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Practical stability of positive fractional discrete-time linear systems
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Abstract. A new concept (notion) of the practical stability of positive fractional discrete-time linear systems is introduced. Necessary and

sufficient conditions for the practical stability of the positive fractional systems are established. It is shown that the positive fractional systems

are practically unstable if corresponding standard positive fractional systems are asymptotically unstable.
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1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models. A variety

of models having positive linear behavior can be found in en-

gineering, management science, economics, social sciences,

biology and medicine, etc.

Positive linear systems are defined on cones and not on lin-

ear spaces. Therefore, the theory of positive systems in more

complicated and less advanced. An overview of state of the

art in positive systems theory is given in monographs [1, 2].

Mathematical fundamentals of fractional calculus are giv-

en in the monographs [3–6]. The fractional positive lin-

ear continuous-time and discrete-time systems have been ad-

dressed in [7–11]. The first monograph on analysis and syn-

thesis of control systems with delays was the monograph

published by Gorecki in 1989 [12]. Stability of positive 1D

and 2D systems has addressed in [13–17] and the stabili-

ty of positive fractional linear systems has been investigated

in [18, 19]. The reachability and controllability to zero of posi-

tive fractional linear systems have been considered in [20–22].

The fractional order controllers have been developed in [23].

A generalization of the Kalman filter for fractional order sys-

tems has been proposed in [24]. Fractional polynomials and

nD systems have been investigated in [25]. The notion of

standard and positive 2D fractional linear systems has been

introduced in [26, 27].

In this paper a new concept of the practical stability of

positive fractional discrete-time linear systems will be intro-

duced and necessary and sufficient conditions for the practical

stability will be established.

The paper is organized as follows.

In Section 2 the basic definition and necessary and suffi-

cient conditions for positivity and asymptotic stability of the

linear discrete-time systems are introduced. In Section 3 the

positive fractional linear discrete-time systems are introduced.

The main results of the paper are given in Section 4, where

the concept of practical stability of the positive fractional sys-

tems is proposed and necessary and sufficient conditions for

the practical stability are established. Concluding remarks are

given in Section 5.

To the best author’s knowledge the practical stability of

the positive fractional systems has not been considered yet.

The following notation will be used in the paper.

The set of real n × m matrices with nonnegative en-

tries will be denoted by Rn×m
+ and Rn

+ = Rn×1
+ . A matrix

A = [aij ] ∈ Rnxm
+ (a vector) will be called strictly posi-

tive and denoted by A > 0 if aij > 0 for i = 1, . . . , n,

j = 1, . . . , m. The set of nonnegative integers will be denot-

ed by Z+.

2. Positive 1D systems

Consider the linear discrete-time system:

xi+1 = Axi + Bui, i ∈ Z+, (1a)

yi = Cxi + Dui. (1b)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are the state, input and

output vectors and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m.

Definition 1. The system (1) is called (internally) positive if

xi ∈ Rn
+, yi ∈ R

p
+, i ∈ Z+ for any x0 ∈ Rn

+ and every

ui ∈ Rm
+ , i ∈ Z+.

Theorem 1 [1, 2]. The system (1) is positive if and only if

A ∈ Rn×n
+ , B ∈ Rn×m

+ , C ∈ R
p×n
+ , D ∈ R

p×m
+ . (2)

The positive system (1) is called asymptotically stable if

the solution

xi = Aix0 (3)

of the equation

xi+1 = Axi, A ∈ Rn×n
+ , i ∈ Z+ (4)

satisfies the condition

lim
i→∞

xi = 0 for every x0 ∈ Rn
+. (5)
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Theorem 2 [1, 13]. For the positive system (4) the fol-

lowing statements are equivalent:

1. The system is asymptotically stable.

2. Eigenvalues z1, z2, . . . , zn of the matrix A have moduli

less than 1, i.e. |zk| < 1 for k = 1, . . . , n.

3. det[In − zA] 6= 0 for |z| ≥ 1.

4. ρ(A) < 1 where ρ(A) is the spectral radius of the matrix

A defined by ρ(A) = max
1≤k≤n

{|zk|}.

5. All coefficients âi = 0, 1, . . . , n − 1 of the characteristic

polynomial

p
Â
(z) = det[Inz − Â] =

zn + ân−1z
n−1 + · · · + â1z + â0

(6)

of the matrix Â = A − In are positive.

6. All principal minors of the matrix

A = In − A =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann













(7a)

are positive, i.e.

|a11| > 0,

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

> 0, ..., detA > 0. (7b)

7. There exists a strictly positive vector x > 0 such that

[A − In] x < 0. (8)

Theorem 3 [2]. The positive system (4) is unstable if at least

one diagonal entry of the matrix A is greater than 1.

3. Positive fractional systems

In this paper the following definition of the fractional discrete

derivative

∆αxk =
k
∑

j=0

(−1)j

(

α

j

)

xk−j , 0 < α < 1 (9)

will be used, where α ∈ R is the order of the fractional

difference, and

(

α

j

)

=











1 for j = 0

α(α − 1) · · · (α − j + 1)

j !
for j = 1, 2, ...

(10)

Consider the fractional discrete linear system, described

by the state-space equations

∆αxk+1 = Axk + Buk, k ∈ Z+, (11a)

yk = Cxk + Duk, (11b)

where xk ∈ <n, uk ∈ <m, yk ∈ <p are the state, input

and output vectors and A ∈ <n×n, B ∈ <n×m, C ∈ <p×n,

D ∈ <p×m.

Using the definition (9) we may write the equations (11)

in the form

xk+1 +

k+1
∑

j=1

(−1)j

(

α

j

)

xk−j+1 = Axk + Buk, (12a)

yk = Cxk + Duk. (12b)

Definition 2. The system (12) is called the (internally) posi-

tive fractional system if and only if xk ∈ <n
+ and yk ∈ <p

+,

k ∈ Z+ for any initial condition x0 ∈ <n
+ and all input se-

quences uk ∈ <m
+ , k ∈ Z+.

Theorem 4. The solution of equation (12a) is given by

xk = Φkx0 +

k−1
∑

i=0

Φk−i−1Bui, (13)

where Φk is determined by the equation

Φk+1 = (A + Inα)Φk +

k+1
∑

i=2

(−1)i+1

(

α

i

)

Φk−i+1, (14)

with Φ0 = In.

The proof is given in [8].

Lemma 1 [8]. If

0 < α ≤ 1 (15)

then

(−1)i+1

(

α

i

)

> 0 for i = 1, 2, ... (16)

Theorem 5 [8]. Let 0 < α < 1. Then the fractional system

(12) is positive if and only if

A + Inα ∈ <n×n
+ , B ∈ <n×m

+ ,

C ∈ <p×n
+ , D ∈ <p×m

+ .
(17)

4. Practical stability

From (10) and (16) it follows that the coefficients

cj = cj(α) = (−1)j

(

α

j + 1

)

, j = 1, 2, ... (18)

strongly decrease for increasing j and they are positive for

0 < α < 1. In practical problems it is assumed that j is

bounded by some natural number h.

In this case the equation (12a) takes the form

xk+1 = Aαxk +

h
∑

j=1

cjxk−j + Buk, k ∈ Z+, (19)

where

Aα = A + Inα. (20)

Note that the equations (19) and (12b) describe a linear

discrete-time system with h delays in state.

Definition 3. The positive fractional system (12) is called

practically stable if and only if the system (19), (12b) is

asymptotically stable.
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Defining the new state vector

x̃k =













xk

xk−1

...

xk−h













, (21)

we may write the equations (19) and (12b) in the form

x̃k+1 = Ãx̃k + B̃uk, k ∈ Z+, (22a)

yk = C̃xk + D̃uk, (22b)

where

Ã =

















Aα c1In c2In ... ch−1In chIn

In 0 0 ... 0 0

0 In 0 ... 0 0

... ... ... ... ... ...

0 0 0 ... In 0

















∈ <ñ×ñ
+ ,

B̃ =













B

0
...

0













∈ <ñ×m
+ , C̃ =

[

C 0 ... 0
]

∈ <p×ñ
+ ,

D̃ = D ∈ <p×m
+ , ñ = (1 + h)n.

(22c)

To test the practical stability of the positive fractional sys-

tem (12) the conditions of Theorem 2 can be applied to the

system (22).

Theorem 6. The positive fractional system (12) is prac-

tically stable if and only if one of the following condition is

satisfied

1. Eigenvalues z̃k, k = 1, ..., ñ of the matrix Ã have moduli

less 1, i.e.

|z̃k| < 1 for k = 1, ..., ñ. (23)

2. det[zIñ − Ã] 6= 0 for |z| ≥ 1.

3. ρ(Ã) < 1 where ρ(Ã) is the spectral radius of the matrix

Ã defined by ρ(Ã) = max
1≤k≤ñ

{|z̃k|}.

4. All coefficients ãi = 0, 1, ..., ñ − 1 of the characteristic

polynomial

pÃ(z) = det[Iñ(z + 1) − Ã] =

zñ + ãñ−1z
ñ−1 + ... + ã1z + ã0

(24)

of the matrix [Ã − Iñ] are positive.

5. All principal minors of the matrix

[Ã − Iñ] =











ã11 ã12 ... ã1ñ

ã21 ã21 ... ã2ñ

... ... ... ...

ãñ1 ãñ1 ... ãññ











, (25a)

are positive , i.e.

|ã11| > 0,

∣

∣

∣

∣

∣

ã11 ã12

ã21 ã22

∣

∣

∣

∣

∣

> 0 , ..., det[Iñ − Ã] > 0.

(25b)

6. There exist a strictly positive vector xi ∈ <n
+, i = 0, 1, ..., h

satisfying

x0 < x1, x1 < x2, ..., xh−1 < xh, (26a)

such that

Aαx0 + c1x1 + ... + chxh < x0. (26b)

Proof. The first five conditions 1)–5) follow immediately from

the corresponding conditions of Theorem 2. Using (8) for the

matrix Ã we obtain
















Aα c1In c2In ... ch−1In chIn

In 0 0 ... 0 0

0 In 0 ... 0 0

... ... ... ... ... ...

0 0 0 ... In 0







































x0

x1

x2

...

xh−1

xh























<

















x0

x1

x2

...

xh

















.

(27)

From (27) follow the conditions (26).

Theorem 7. If the positive fractional system (12) is practi-

cally stable then sum of entries of every row of the adjoint

matrix Adj[Iñ − Ã] is strictly positive, i.e.

Adj[Iñ − Ã]−11ñ � 0, (28)

where 1ñ = [ 1 1 ... 1 ]T ∈ <ñ
+, T denotes the trans-

pose.

Proof. It is well-known [13] that if the system (22) is asymp-

totically stable then

x = [Iñ − Ã]−11ñ � 0, (29)

it is strictly positive equilibrium point for B̃u = 1ñ. Note that

det[Iñ − Ã] > 0. (30)

since all eigenvalues of the matrix [Iñ − Ã] are positive.

The conditions (29) and (30) imply (28).

Example 1. Check the practical stability of the positive frac-

tional system

∆αxk+1 = 0.1xk, k ∈ Z+ (31)

for α = 0.5 and h = 2.

Using (18), (20) and (22c) we obtain

c1 =
α(α − 1)

2
=

1

8
, c2 =

1

16
, aα = 0.6

and

Ã =







aα c1 c2

1 0 0

0 1 0






=









0.6
1

8

1

16
1 0 0

0 1 0









.
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In this case the characteristic polynomial (24) has the form

pÃ(z) = det[Iñ(z + 1) − Ã] =








z + 0.4 −
1

8
−

1

16
−1 z + 1 0

0 −1 z + 1









=

z3 + 2.4z2 + 1.675z + 0.2125.

(32)

All coefficients of the polynomial (32) are positive and by

Theorem 6 the system is practically stable.

Using (28) we obtain

Adj [Iñ − Ã]1[ñ =









Adj









0.4 −
1

8
− 1

16

−1 1 0

0 −1 1























1

1

1






=







2.0625

0.6500

1.6125







and the condition (28) is satisfied.

Theorem 8. The positive fractional system (12) is practically

stable only if the positive system

xk+1 = Aαxk, k ∈ Z+ (33)

is asymptotically stable.

Proof. From (26b) we have

(Aα − In)x0 + c1x1 + ... + chxh < 0. (34)

Note that the inequality (34) may be satisfied only of there

exists a strictly positive vector x0 ∈ <n
+ such that

(Aα − In)x0 < 0, (35)

since c1x1 + ... + chxh > 0
By Theorem 2 the condition (35) implies the asymptotic

stability of the positive system (33).

From Theorem 8 we have the following important corol-

lary.

Corollary. The positive fractional system (12) is practically

unstable for any finite h if the positive system (33) is asymp-

totically unstable.

Theorem 9. The positive fractional system (12) is practically

unstable if at least one diagonal entry of the matrix Aα is

greater than 1.

Proof. The proof follows immediately from Theorems 8 and 3.

Example 2. Consider the autonomous positive fractional sys-

tem described by the equation

∆αxk+1 =

[

−0.5 1

2 0.5

]

xk, k ∈ Z+ (36)

for α = 0.8 and any finite h.

In this case n = 2 and

Aα = A + Inα =

[

0.3 1

2 1.3

]

. (37)

By Theorem 9 the positive fractional system is practically

unstable for any finite h since the entry (2,2) of the matrix

(37) is greater than 1.

The same result follows from the condition 5 of Theorem 2

since the characteristic polynomial of the matrix Aα − In

pÃ(z) = det[Iñ(z + 1) − Aα] =
[

z + 0.7 −1

−2 z + 2.3

]

= z2 + 3z − 0.39

has one negative coefficient â0 = −0.39.

5. Concluding remarks

The new concept (notion) of the practical stability of the pos-

itive fractional discrete-time linear systems has been intro-

duced. Necessary and sufficient conditions for the practical

stability of the positive fractional systems have been estab-

lished. It has been shown that the positive fractional system

(12) is practically unstable for any finite h if the standard

positive system (33) is asymptotically unstable. The consid-

erations have been illustrated by two numerical examples.

The considerations can be easily extended for two-

dimensional positive fractional linear systems. An extension

of these considerations for continuous-time positive fractional

linear systems is an open problem.
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