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Dynamical properties of Metzler systems
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Abstract. Spectral properties of nonnegative and Metzler matrices are considered. The conditions for existence of Metzler spectrum in

dynamical systems have been established. An electric RL and GC ladder-network is presented as an example of dynamical Metzler system.

The suitable conditions for parameters of these electrical networks are formulated. Numerical calculations were done in MATLAB.
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1. Introduction

Analysis of properties of positive matrices was considered by

many authors [1–3]. These matrices are connected with pos-

itive discrete dynamical systems. Metzler matrices are con-

nected with positive continuous-time dynamical systems. The

essence of positive dynamical systems resides in spectrum of

the state matrices. The form of state matrices depends on the

basis of co-ordinate system. Depending on the basis we obtain

suitable positive-cone systems [4].

The paper is organized as follows: in Section 2 and 3

spectral properties of nonnegative and Metzler matrices are

considered. In Section 4 Metzler dynamical systems is in-

vestigated. The conditions for positivity of electrical ladder

network of RL and GC type are established in Section 5.

Concluding remarks are given in Section 6.

2. Spectral properties of nonnegative matrix

The real matrix A = [aij ] ∈ Rn×n is nonnegative matrix

if and only if aij ≥ 0. If A is nonnegative matrix we will

write A ≥ 0. Vector x with nonnegative real components is

called nonnegative vector. In this case we will write x ≥ 0. If

aij > 0, then matrix A = [aij ] is positive and we will write

A > 0.

Let λ(A) be the spectrum of the square matrix A. Let

λi(A) ∈ λ(A) be an eigenvalue of A. Denote by ρ(A) =
maxi |λi(A)| the spectral radius of matrix A and denote by

α(A) = maxi Reλi(A) the growth constant of A.

Remark 1. Let ρ(A) > 0. For any square real matrix

A ≥ 0 there exists a real number λmax(A) ∈ λ(A) such

that λmax = ρ(A). The eigenvalue λmax = ρ is a simple root

of characteristic polynomial of matrix A ≥ 0 with eigenvec-

tor w > 0. If matrix A ≥ 0 has k eigenvalues λmax = ρ,

λ1,λ2, . . . , λk−1 such that |λi| = ρ, then these eigenvalues

are various roots of equation λk − ρk = 0. See Theorem of

Frobenius [1].

Spectral properties of nonnegative square matrix are de-

fined by roots of characteristic polynomial. For A ≥ 0 (see

Remark 1) we have polynomial in the following form:

W (λ, A) = det[λI − A] = (λ − λmax)f(λ)

and f(λmax) 6= 0,
(1)

where roots λi of polynomial f(λ) satisfy the condition

{

|λi| ≤ ρ = λmax

|λk| = ρ are diffrent roots and λk 6= λmax

(2)

For A = [aij ] ∈ Rn×n degree of polynomial (1) is n. The

conditions (1) and (2) define the spectrum λ(A) of nonnega-

tive square matrix A (see Fig. 1 for n = 6).

Fig. 1. Spectrum of nonnegative matrix

Now consider the following problem. Polynomial W̃ (λ) is

given. We look for nonnegative matrix A such that W (λ, A) =
W̃ (λ). Solution of this problem is shown in the following ex-

ample.

Example 1. Following roots of polynomial W̃ (λ) = λ3 −
0.3333λ2 − 0.1953λ− 0.4714 are given

λmax = 1, λ1,2 = −0.3333± 0.6002 j,

j2 = −1, |λ1,2| = 0.4714.
(3)
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It is clear, that W (λ, F ) = W̃ (λ), where

F =







0 1 0

0 0 1

0.4714 0.1953 0.3333






≥ 0 (4)

is nonnegative Frobenius matrix. For eigenvalue λmax = 1 =
ρ(F ) we have eigenvector w=[0.5774 0.5774 0.5774]T >0.

Example 2. Consider a discrete-time linear system described

by the equations

x(k + 1) = Ax(k), x(0) ∈ Rn ⇔ x(i) = Aix(0)

k = 0, 1, 2, . . . i = 0, 1, 2, . . .
(5)

If A is nonnegative matrix, then equations (5) generate

nonnegative dynamical system. If A ≥ 0 and x(0) ≥ 0 then

x(i) ≥ 0 for i = 0, 1, 2, . . .. System (5) is asymptotically

stable if and only if ρ(A) ∈ [0, 1).

Remark 2. Let η ∈ R and A = [aij ] ≥ 0. Real number η is

greater than eigenvalue λmax = ρ(A) of nonnegative matrix

A (λmax(A) < η) if and only if all principal minors of the

matrix ηI − A are greater than zero, i.e. Mi[η I − A] > 0,

i = 1, 2, . . . n, where M1[η I−A] = η−a11, M2[η I−A] =

det

[

η − a11 −a12

−a21 η − a22

]

, . . . , Mn[ηI−A] = det[ηI−A]

(see [1, p. 349]).

3. Spectral properties of Metzler matrix

The real square matrix M = [mij ] ∈ Rn×n is called the Met-

zler matrix if its all off-diagonal entries are nonnegative, i.e.

mij ≥ 0, i 6= j.

Remark 3. Every nonnegative matrix is the Metzler matrix.

Let γ = mini mii. For every Metzler matrix M there exists

a real number η ≥ γ such that matrix ηI +M = A is nonneg-

ative matrix. Let s ∈ λ(A). Then s − η = λ ∈ λ(M). Thus

spectrum λ(A) is copy of spectrum λ(M) and is shifted (see

Fig. 2) [5].

Fig. 2. Spectrum of matrices A and M

We consider real square n × n Frobenius matrix F ≥ 0.

The characteristic polynomial of F ≥ 0 is given by the fol-

lowing equation:

W (s, F ) = det[sI−F ] = sn+an−1s
n−1+. . .+a1s+a0 (6)

where ai ≤ 0 for i = 0, 1, 2, . . . , n − 1.

Let smax = ρ(F ). Let s = λ + η, where η > smax. Thus

from polynomial (6) we obtain new polynomial of variable λ

W̃ (λ) = λn + bn−1λ
n−1 + . . . + b1λ + b0. (7)

It is obvious that M = F −η I is the Metzler matrix such

that W (λ, M) = det[λ I−M ] = W̃ (λ) and additionally M is

asymptotically stable, i.e. Reλ i(M) < 0, i = 1, 2, 3, . . . , n.

Example 3. Consider the characteristic polynomial of positive

Frobenius matrix F given in Eq. (4),

W (s, F ) = s3 − 0.3333s2 − 0.1953s− 0.4714. (8)

Let s = λ + η, where η = 1.1 > ρ(F ) = 1. Thus we have

W̃ (λ) = λ3 + 2.9667 λ2 + 2.7014 λ + 0.2415. (9)

The matrix M = F − η I ,

M =







−1.1 1 0

0 −1.1 1

0.4714 0.1953 −0.7667






(10)

is the Metzler matrix such that W (λ, M) = det[λ I − M ] =
W̃ (λ) and λmax = −0.1, λ1,2 = −1.4334 ± 0.6002 j.

For the eigenvalue λmax = −0.1 we have the eigenvector

w = [0.5774 0.5774 0.5774]T > 0.

4. Metzler dynamical systems

Let us consider a continuous-time linear system described by

the equations

ẋ(t) = Ax(t), x(0) ∈ Rn

t ≥ 0 ⇔ x(t) = eA tx(0).
(11)

If A is the Metzler matrix, then equations (11) generate

the Metzler dynamical system. It has been shown [2, 6] that

eAt ≥ 0 if and only if A ∈ Rn×n is the Metzler matrix. If A
is the Metzler matrix and x(0) ≥ 0 then x(t) ≥ 0 for t ≥ 0
(see [6]).

Denote by α(A) = maxi Reλi(A) the growth constant

of A. For any Metzler matrix M there exists a real number

λmax ∈ λ(M) such that λmax = α(M), where α(M) =
maxi Reλi(M), i = 1, 2, ..., n, is the growth constant of M
(see [9]). The number λmax(M) is a single eigenvalue of the

Metzler matrix M (see Fig. 2) and α(M) = λmax(M).
The Metzler matrix M is asymptotically stable if and only

if α(M) < 0. Let

W (λ, M) = det[λ I − M ]

= λn + bn−1λ
n−1 + . . . + b1λ + b0.

(12)

In this case α(M) < 0 if and only if bi > 0 for

i = 0, 1, 2, . . . , n − 1 [7]; see also [5].

It is well know that the system (11) is asymptotically sta-

ble if and only if Reλi(A) < 0, i = 1, . . . , n. When A is the

Metzler matrix then α(A) = λmax(A) and Reλi(A) < 0 if

and only if Mi[−A] > 0, i = 1, 2, . . . , n (see Remark 2 with

η = 0). We can notice that Mi[−A] > 0, i = 1, 2, ..., n if

and only if M1[A] < 0, M2[A] > 0, . . . , (−1)nMn[A] > 0
[1]; see also [8].
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Consider linear transformation of variables x(t) ∈ Rn giv-

en by following equations with matrix P such that detP 6= 0

x(t) = Pz(t), z(t) = P−1x(t). (13)

Thus from (11) we obtain

ż(t) = P−1APz(t). (14)

It is clear that the spectrum λ(P−1AP ) = λ(A). If A
is the Metzler matrix then the system (11) or (14) has spec-

trum of the Metzler matrix. Structure of the matrix P−1AP
depends on chosen base of space Rn (columns of matrix P ).

Example 4. Consider the electrical network shown in Fig. 3.

Parameters of the network R > 0, L and C > 0 are known.

The system shown in Fig. 3 is described by equation

LC ẍ1(t) + RC ẋ1(t) + x1(t) = 0. (15)

Fig. 3. Electrical network of RLC type

If R > 2
√

L/C then the system (15) has a spectrum of

the Metzler matrix. Let x(t) = [x1(t) x2(t)]
T . From (15) we

obtain equation (11) with

A =

[

0 1

−1/LC −R/L

]

. (16)

Let L = 1, C = 1/6, R = 5 and

T =

[

1 1

−2 −3

]

, T−1 =

[

3 1

−2 −1

]

,

Q =

[

cosϕ − sin ϕ

sinϕ cosϕ

]

, detQ = 1, Q−1 = QT .

(17)

Thus T−1AT = diag (−2, −3) and

M = Q−1T−1ATQ =

[

cos2 ϕ − 3 −0.5 sin2ϕ

−0.5 sin2ϕ − cos2 ϕ − 2

]

.

(18)

If sin 2ϕ ≤ 0, then M given in (18) is the Metzler

matrix. Consequently M is the Metzler matrix for ϕ ∈
[

−π

2
+ π

]

+ kπ, k = 0, ±1, ±2, . . . (see [9]).

5. Electrical ladder network of RL and GC type

We consider the electrical ladder network of the RL and GC

type shown in Fig. 4. The parameters of the network L > 0,

G > 0, R > 0 and C > 0 are known [10, 11], see also [12].

Fig. 4. Electric ladder network of RL and GC type

Let u(t) = 0. The eigenvalues of ladder network we can

obtain from following equation (see [11] and [10])

LCλ2 + (LG + RC)λ + RG + 2(1 − cosϕk) = 0, (19)

where

ϕk =
2k − 1

2n + 1
π, k = 1, 2, . . . , n. (20)

If |LG − RC| > 2
√

2 LC(1 − cos ϕn), then ladder net-

work has a spectrum of the Metzler matrix.

Let u(t) = xn(t). In this case the electrical network shown

in Fig. 4 is the ring network of RL and GC type [11]. The

eigenvalues of the ring network we obtain from (19) for

ϕk =
2k

n
π, k = 1, 2, . . . , n. (21)

If |LG − RC| > 2
√

2 LC(1 − cos ϕ[n/2]), then the ring

network has a spectrum of the Metzler matrix.

Fig. 5. Ladder network of RL and GC type

The eigenvalues of the ladder network shown in Fig. 5

with u(t) = 0 we can obtain from equation (19), where

ϕk =
k

n + 1
π, k = 1, 2, . . . , n. (22)

If |LG − RC| > 2
√

2 LC(1 − cos ϕn), then the ladder

network shown in Fig. 5 has a spectrum of the Metzler ma-

trix.

6. Concluding remarks

In this paper a spectral properties (see (2) and Remark 3) of

finite dimensional continuous-time Metzler systems are con-

sidered. The considerations have been illustrated by examples

of electrical ladder networks of RL and GC type. The con-

ditions for positivity of the electrical ladder network of RL

and GC type are given in Section 5 (see also Example 4 for

electrical network of RLC type given in Fig. 3).

The positive ladder networks can be applied in approxi-

mation of some positive distributed parameters systems [13].
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