
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES

Vol. 56, No. 4, 2008

Dependable and certifiable real-world systems – issue of software

engineering education

A.J. KORNECKI∗

Computer and Software Engineering Department, Embry Riddle Aeronautical University

600 S. Clyde Morris Blvd, 32114 Daytona Beach, FL, USA

Abstract. Embedded software and dedicated hardware are vital elements of the modern world, from personal electronics to transportation,

from communication to aerospace, from military to gaming, from medical systems to banking. Combinations of even minor hardware or

software defects in a complex system may lead to violation of safety with or even without evident system failure. a major problem that the

computing profession faces is the lack of a universal approach to unite the dissimilar viewpoints presented by computer science, with its

discrete and mathematical underpinnings, and by computer engineering, which focuses on building real systems and considering spatial and

material constraints of space, energy, and time. Modern embedded systems include both viewpoints: microprocessors running software and

programmable electronic hardware created with an extensive use of software. The gap between science and engineering approaches is clearly

visible in engineering education. This survey paper focuses on exploring the commonalities between building software and building hardware

in an attempt to establish a new framework for rejuvenating computing education, specifically software engineering for dependable systems.

We present here a perspective on software/hardware relationship, aviation system certification, role of software engineering education, and

future directions in computing.

Key words: dependable systems, aviation systems certification, engineering education.

1. Introduction

In a recent U.S. National Science Foundation announcement

a question was posed: “How can real-world systems be de-

signed, built, and analyzed in elegant and powerful new

ways?” This paper will elaborate on the three aspects that

provide the background and may address the possible answer

to the raised questions: (a) the scientific underpinnings of sys-

tem construction, (b) the methodology and process of system

development, and (c) education and training of the stakehold-

ers (i.e. developers) and users of the systems.

Computer technology is the foundation for nearly all facets

of human endeavor from games and consumer electronics to

medicine and space exploration. Embedded software controls

transportation, communication, aerospace, military, and med-

ical systems – all of which must be dependable. Dependabil-

ity, as defined by the IFIP 10.4 Working Group on Depend-

able Computing and Fault Tolerance: “the trustworthiness of

a computing system which allows reliance to be justifiably

placed on the service it delivers” [1], is the characteristic

property of such systems.

Software complexity has grown to the point that verifica-

tion of system dependability may be problematic. Combina-

tions of even minor software defects in a complex system may

lead to significant system failures. And since reliability is not

an equivalent of safety, it can be violated even without evi-

dent system failure in complex systems. The broad discipline

of computing has changed radically in the past two decades,

both being affected by other domains as well as bearing sig-

nificant impact on other fields of human endeavor. Modern

computing involves understanding complex interactions with

the real-world, integration of systems, and the need to under-

stand the multidisciplinary nature of the computing, which

requires a combination of expertise ranging from control to

electrical to computer to software engineering. In addition to

keeping the pace with the rapid progress of technology, the

critical issue is enforcing engineering discipline when devel-

oping, verifying and validating software intensive complex

systems.

One of the major problems that computing profession

faces is the lack of a unified theory and approach to com-

bine often dissimilar viewpoints presented by (a) discrete

and mathematical underpinnings of computer science, and by

(b) computer engineering, which focuses on building real sys-

tems considering spatial and material constraints of space, en-

ergy, and time. Modern embedded systems include both view-

points: microprocessors running software and programmable

electronic hardware created with an extensive use of software.

The gap between science and engineering approaches is glar-

ingly visible in education, where individual departments and

programs tend to stay within their comfort zones leading to

stove-piping of the academic programs, limiting the graduates

to hearing only one side of the story.

While developing software intensive systems, the real-

world faces challenges in two focus areas. Time-critical soft-

ware intensive systems require rigorous engineering methods

of analysis and certification to create architectures and imple-

mentation mechanisms whose composite properties and be-

haviors must be certifiably dependable. Furthermore, evolu-

∗e-mail: kornecka@erau.edu

395

A.J. Kornecki

tion of the software-dependent world requires the knowledge

and tools needed for people to participate fully in the design,

development, and use of real-world systems as end-users, soft-

ware engineers, and other stakeholders.

There are two directions where improvement in the cur-

rent state of affairs regarding software intensive dependable

systems may be sought:

• Engineering processes and methods. Based on estab-

lished software engineering practices, the processes and

methods of designing, building, and analyzing software for

real-world autonomous and complex systems of the future

need to consider the future societal and technological trends

and thus facilitate a software development environment in

the next decades. The use of software tools and model-

ing techniques for engineering activity leading to not only

creation of computer software but also creation of com-

plex programmable logic devices needs to be explored – in

a search for potential unification of these two activities.

• Educational pedagogy. Based on established process-

driven software engineering curricula, innovative pedagogy

for educating students and training the workforce needs to

be explored. The major consideration is integration of the

software and hardware tracks to facilitate the concept of

building modern dependable systems from the system en-

gineering perspective. New educational ideas and activities

supporting learning and application of scientific principles

and engineering methods for the design, construction, and

analysis of real-world software systems need to be identi-

fied.

There are numerous stakeholders intimately interested in

the future of the profession and its preparation for the chal-

lenges of this century. They include not only computing fac-

ulty and academic administrators but also recognized nation

leaders and futurists in the field of computing, commercial

software development companies, professional computing so-

cieties and trade organizations, government policy makers and

funding organizations, national research and industrial labo-

ratories, etc.

The paper will discuss three aspects to address the is-

sue of creating dependable software-intensive real world sys-

tems. Since modern systems are a tightly knit combination of

hardware and software, we discuss their mutual relationship

and the impact of the scientific foundations pointing out well

known distinction between science and engineering. Aviation

is an example of domain where the dependability of the sys-

tem is of primary importance. The paper elaborates on the

methodology and the process used to assure dependability

both from the perspective of software and hardware guidance.

Subsequently, we explore the role of software engineering and

the future directions of computing for the real world.

2. Complex systems – the software/hardware

relationship

Since early 90’s in the Computer and Software Engineering

department we hold regular yearly meetings of the Indus-

try Advisory Board. The feedback received from the industry

representatives, based on their experience with freshly hired

graduates, shows that the majority of computing curricula do

not address an integrative view of the discipline; neither have

they matched industry needs and challenges raised by ever ex-

panding and increasingly complex applications. The systems

that best fit this category are in the aviation and aerospace,

medical, transportation, and nuclear fields, where software

plays a critical role and its dependability is of paramount im-

portance. The system approach is the starting point. However,

there is need to address the critical issues related to the com-

puting domain.

Computer Science (CS) and Software Engineering (SE)

programs produce graduates that are typically engaged in

developing large industry-strength software systems. Due to

their hardware focus, Computer Engineering (CE) programs

graduates are prepared for designing hardware systems which

typically include significant software components. The three

programs differ in the points of emphasis: development of

new theoretical ideas and algorithms (CS) vs. development of

large and complex software systems (SE) vs. small embedded

software and device drivers (CE). For contribution to building

real world systems all three domains have need of good en-

gineering practices. The development of dependable systems

is the common denominator of the three domains. The prolif-

eration of software-intensive systems in everyday life, forces

industry to hire engineers familiar with time-critical reactive

dependable systems, those who understand the intricacies of

hardware-software interaction, the role of the computer oper-

ating system, and its environmental impact.

The vital issue in the future of software engineering, as re-

lated to the development of dependable safety critical systems,

is close relation between what conventionally was considered

as separate categories: software vs. hardware. Software appli-

cation designers focus on the development of programs that

run on microprocessors, and often overlook programmable

logic devices (and the ever popular Field Programmable Log-

ic Arrays, FPGA). FPGA is a prefabricated integrated circuit

that can be configured to implement a particular design by

downloading a sequence of bits. In that sense, a circuit im-

plemented on an FPGA is literally software. However, circuit

designers are still known as hardware specialists, and the al-

gorithms ported to circuits are still known as hardware algo-

rithms. Treating circuits as “hardware” creates problems in

computing system development, in particular for embedded

systems. The reason is that the graduates of typical comput-

er science program – employed often as software engineers

– are not getting adequate exposure to hardware operation.

The issue extends beyond circuits and hardware and into the

concept of two dissimilar computation models: (a) software

focuses on temporal models based on state machines, com-

municating processes, and sequences of instructions ordering

tasks in time and (b) hardware focuses on spatial models with

data flow graphs and logic circuits executing concurrently in

a parallel or pipelined fashion. Vahid observes that due to

their educational bias, software developers are accustomed to

defining algorithms and subroutines, “. . . but they’re typically

396 Bull. Pol. Ac.: Tech. 56(4) 2008

Dependable and certifiable real-world systems – issue of software engineering education

weaker at creating models that also involve some amount of

spatial orientation, like parallel processes, data-flow graphs,

or circuits, largely because computing education in universi-

ties tends to emphasize the former with little attention given

to the latter. Yet with embedded systems continuing to grow

in importance, such imbalance can’t persist much longer” [2].

Henzinger and Sifakis [3] write about the need to re-

new the computer science curriculum. The different design

principles and approaches distinguish the approaches used by

hardware and software designers. Software designers see the

system in terms of dynamic objects and threads constituting

sequential building blocks or virtual machines with their se-

mantic interpretation of a computational model. On the other

hand, hardware designers compose the system with parallel

building blocks representing physical entities with appropri-

ate data flows between them. The blocks have formal transfer

function semantics described by a set of equations forming

an analytical model. The computational and analytical mod-

els support two dissimilar design processes.

With the rapid progress of microelectronic technology we

may expect further expansion of dedicated and programmable

hardware that will be developed and verified using complex

software tools. The software not only consists of the system

and application programs but the complex software used to

develop and verify programmable logic circuits. The software

engineering principles and approaches may need to be applied

to the hardware domain. On the other hand, the concepts well

accepted by the hardware designers’ community, like concur-

rent execution of spatial circuit, may influence future design

of massively concurrent software. The hardware-software co-

design and the system approach, necessity of understanding

both sides of the embedded system are the basic tenets of the

education of future dependable system developers. Consider-

ing it necessary to close the gap between hardware (electrical

and computer engineering) and software (software engineer-

ing and computer science) constitutes significant paradigm

shift in the education of the future cadre of dependable sys-

tem developers.

3. Aviation example – the practice of building

dependable systems

Aviation systems, both airborne and ground, (e.g., flight con-

trols, avionics, engine control, air traffic control) are typical

examples of safety-critical, real-time systems. Such systems

continue to become more complex and are extremely software

intensive thus getting necessary attention of modern software

engineering community. Systems like that often operate in en-

vironments with diverse ranges of temperature, humidity, air

pressure, vibration and movement, and are subject to the af-

fects of age, maintenance and weather. Typical characteristics

required of such systems are reliability, fault tolerance, and

deterministic timing guarantees. Both hardware and software

for such systems must address these issues; hence the concept

of certification.

The term “certification” in software engineering is typical-

ly associated with three meanings: certifying product, process,

or personnel. Product and process certification are the most

challenging in developing software for real-time safety critical

systems, such as flight control and traffic control, road vehi-

cles, railway interchanges, nuclear facilities, medical equip-

ment, implanted devices, etc. These are systems that operate

under strict timing requirements and may cause significant

damage or loss of life, if not operating properly. The gen-

eral public has to protect itself, and governments and engi-

neering societies initiated establishing standards and guide-

lines for software developers to follow in designing software

for such systems in several regulated industries, including

aerospace, avionics, automotive, medical, nuclear, railways,

and others.

RTCA, Incorporated, is a not-profit corporation formed to

advance the art and science of aviation and aviation electronic

systems for the benefit of the public. The main function of the

RTCA is to act as a Federal Advisory Committee to develop

consensus-based recommendations on aviation issues, which

are used as the foundation for Federal Aviation Administra-

tion Technical Standard Orders controlling the certification of

aviation systems.

In 1980, the RTCA convened a special committee (SC-

145) to establish guidelines for developing airborne systems

and equipment. They produced a report, “Software Consid-

erations in Airborne Systems and Equipment Certification”,

which was subsequently approved by the RTCA Executive

Committee and published in January 1982 as the RTCA doc-

ument DO-178. After gaining further experience in airborne

system certification, the RTCA decided to revise the previous

document. Another committee (SC-152) drafted DO-178A,

which was published in 1985. Due to rapid advances in tech-

nology, the RTCA established a new committee (SC-167)

in 1989. Its goal was to update, as needed, DO-178A. SC-

167 focused on five major areas: Documentation Integration

and Production, System Issues, Software Development, Soft-

ware Verification, and Software Configuration Management

and Quality Assurance. The resulting document, DO-178B,

provides guidelines for these areas [4]. The document identi-

fies a set of objectives to be met depending on the criticality

of the specific system, in terms of level of assurance from A

(the most critical) to E (not critical), as identified by preceding

system safety assessment.

Another RTCA document DO-254 [5] prepared by SC-

180, was released in 2000 addressing design assurance for

complex electronic hardware. The guidance is applicable to

a wide range of hardware devices, from integrated technol-

ogy hybrid and multi-chip components, to custom program-

mable micro-coded components, to circuit board assemblies

(CBA), to entire line-replaceable units (LRU). This guidance

also addresses the issue of commercial off-the-shelf (COTS)

components. The document’s appendices provide guidance for

data to be submitted, including: independence and control data

category based on the assigned assurance level, description of

the functional failure path analysis (FFPA) method applicable

to hardware with the highest design assurance levels (DAL),

and discussion of additional assurance techniques like formal

methods to support and verify analysis results.

Bull. Pol. Ac.: Tech. 56(4) 2008 397

A.J. Kornecki

The implementation of Communication, Navigation, Sur-

veillance, and Air Traffic Management (CNS/ATM) systems

has resulted in increased interdependence of systems provid-

ing Air Traffic Services (ATS) and systems onboard aircraft.

CNS/ATM systems include ground, airborne, and space-based

systems. DO-278, resulting from deliberations of RTCA Spe-

cial Committee 190 (SC-190), provides guidelines for the

assurance of software contained in non-airborne CNS/ATM

systems [6]. The guidance applies to software contained in

CNS/ATM systems used in ground or space-based applica-

tions shown by a system safety assessment process to af-

fect the safety of aircraft occupants or airframe in its op-

erational environment. Similar to the DO-178B the guidance

is objective-based where specific objectives must be met de-

pending of the level of system criticality identified by the

system safety assessment.

It should not be construed that the above approach used by

the civil aviation system developers is perfect. However, the

discipline and the process mandated by the guidance, which is

hardly ever taught in the academic settings, allows developers

to make arguments about system dependability while making

flying population to take flights and treat air travel with more

confidence.

4. Role of software engineering education

The statement by Dijkstra “Computer Science is no more

about computers as astronomy is about telescope” [7] had

sparked an early debate on teaching computing science point-

ing to a fundamental problem one of consistency between the

understanding of separate areas like operating systems, com-

pilers, programming languages, and database systems with

understanding how a computing system functions as a whole.

Incidents of safety violations and security attacks attributed to

computer systems show that the interaction of various com-

ponents is the primary culprit. As Dijkstra wrote, a computer

specialist needs to apply a more systems – oriented approach

with emphasis on the whole system functionality and the in-

terdependence of its various components. One of the soft-

ware engineering curriculum guidelines [8] states that “The

curriculum should have a significant real-world basis”. The

question is how to best provide this “real-world” experience?

The last twenty years have witnessed noteworthy advance-

ments in the state of computer science education (and in the

related fields such as computer engineering, information sys-

tems, and software engineering). The Association for Com-

puting Machinery (ACM), the IEEE Computer Society (IEEE-

CS), and the Computer Sciences Accreditation Board (CSAB)

have provided encouragement, support, and guidance in devel-

oping quality curricula that are viable and dynamic. Degree

programs have moved from the initial language and coding-

centred curricula to those that emphasize theory, abstraction,

and design. To address the problems in software development

the ACM/IEEE-CS Joint Task Force on Computing Curricula

have produced a set of guidelines for curricula in comput-

er engineering, computer science, information systems and

software engineering [9], which recommend the inclusion of

a significant amount of software engineering theory and prac-

tice. The demand for adequately prepared software engineers

is growing. However, with hundreds of computing programs

in the U.S. colleges and universities, there is less than twenty

ABET accredited software engineering programs which de-

vote considerable time to software engineering areas essential

to effective commercial software development. The demand is

especially high for the education required to develop software-

intensive systems where time-criticality, safety and reliability

are key issues and the margin for error is narrow. It is im-

perative that software developers understand such basic real-

time concepts as timing, concurrency, inter-process commu-

nication, resource sharing, interrupts handling, and external

devices interface. Certainly, there are excellent computer en-

gineering programs that provide their graduates with exposure

to such concepts. However, due to the hardware-focused na-

ture of such programs, the software development is typically

not treated with a sufficient depth.

Decreasing computing enrollment and the outsourcing

gloom provoked questions like: “will proficiency in both com-

puter science and communications give students a global

edge?” [10]. Similarly, Humphrey and Hilburn [11] observed

the need to undertake a comprehensive analysis of computing

education: “Because of the growing impact of software and

its historically poor performance in meeting society’s needs,

the practice of software engineering is in need of substantial

changes. One challenge concerns preparing software profes-

sionals for their careers; the field must drastically change its

approach to software engineering education if it hopes to con-

sistently provide safe, secure, and reliable systems”.

Software Engineering programs often “received deep crit-

icism and subjective evaluation by many traditional computer

scientists who see them merely as an opportunity to provide

industrial training in programming (but who fail to understand

the complexities of software)” [12]. An additional facet the

profession is struggling with is the need for understanding

the hardware platform and environment interfaces and thus

related dependability issues for software-intensive systems.

CMU-ISRI technical report [13] identifies principal founda-

tions of software engineering in terms of computer science

concepts and engineering knowledge complemented by social

and economic context of the engineering effort. The report al-

so identifies core competencies, capabilities, and pedagogical

principles.

Computer science is not the same as software develop-

ment. Incorporating the practices of software engineering in-

to undergraduate computing programs, based on solid back-

ground provided by conventional computer science courses,

is important for the software industry. Introduction of process

scripts, requirements, design and code reviews, and metrics

familiarizes the students with the software engineering dis-

cipline. a rigorous repeatable process helps to create an en-

vironment where the software products are developed more

efficiently and with fewer defects [14]. It is also critical to

realize that the computing specialists are part of larger com-

munity of system developers and provide them opportunity

for a domain specific education [15]. However, many excel-

398 Bull. Pol. Ac.: Tech. 56(4) 2008

Dependable and certifiable real-world systems – issue of software engineering education

lent computer science academic programs do not include ade-

quate software development component, because elite schools

may think that teaching practical skills should be left to the

technical vocational institutes and computer training schools.

It is imperative that software developers understand ba-

sic real-time concepts of timing, concurrency, inter-process

communication, resource sharing, hardware interrupts han-

dling, and external devices interface. Industry needs comput-

ing graduates with knowledge of dependable time-critical re-

active systems and those who understand how the software

will interact with the operating system and the environment.

In addition, they need to be able to work as part of a multi-

disciplinary team and meet rigorous engineering process and

certification standards. It may also be necessary for them to

function in multinational companies. These issues need to

be integrated into computing curricula becoming potential-

ly a part of several courses; each course can contribute to

the overall objective of understanding real-time dependable

software-intensive systems. From the perspective of accred-

itation requirements, the curricula must define program ed-

ucational objectives describing the career and professional

accomplishments that the program is preparing graduates to

achieve as well as the related program outcomes describing

what students are expected to know and be able to do by the

time of graduation.

5. Future directions of real world computing

Alan Kay once said: “The best way to predict the future is

to invent it” [16]. He went on to say that things that can

be described can actually be built. In the same vain, Watts

Humphrey wrote in his column [17] that “. . . programming

is a very effective way to meet many kinds of human needs.

As long as people continue devising new and cleverer ways

to work and to play, we can expect the growth in computer

applications to continue. The more we learn about computing

systems and the more problems we solve, the better we under-

stand how to address more complex and interesting problems.

Therefore, because human ingenuity appears to be unlimited,

the number of programs needed in the world is also essen-

tially unlimited. This means that the principal limitation on

the expanding use of computing systems is our ability to find

enough skilled people to meet the demands”.

Decision software installed in unmanned autonomous sys-

tems (UAS) needs to be both reliable and safe. However, trust-

ing decisions made by autonomous control software may re-

quire new methods and processes to guarantee safety. The dif-

ficulty lies in determining how these intelligent systems will

operate in a dynamic environment and with little or no human

oversight. New paradigms will be needed to assure safety. In-

telligent control adds a whole new dimension to certification

issues for flight control technologies; they already involve the

most rigorous testing, which embedded computer systems can

endure [18]. UAS autonomous control is a revolutionary leap

in technology. Such control replaces decision-making that re-

quired years of training for human operators. Neglecting au-

tonomous control certification research today will dramati-

cally increase tomorrow’s cost of ownership for future users.

The Air Force Research Laboratory investigates Verification

& Validation (V&V) technologies uniting the aerospace com-

munity to address the problem. These issues may also need

to be addressed in the education of future software engineers.

The proceedings from the 2007 Conference on Future of

Software Engineering presented the state of the art in areas of

programming environments, empirical methods, architectural

challenges, performance and reliability, testing and analysis,

mechatronics, complex systems, academia/industry collabora-

tion, globalization, and educational challenges. The editors

write: “Software engineering is a rapidly evolving field of re-

search and practice. It is a highly diverse and vast realm of

knowledge, spanning from management and process issues in

software development to system issues such as safety, quality,

and deployment. . . . As a result, it is difficult for anyone to

follow, even at a high level, how the various elements of soft-

ware engineering research are evolving and what to expect in

the future” [19].

An increase in the use of software systems has a direct

impact on the software engineering process being used. Bar-

ry Boehm identifies eight future trends of software inten-

sive systems and the implications of these trends on software

process [20]. A major debate in software engineering centers

on the use of plan-driven processes versus more agile ones.

While each is thought to be best applicable to the develop-

ment of specific systems, the challenge is to develop methods

by which a balance can be achieved in systems that lay in

between. It becomes also essential to educate software engi-

neers that are not only familiar with each particular method,

but are also able to identify and apply the most suitable one

applicable to the specific project and organization.

Recent discussion [21] engaging computing faculty from

Cornell, Stanford, Princeton, and Berkeley identifies new di-

rections in the computing that may impact education. An in-

teresting angle of the discussion has been to promote the role

of computing “...as a sort of universal science. We’re begin-

ning to pervade everything” and that computing “...like math,

is unique in the sense that many other disciplines will have to

adopt that way of thinking. It offers a sort of conceptual frame-

work for other disciplines, and that’s fairly new”. In the short

term, computing innovations may include high-quality ma-

chine translation, reliable speech understanding, lightweight,

high-capacity e-books, theft-proof electronic wallets, self-

healing software, including adaptive networks that reconfigure

for reliability; robotics for mine safety, planetary exploration;

prosthetics for medical/nursing care and manufacturing, etc.

Nanotechnology and quantum computing could well be funda-

mental ingredients in the next revolution in computing. Mas-

sively parallel computation based on swarms of convention-

al chips underlies another potential revolution. Trustworthy

computing will finally overcome its historical market-failure

problems and become a commonplace requirement. These in-

novations often require better tools, extended programming

languages and new processor architectures.

With the rapid progress of microelectronic technology, we

can expect further expansion of dedicated and programmable

Bull. Pol. Ac.: Tech. 56(4) 2008 399

A.J. Kornecki

hardware that will be developed and verified using complex

software tools. The software consists of not only the system

and application programs but also the complex software used

to develop and verify programmable-logic circuits. SE princi-

ples and approaches might need to be applied to the hardware

domain. On the other hand, concepts accepted by hardware

designers, such as concurrent execution of spatial circuits,

might influence future design of massively concurrent soft-

ware. Hardware-software co-design, a system-based approach,

and the related necessity of understanding both sides of the

embedded-system spectrum (that is, hardware and software)

are the basic tenets of the education of future dependable-

system developers.

6. Conclusions

The future trends in development of both hardware and soft-

ware, specifically considering the proliferation of the software

in the systems, have a growing impact on the environment and

our way of life. An analysis of standards, guidelines, and prac-

tices for dependable software-intensive systems development,

is the foundation for identifying the critical issues and the

challenges that industry needs to address in the future. Engi-

neering methods of systems development must consider met-

rics to permit organizations the assessment of both process

and product. Special attention needs to be placed on en-

gineering methodologies requiring close interaction between

hardware and software platforms and the resulting system ap-

proval/certification from the safety and security perspective.

Due to the nature of the future autonomous systems, the is-

sues of engineering systems operating in an ever-changing

operational environment will be considered.

Contemporary systems use increasing numbers of comput-

ers and dedicated hardware to process the growing amounts of

data. Software intensive control systems are distributed con-

nected by an arcane bus structure. For example, a modern

aircraft bus supports flight controls, displays, weather radar,

data links, propulsion control, actuation terminals, power sys-

tems, and fuel and stores management. Hardware and soft-

ware used to coordinate these various computer-controlled

functions has become larger and more complex to meet the

increasing onboard computational demands. Most of the con-

trol system applications are in safety-critical areas and the

controlling software must be highly safe and reliable. Rigor-

ous methods for adaptive software verification and validation

must be developed to ensure that software failures do not

impact the system operation, to eliminate unintended func-

tionality, and to demonstrate that certification requirements

can be satisfied. The need to understand the system impli-

cations of the software engineering activity is imperative for

creation of such real-world software. The same observation

can be extended to nearly all areas of modern computing ap-

plication from home appliances to banking, from toys to nu-

clear reactor controls, from entertainment gadgets to medical

equipment.

There is an immediate need to undertake a gap analy-

sis between the future trends and the existing educational

environment. The result of such activity would be a base

for creation of a framework for an education and training

paradigm that has the objective of producing qualified pro-

fessionals, capable of working efficiently and effectively on

certifiable software intensive projects. The paradigm will fo-

cus on dependable systems and will emphasize the impor-

tance of computing fundamentals, the software engineering

discipline, software/hardware commonalities, and multidisci-

plinary teams.

The recent work of the U.S. computing community under

the National Science Foundation CPATH program confirms

a need for the rejuvenation of computing curricula and the in-

jection of a more general computational thinking as the base

for understanding the broader impact of computing in mod-

ern world. The ongoing collaboration with European partners

would also facilitate this impact outside the American edu-

cational system. Examples of such could be a recent engage-

ment of the author in the Atlantis Program funded by the

European Commission and the U.S. Department of Education

[22, 23]. In collaboration with universities in Poland, France,

and Czech Republic, the research identifies a framework for

engineering education focusing on Real-Time Software Inten-

sive Control Systems and preparing a platform for coordinated

curricula and student exchanges.

Acknowledgements. The author owes his interests in both

the systems approach and engineering education to his mentor

and doctoral thesis advisor, Professor Henryk Górecki. After

having spent nearly 30 years abroad, the author still cherishes

the memories of his early years as a student. He considers

this an opportunity to express his appreciation and gratitude

to Professor Górecki for his guidance, wealth of knowledge,

and friendship.

REFERENCES

[1] J.C. Laprie. “Dependable computing and fault tolerance: con-

cepts and terminology”, Proc. 15th IEEE Int. Symposium on

Fault-Tolerant Computing, 2–11 (1985).

[2] F. Vahid, “It’s time to stop calling circuits ‘hardware”, Com-

puter 40 (9), 106–108 (2007).

[3] T.A. Henzinger and J. Sifakis, “The discipline of embedded

systems design”, Computer 40 (10), 32–40 (2007).

[4] RTCA SC-167, DO-178B, Software Considerations in Air-

borne Systems and Equipment Certification, RTCA Inc., Wash-

ington, 1992.

[5] RTCA SC-180, DO-254, Design Assurance Guidance for Air-

borne Electronic Hardware, RTCA Inc., Washington, 2000.

[6] RTCA SC-190, DO-278, Guidelines For Communication, Nav-

igation, Surveillance, And Air Traffic Management (CNS/ATM)

Systems Software Integrity Assurance, RTCA Inc., Washington,

2002.

[7] E.W. Dijkstra, “On the cruelty of really teaching computer

science”, http://www.cs.utexas.edu/∼EWD/ewd10xx/EWD

1036.PDF (1988).

[8] ACM/IEEE-CS, “Joint task force on computing curricula edi-

tor”, Software Engineering 2004, Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering,

http://www.acm.org/education/curricula.html (2004).

400 Bull. Pol. Ac.: Tech. 56(4) 2008

Dependable and certifiable real-world systems – issue of software engineering education

[9] ACM/IEEE-CS, “Joint task force on computing curric-

ula”, Computing Curricula 2005, The Overview Report,

http://www.acm.org/education/curricula.html (2005).

[10] D.A. Swayne, Q.H. Mahmoud, and W. Dobosiewicz, “An

‘offshore-resistant’ degree program”, Computer 37 (8), 102–

104 (2004).

[11] W. Humphrey and T. Hilburn, “The impending changes in soft-

ware education”, IEEE Software 19 (5), 22–24 (2002).

[12] H.Saiedian, D.J. Bagert, and N.R. Mead, “Software engineer-

ing programs: dispelling the myths and misconceptions”, IEEE

Software 19 (5), 35–41 (2002).

[13] M. Shaw, Software Engineering for the 21st Century: a Basis

for Rethinking the Curriculum, Technical Report CMU-ISRI-

05-108, Carnegie Mellon University, Pittsburgh, 2005.

[14] T. Hilburn, I. Hirmanpour, and A.J. Kornecki, “The integration

of software engineering into a computer science curriculum”,

Lecture Notes in Computer Science 895, 87–98 (1995).

[15] I. Hirmanpour, T. Hilburn, and A.J. Kornecki, ”A domain cen-

tered curriculum: an alternative approach to computing educa-

tion”, SIGCSE Bulletin 27 (1), 126–130 (1995).

[16] A. Kay, “Predicting the future”, Stanford Engineering 1 (1),

1–6 (1989).

[17] W. Humphrey, “The future of software engineering I”,

News@Sei 4 (1), (2001).

[18] V. Crum, D. Homan, and R. Bortner, “Certification challenges

for autonomous flight control systems”, Proc. AIAA Guidance,

Navigation, and Control Conference and Exhibit AIAA2004,

5257 (2004).

[19] A. Dearle, “Software deployment, past, present and future”,

Proc. Int. Conf. on Software Engineering, Future of Software

Engineering, 269–284 (2007).

[20] B. Boehm, “Some future trends and implications for systems

and software engineering processes”, Systems Engineering 9

(1), 1–19 (2006).

[21] G. Anthes, “Computer science looks for a remake”, Computer

World, http://www.computerworld.com/careertopics/careers/

story/ 0,10801,110959,00.html (2006).

[22] W. Grega, A.J. Kornecki, M. Sveda, and J-M. Thiriet, “Devel-

oping interdisciplinary and multinational software engineering

curriculum”, Proc. ICEE’07, 109 (2007).

[23] A.J. Kornecki, W. Grega, M. Sveda, J-M. Thiriet, and T.

Hilburn, “ILERT – international learning environment for real-

time software intensive control systems”, Proc. RTS’07 – ICC-

SIT 2, 943–948 (2007).

Bull. Pol. Ac.: Tech. 56(4) 2008 401

