤ nSopt (Mj)+1− s(Mj)t

for any machine Mj �=i ∈ K. The above bound results from the
following observation. Each Mj �=i ∈ K can complete at most
nSopt (Mj)+1 jobs in time equal to maxCSopt (K). Otherwise, it
would provide a faster completion of the last job on Mi than Mi
does. But this is not possible due to the algorithm for schedule
construction. Mi can complete n(Mi) = nSopt (Mi)−s(Mi)t jobs
in time equal to Cid(N). So we have

∑
M∈K

n(M) = |N|,

∑
M∈K\{Mi}

n(M)+nSopt (Mi)− s(Mi)t = |N|,

∑
M∈K\{Mi}

(nSopt (M)+1− s(M)t)+nSopt (Mi)− s(Mi)t ≥ |N|.

Applying the equality

∑
M∈K

nSopt (M) = |N|,

we obtain

∑
M∈K\{Mi}

(1− s(M)t)− s(Mi)t ≥ 0,

|K|−1 ≥ t ∑
M∈K

s(M),

so

t ≤ |K|−1
∑M∈K s(M)

.

Substituting the above inequality to (1) we get

maxCSopt (K) ≤Cid(N)+
|K|−1

∑M∈K s(M)
.

It follows immediately that

maxCSopt (K)
Cid(N)

≤
Cid(N)+ |K|−1

∑M∈K s(M)

Cid(N)
= 1+

|K|−1
|N|

.

Observation 2. Let G be an incompatibility graph and let
S be a subschedule for the unit-time jobs corresponding to
V (G)−V0(G) on M . Let S be k ≥ 1 times longer than a sub-
schedule for V (G)−V0(G) on M with the minimal length and
let a schedule S′ be an extension of S created by the greedy as-
signment of the jobs corresponding to V0(G). Then the length
of S′ is at most k times greater than the minimal schedule length
for G.

Therefore we assume V0(G) = /0 for the problem under con-
sideration.

Corollary 1. Let S be a subschedule created by a greedy as-
signment of N ⊆ J to K ⊆ M . If a number k is such that

k
∑M∈K s(M)

stotal
>

|N|
|J |

and |N| ≥ |K|−1

k ∑M∈K s(M)
stotal

− |N|
|J |

, (2)

or

|K| = 1 and k
∑M∈K s(M)

stotal
=

|N|
|J |

(3)

then
maxCS(K) ≤ kCid(J ),

where Mid is the ideal machine for M .

Proof. Let us assume that (2) occurs. Let Mid′ be the ideal
machine for K. By Lemma 2, we have

maxCS(K)
Cid′(N)

≤ 1+
|K|−1
|N|

.

Applying the equality

Cid′(N)
Cid(J )

=
|N|
|J |

stotal

∑M∈K s(M)

and substituting the bound on |N| into the above inequality, we
immediately obtain the thesis of Corollary 1.

Now let us assume that (3) occurs, then we may simply com-
pare the maxCS(K) and Cid(J ) and the thesis follows imme-
diately.

In the rest of the paper we use this corollary with k = 2.

Algorithm 2 A 2-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|Cmax

Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. case
3. : s(M1) ∈ [ 2

5 stotal ,stotal) :
4. M1 ←Col1, M2, . . . ,Mm ←Col2.
5. : s(M1) ∈ [ 1

4 stotal ,
2
5 stotal) :

6. M1 ←Col2, M2, . . . ,Mm ←Col1.
7. : s(M1) ∈ [ 1

m stotal ,
1
4 stotal) :

8. Let k be the smallest integer such that K = {M1, . . . ,Mk}
and ∑M∈K s(M) ≥ 9

20 stotal .
9. if n < 10(m−2) then

10. Find an optimal schedule by a brute-force algorithm.
11. else
12. M1, . . .Mk ←Col1, Mk+1, . . . ,Mm ←Col2.
13. end if
14. end case

Theorem 1. Algorithm 2 is 2-approximate for the problem
Qm|p j = 1,G = bisubquartic|Cmax.

Proof. Let S be a schedule produced by the algorithm. Let
Sopt be a schedule with the minimal length. If s(M1) ∈
[ 2

5 stotal ,stotal) then we may estimate CS(M1) using Corollary
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4. 4-approximation Algorithm for the problem 
Qmj pj = 1, G = bisubquartic jΣCj,  
where m 2 {2, 3, 4}

We begin this section with the following.

Lemma 3. Let K µ M  and N µ J . Σid(N ) is a lower bound 
on the total completion time of any subschedule for N on K, 
where Mid is the ideal machine for K.

Proof. We prove the lemma for a 2-element set K = {Mi, Mj}. 
Let S be any subschedule for N on K and Ni, Nj be the sets of 
the jobs assigned to the corresponding machines in S. We show 
that Σid(N ) ∙ ΣS(N ). We first transform the inequality
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2 n ≥ |Col2|. If the number of
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5 n, then
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of jobs scheduled on M2, . . . ,Mm in Sopt is less than or equal to
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. Let us bound the

ratio of maxCS({M2, . . . ,Mm}) to maxCSopt (M ) in this case.
Let Mid′ be the ideal machine for {M2, . . . ,Mm}. By Lemma 2,
we have
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Without loss of generality we may assume that n ≥ m. By this
assumption and by the fact that 4

5 n ≥ α(G) ≥ |Col1| we obtain
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For the last case we may bound the ratio of maxCS(K)
to Cid(J ) and that of maxCS(M \ K) to Cid(J ), where
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chosen constant that asserts that 2(∑M∈K s(M)) > 4
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2 stotal . By Corollary 1, if n ≥ 10(k−
1), then the ratio of maxCS(K) to Cid(J ) is at most 2. Simi-
larly, if n ≥ 10(m− k−1), then the ratio of maxCS(M \K) to
Cid(J ) is at most 2. If n ≥ 10(m− 2), then all the ratios are
less than or equal to 2.

The approximation coefficient 2 is the best possible value
in the sense that for jobs with the conflict graph in the shape
of three double-stars S3,3, presented in Fig. 1(a), the schedule
constructed by the algorithm has the length exactly twice the
optimal (cf. Fig. 1(b), 1(c)).

4. 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈
{2,3,4}

We begin this section with the following.

Lemma 3. Let K ⊆ M and N ⊆ J . Σid(N) is a lower bound
on the total completion time of any subschedule for N on K,
where Mid is the ideal machine for K.

Fig. 1. The worst-case example for Algorithm 2: (a) a graph 3S3,3
and machines with speeds s(M1) = 9,s(M2) = s(M3) = s(M4) = 1;
(b) Gantt chart for the suboptimal schedule; (c) Gantt chart for an
optimal schedule.

Proof. We prove the lemma for a 2-element set K = {Mi,Mj}.
Let S be any subschedule for N on K and Ni,Nj be the sets of
the jobs assigned to the corresponding machines in S. We show
that Σid(N) ≤ ΣS(N). We first transform the inequality

(s(Mi)|Nj|− s(Mj)|Ni|)2 ≥ 0

to the following form

2s(Mi)s(Mj)|Ni||Nj| ≤ s(Mi)2|Nj|2 + s(Mj)2|Ni|2 ≤
≤ s(Mi)2|Nj|(|Nj|+1)+ s(Mj)2|Ni|(|Ni|+1).
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Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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If the number of machines is greater than 2, the thesis follows 
from induction on jK j. □

Algorithm 3 A 4-approximation Algorithm for the problem 
Qmj pj = 1, G = bisubquartic jΣCj, where m 2 {2, 3, 4}
Input: A bisubquartic graph G.
Output: A schedule
1. (Col1, Col2) = Non-Equitable Coloring(G).
2. M1 ← Col1, M2, …, Mm ← Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem 
Qmj pj = 1, G = bisubquarticjΣCj, where m 2 {2, 3, 4}.

Proof. Let us begin our analysis with the case of a problem with 
4 machines. Let S be a schedule obtained by Algorithm 3 and 
let Sopt be any schedule with the minimal total completion time. 
We may divide J  into sets NM1

, NM2
, NM3

 and NM4
, where NMi

 
is the set of the jobs assigned to Mi in Sopt.

● If jCol2j ¸ jNM2
 [ NM3

 [ NM4j, then by Lemma 1, 
jCol2j ∙ 2jNM2

 [ NM3
 [ NM4j, hence

 ΣS(Col2) < 4ΣSopt(NM2
 [ NM3

 [ NM4). (4)

In this case jCol1j ∙ jNM1j, so we have

ΣS(Col1) ∙ ΣSopt(NM1) ∙ 4ΣSopt(NM1) .

Therefore

Better polynomial algorithms for scheduling unit-length jobs

Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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Inequality (4) comes from the following observation. Let us 
assume that jCol2j ∙ 2jNM2

 [ NM3
 [ NM4j. The total comple-

tion time in a greedy assignment is not greater than in the 
assignment in which we schedule exactly 2jNM2j jobs on 
M2, 2jNM3j jobs on M3 and 2jNM4j jobs on M4. For each of 
the machines, in this assignment the total completion time 
of the jobs assigned to a machine is less than four times the 
total completion time of the jobs assigned to this machine 
in Sopt. Thus the inequality follows.

● Assume jCol2j < jNM2
 [ NM3

 [ NM4j. Let us divide the set 
NM2

 [ NM3
 [ NM4

 into 2 subsets. Let N jCol2j be any of its 
subsets with cardinality jCol2j. Let Nr = (NM2

 [ NM3
 [ NM4)

nNjCol2j. Then we have jCol1j = jNM1j + jNr j and

ΣSopt
(J) = ΣSopt(NM1) + ΣSopt(Nr) + ΣSopt(NjCol2j) .

Let Mid be the ideal machine for M . By the inequality

Better polynomial algorithms for scheduling unit-length jobs

Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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.

and by Lemma 3, the total completion time of Col1 on M1 
is at most 4 times greater than the the total completion time 
of jCol1j jobs in any other schedule. Hence

ΣS(Col1) ∙ 4(ΣSopt(NM1) + ΣSopt(Nr)) .

Thus we obtain

Better polynomial algorithms for scheduling unit-length jobs

Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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In both cases we have ΣS(J) ∙ 4ΣSopt
(J), hence Algorithm 3 

is 4-approximate. Similar observations may be used to es-
tablish that the Algorithm is 4-approximate for the problems 
Q2j pj = 1, G = bisubquartic jΣCj and Q3j pj = 1, G = bisub-
quartic jΣCj. □
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The approximation coefficient 4 is the best possible value 
in the sense that for any ε  > 0 we may find such integers l 
and k that for a graph G consisting of l copies of 3S3,3, the 
graph presented in Fig. 1a, and for machines with speeds 
s(M1) = ks(M4) and s(M2) = s(M3) = s(M4) the Algorithm con-
structs a schedule S with ΣS(J) that is at least 4 ¡ ε  times 
greater than the minimal one. Let l ¸ (10 ¡ 4ε)/(6ε) and let 
k ¸ 180 l. Then we have

Better polynomial algorithms for scheduling unit-length jobs

Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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The optimal assignment is to assign the jobs corresponding 
to an independent set of vertices with cardinality α(G) = 18 l 
to the fastest machine and to assign the remaining jobs, with 
cardinality equal to 6 l, to the other machines in a balanced way. 
Let us denote this schedule as Sopt. Then
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Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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Algorithm 3 constructs a schedule with 12 l jobs assigned to M1 
and 12 l jobs assigned to M2, M3, M4. So we have
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Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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Hence we get
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Dividing both the sides by 2s(Mi)s(Mj)(s(Mi)+s(Mj)) we get

Σid(N) =
(|Ni|+ |Nj|)(|Ni|+ |Nj|+1)

2(s(Mi)+ s(Mj))

≤
s(Mj)|Ni|(|Ni|+1)+ s(Mi)|Nj|(|Nj|+1)

2s(Mi)s(Mj)

≤ ΣS(N).

If the number of machines is greater than 2, the thesis follows
from induction on |K|.

Algorithm 3 A 4-approximation algorithm for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}
Input: A bisubquartic graph G.
Output: A schedule

1. (Col1,Col2) = Non-Equitable Coloring(G).
2. M1 ←Col1, M2, . . . ,Mm ←Col2.

Theorem 2. Algorithm 3 is 4-approximate for the problem
Qm|p j = 1,G = bisubquartic|ΣCj, where m ∈ {2,3,4}.

Proof. Let us begin our analysis with the case of a problem
with 4 machines. Let S be a schedule obtained by Algorithm 3
and let Sopt be any schedule with the minimal total completion
time. We may divide J into sets NM1 , NM2 , NM3 and NM4 ,
where NMi is the set of the jobs assigned to Mi in Sopt .

• If |Col2| ≥ |NM2 ∪NM3 ∪NM4 |, then by Lemma 1, |Col2| ≤
2|NM2 ∪NM3 ∪NM4 |, hence

ΣS(Col2) < 4ΣSopt (NM2 ∪NM3 ∪NM4). (4)

In this case |Col1| ≤ |NM1 |, so we have

ΣS(Col1) ≤ ΣSopt (NM1) ≤ 4ΣSopt (NM1).

Therefore

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (NM2 ∪NM3 ∪NM4)

= 4ΣSopt (J ).

Inequality (4) comes from the following observation. Let us
assume that |Col2| = 2|NM2 ∪NM3 ∪NM4 |. The total com-
pletion time in a greedy assignment is not greater than in the
assignment in which we schedule exactly 2|NM2 | jobs on M2,
2|NM3 | jobs on M3 and 2|NM4 | jobs on M4. For each of the
machines, in this assignment the total completion time of the
jobs assigned to a machine is less than four times the total
completion time of the jobs assigned to this machine in Sopt .
Thus the inequality follows.

• Assume |Col2| < |NM2 ∪NM3 ∪NM4 |. Let us divide the set
NM2 ∪NM3 ∪NM4 into 2 subsets. Let N|Col2| be any of its sub-
sets with cardinality |Col2|. Let Nr = (NM2 ∪NM3 ∪NM4) \
N|Col2|. Then we have |Col1| = |NM1 |+ |Nr| and

ΣSopt (J ) = ΣSopt (NM1)+ΣSopt (Nr)+ΣSopt (N|Col2|).

Let Mid be the ideal machine for M . By the inequality

ΣS(Col1)
Σid(Col1)

=
|Col1|(|Col1|+1)

2s(M1)
|Col1|(|Col1|+1)

2∑M∈M s(M)

≤ 4.

and by Lemma 3, the total completion time of Col1 on M1 is
at most 4 times greater than the the total completion time of
|Col1| jobs in any other schedule. Hence

ΣS(Col1) ≤ 4(ΣSopt (NM1)+ΣSopt (Nr)).

Thus we obtain

ΣS(J ) = ΣS(Col1)+ΣS(Col2)
≤ ΣS(Col1)+4ΣS(Col2)
≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣS(Col2)

≤ 4ΣSopt (NM1)+4ΣSopt (Nr)+4ΣSopt (N|Col2|)

= 4ΣSopt (J ).

In both cases we have ΣS(J ) ≤ 4ΣSopt (J ), hence Algo-
rithm 3 is 4-approximate. Similar observations may be used
to establish that the algorithm is 4-approximate for the prob-
lems Q2|p j = 1,G = bisubquartic|ΣCj and Q3|p j = 1,G =
bisubquartic|ΣCj.

The approximation coefficient 4 is the best possible value in
the sense that for any ε > 0 we may find such integers l and
k that for a graph G consisting of l copies of 3S3,3, the graph
presented in Fig. 1(a), and for machines with speeds s(M1) =
ks(M4) and s(M2) = s(M3) = s(M4) the algorithm constructs
a schedule S with ΣS(J ) that is at least 4− ε times greater
than the minimal one. Let l ≥ (10−4ε)/(6ε) and let k ≥ 180l.
Then we have

10
6l +4

≤ ε.

The optimal assignment is to assign the jobs corresponding to
an independent set of vertices with cardinality α(G) = 18l to
the fastest machine and to assign the remaining jobs, with car-
dinality equal to 6l, to the other machines in a balanced way.
Let us denote this schedule as Sopt . Then

ΣSopt (J ) =
18l(18l +1)

2ks(M4)
+3

2l(2l +1)
2s(M4)

≤ 180l2 +(6l2 +3l)k
ks(M4)

≤ 6l2 +4l
s(M4)

.

Algorithm 3 constructs a schedule with 12l jobs assigned to
M1 and 12l jobs assigned to M2,M3,M4. So we have

ΣS(J ) =
12l(12l +1)

2ks(M4)
+3

4l(4l +1)
2s(M4)

≥ 24l2 +6l
s(M4)

.

Hence we get

4− ε ≤ 4− 10
6l +4

=
24l2 +6l
6l2 +4l

≤ ΣS(J )
ΣSopt (J )

.

Observation 3. Algorithms 1 and 3 run in O(n) time for bisub-
quartic graphs. Algorithm 2 has the overall complexity of
O(nm10(m−2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is
reasonable to implement them using a data structure suitable
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity
O(n). Algorithm 3 consists of two parts. The first is the ap-
plication of Algorithm 1. The second is the assignment of the
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Observation 3. Algorithms 1 and 3 run in O(n) time for bi-
subquartic graphs. Algorithm 2 has the overall complexity of 
O(nm10(m ¡ 2)) for bisubquartic graphs.

In fact, the algorithms are devoted to sparse graphs so it is 
reasonable to implement them using a data structure suitable 
for such graphs.

Algorithm 1 consists of 2 phases, both of the complexity 
O(n). Algorithm 3 consists of two parts. The first is the appli-
cation of Algorithm 1. The second is the assignment of the jobs 
corresponding to color classes to the machines which can be 
implemented in linear time [3]. So the total complexity of this 
Algorithm is O(n).

Algorithm 2 may have to find an optimal solution for small 
graphs. This can be done by using an exhaustive search. In gen-
eral, each of the vertices can be colored using one of m colors. 
The correctness of a coloring can be verified in O(n) time. The 
length of the schedule corresponding to a coloring can be calculated 
in O(m) time. Thus the total complexity is at most O((n + m)mn). 
However, in our case, the brute-force algorithm is used only for 
graphs with n ∙ 10(m ¡ 2). Thus it has time complexity on the 
order of O((n + m)m10(m ¡ 2)). The remaining operations are the 

same as in the previous cases. However, the greedy assignment 
can be done in time O(n log m). Hence the total time complexity 
is O(n + n log m + (n + m)m10(m ¡ 2)) = O(nm10(m ¡ 2)), which is 
O(n) for a fixed number of machines.

3. Final remarks

Our analysis is based on 2-coloring of a bipartite graph with 
maximal width. A natural extension of this approach is to con-
sider 2-colorings with smaller widths. Such colorings seems to 
be better, e.g. when the machines can be split into two sets with 
closer sums of speeds.

It is also interesting to know if Algorithm 2 can be refined 
to obtain polynomial time complexity in both the number of 
jobs and the number of machines.

Finally, it would be interesting to incorporate in our sched-
uling model time window constraints imposed on the machines 
(cf. [8]). In this direction of study the model of graph coloring 
with forbidden colors would be useful [9].
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