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OZCAN ONEY*#

THE INCREASE OF THE PERFORMANCE OF ULTRAFINE COAL FLOTATION 
BY USING EMULSIFIED KEROSENE AND THE PREDICTION OF THE FLOTATION PARAMETERS 

BY RANDOM FOREST AND GENETIC ALGORITHM

POPRAWA EFEKTYWNOŚCI FLOTACJI WĘGLA DROBNOZIARNISTEGO PRZY WYKORZYSTANIU 
EMULSJI NAFTOWEJ ORAZ PROGNOZOWANIE PARAMETRÓW PROCESU FLOTACJI 
PRZY UŻYCIU METODY LASÓW LOSOWYCH ORAZ ALGORYTMU GENETYCZNEGO

In this study, emulsified kerosene was investigated to improve the flotation performance of ultrafine 
coal. For this purpose, NP-10 surfactant was used to form the emulsified kerosene. Results showed that 
the emulsified kerosene increased the recovery of ultrafine coal compared to kerosene. This study also 
revealed the effect of independent variables (emulsified collector dosage (ECD), frother dosage (FD) 
and impeller speed (IS)) on the responses (concentrate yield (γC %), concentrate ash content ( %) and 
combustible matter recovery (ε %)) based on Random Forest (RF) model and Genetic Algorithm (GA). 
The proposed models for γC %, % and ε% showed satisfactory results with R2. The optimal values of 
three test variables were computed as ECD = 330.39 g/t, FD = 75.50 g/t and IS = 1644 rpm by using GA. 
Responses at these experimental optimal conditions were γC % = 58.51%,  % = 21.7% and ε % = 82.83%. 
The results indicated that GA was a beneficial method to obtain the best values of the operating parameters. 
According to results obtained from optimal flotation conditions, kerosene consumption was reduced at 
the rate of about 20% with using the emulsified kerosene. 

Keywords: ultrafine coal flotation, emulsified kerosene, random forest, genetic algorithm 

W pracy zbadano możliwość wykorzystania emulsji naftowej do poprawy efektywności flotacji węgla 
drobnoziarnistego. W tym celu wykorzystano środek powierzchniowo czynny NP.-10 do utworzenia emulsji 
naftowej. Badania wykazały, że zastosowanie nafty w formie emulsji poprawiło wskaźniki odzysku węgla 
w porównaniu do procesów z wykorzystaniem nafty. W pracy badano także wpływ zmiennych zależnych 
(dozowanie emulsji w kolektorze ECD, dozowanie środka pianotwórczego FD, prędkość wirnika IS na 
wyniki procesu (uzysk koncentratu (γC %), zawartość popiołów ( %) i stopień odzysku materii palnej 
(ε %), w oparciu o metodę lasów losowych i algorytm genetyczny. Proponowane modele pozwoliły na 
uzyskanie zadawalających wyników dla wskaźników γC %,  %, ε %, w odniesieniu do współczynnika R2. 
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Optymalne wartości badanych zmiennych ECD = 330.39 g/t, FD = 75.50 g/t and IS = 1644 obrotów na 
minutę obliczono przy wykorzystaniu algorytmu genetycznego. Wyniki procesu prowadzonego w wa-
runkach optymalnych, określonych eksperymentalnie to γC % = 58.81 %;  % = 21.7 %; ε % = 82.83 %. 
Uzyskane wyniki wskazują, że wykorzystanie algorytmu genetycznego jest metodą umożliwiającą 
otrzymanie najkorzystniejszych wartości parametrów pracy. Na podstawie wyników flotacji uzyskanych 
w najkorzystniejszych warunkach stwierdzono, że zużycie nafty obniżone zostało o ok. 20% dzięki 
zastosowaniu nafty w postaci emulsji.

Słowa kluczowe: flotacja węgla drobnoziarnistego, emulsja naftowa, metoda lasów losowych, algorytm 
genetyczny

1.  Introduction

Fine (1 mm - 0.15 mm) and ultrafine (–150 μm) coals at varying rates are present in run-of-
mine coal. The fine coal is typically upgraded by watered based density separators like spirals and 
water-only cyclones. Ultrafine coal is cleaned using flotation or discarded to waste pond (Zhang, 
2008). This method is on the basis of differences in the surface chemical characteristics of the 
coal and gangue minerals (Wang et al., article in press). There are quite many variables affecting 
the effect of froth flotation, collector dosage, froth dosage, stirring speed, and so on (Ye et al., 
article in press). The types and quantity of the reagents are the most important elements of the 
flotation process (Bulatovic, 2007; Vazifeh, 2010). 

Non-polar oily materials, like diesel oil and kerosene are the most important collectors for 
coal flotation (Brown, 1966; Jia & Fuerstenau, 2002). The natural hydrophobicity of the coal leads 
to low reagent consumption in flotation in higher-rank coals (Jia & Fuerstenau, 2002). Li et al. 
(2013) stated that according to Polat et al. (2003), the collector disperses into droplets in the pulp 
and these droplets collide with, adhere to and coat the coal particles, thus increasing their hydro-
phobicity. It is frequently difficult to disperse these non-polar oils. The oil droplets has usually 
a large size, which leads to high collector consumption and very low flotation performance (Li et 
al., 2013). For this reason, one of significant factors affecting flotation results is the performance 
of flotation agent. It is important to use efficient and cost effective agents so that flotation costs 
decrease, flotation effect improves and economic efficiency increases (Weiwei et al., 2012). 
It is possible to disperse non-polar oils into smaller droplets via emulsification (Laskowski, 1992; 
Song et al., 1999; Duong et al. 2000). The studies on use of emulsions as flotation reagents also 
have reported flotation of coal in particular. It is clearly evident that emulsified reagents may 
improve the recovery of flotation and flotation rate, decrease consumption of reagents, and en-
hance the flotation selectivity of coal slime (Renhe et al., 2000; Yoon et al., 2002; Huang et al., 
2009; Shi et al. 2015). While mechanical emulsification is mostly stable only for a short time, 
emulsions produced with surfactants are stable for a long time (Yu et al., 1990; Cebeci, 2002). 
It was revealed that approximately 20 μm droplets were produced as a result of the emulsifica-
tion of the kerosene with high intensity stirring; whereas, the size of droplet was reduced to 
about  1.2-2 μm with emulsification with addition of surfactants (anionic and cationic) (Laskowski 
& Yu, 1998; Cebeci, 2002). 

The common frothers are pine oil or methyl-isobutyl-carbinol (MIBC) for coals. Chaves 
(1983) states that pine oil froth is very heavy; therefore, it can carry (mechanically drag) the car-
bonaceous particles. However, as MIBC produces thinner froths and larger bubbles, thus leading 
to better water draining and smaller mass recovery but greater selectivity (Chaves & Rui, 2009). 
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The use of machine learning algorithms in predictive modelling and in the specific case of 
time series forecasting has increased significantly in the recent times (Bontenmpi et al., 2013; 
Tyralis& Papacharalampous, 2017). The random forest (RF) is a machine learning algorithm 
introduced in (Breiman, 2001), to be employed for classification and regression (Tyralis & Pa-
pacharalampous, 2017). It is considerably used since it is suitable for various prediction problems, 
has a few parameters to arrange, it is easy-to-use, it is successful for solution of many practical 
problems, and it is appropriate for small sample sizes, high-dimensional spaces, and compli-
cated data structures (Scornet et al., 2015; Biau & Scornet, 2016; Tyralis & Papacharalampous, 
2017). Representative applications can be found in many scientific fields including engineering, 
environmental and geophysical sciences, financial studies, and medicine. However, RF was not 
widely applied in modeling of mineral processing and separation problems (Shahbazi et al., 2017). 
Coal flotation has a complex process. The particle interaction frequently occurring in the flota-
tion systems leads the case to be more complex (Bokany, 2016). RF, one of the soft computing 
methods, can be applicable to overcome complexity of flotation modeling (Chelgani et al., 2016; 
Shahbazi et al., 2017). Moreover, it is necessary to determine the optimal operating conditions 
to achieve the maximum combustible matter recovery with high weight recovery and minimum 
ash content. Genetic Algorithm (GA) is the most widely used meta-heuristic approach for hard 
optimization problems (Boussai et al., 2013; Eiben &Smith, 2003; Elyan & Gaber, 2017).

The aim of this study was to investigate the effect of the emulsified kerosene on ultrafine 
coal flotation and modeling of the effect of some operating variables on rougher flotation per-
formance. In order to achieve these aims, experimental studies were conducted in two stages. 
The first stage involved several flotation tests conducted with using kerosene and emulsified 
kerosene. According to the results obtained from the first stage, prediction and optimization of 
some operating parameters were analyzed in the second stage. For this purpose, three factors 
(ECD, FD, and IS) were considered as main variables. γC %,  % and ε % were defined as the 
process responses. RF was applied for modeling the effect of variables on flotation performance. 
After modeling the data, the optimal parameters were computed by GA. Flotation tests were also 
performed based on the optimum conditions determined by GA. 

2. Materials and methods

2.1. Material

In this study, the bituminous coal was supplied from flotation feeding unit of Amasra coal 
preparation plant located in Zonguldak Province, Turkey. Currently, coals having approximately 
minus 1 mm (d80 = 0.7 mm) particle size were subjected to flotation process for obtaining a clean 
coal. Particle size distribution of –1 +0.15 mm is too large for the good efficiency of flotation 
process. Therefore, the sample was firstly divided into fine coal (–1 +0.15 mm) and ultrafine 
coal (–0.15 mm). Fine coal constitutes 81.35% of the raw coal feeding to the flotation unit and 
is enriched by Knelson concentrator in another study (Oney et al., article in press). In this study, 
ultrafine coal was subjected to the flotation process. The coal sample was screened at 0.106 mm, 
0.074 mm, 0.053 mm and 0.038 mm. Table 1 shows the particle size distribution of the ultrafine 
coal sample. The sample had an ash content of 46.34%. The ash content of various fraction sizes 
was close to the total ash content and finer fractions had high values of ash. 
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TABLE 1

Particle size distribution of the Amasra ultrafine coal.

Size fraction 
(mm)

Yield
(%)

Ash Content 
(%)

Cumulative weight of 
undersize (%)

Cumulative ash content 
of undersize (%)

0.15-0.106 42.44 44.23 100 46.34
0.106-0.074 19.24 46.72 57.56 47.89
0.074-0.053 16.99 47.95 38.32 48.48
0.053-0.038 12.79 48.43 21.33 48.90

–0.038 8.54 49.61 8.54 49.61
Total 100 46.34 — —

2.2. Reagents

Emulsified kerosene and kerosene were used as collectors in the flotation tests. Kerosene 
was obtained commercially. The emulsified kerosene was prepared using the mixture of water 
and kerosene with addition of emulsifier. Nonylphenol Ethoxylate (NP-10) by Dow was used as 
emulsifier. Initially, 30 g water and 0.08 g NP-10 (0.02% of the total mass percentage of water 
and kerosene) were added into a 0.2 L beaker and stirred approximately for 5 minutes until the 
emulsifier was dissolved completely. Later, 10 g kerosene was added into solution and stirred for 
5 minutes at the emulsification speed of 20.000 rpm by using an ultraturrax homogenizer (Ultra-
turrax IKA-T18). As a result, the milky emulsified kerosene was prepared for the tests as seen in 
Figure 1. In addition, MIBC and Na2SiO3 were treated respectively as the frother and the depres-
sant. MIBC was supplied by Sigma- Aldrich. Sodium silicate was supplied by PQ Cooperation. 

Fig. 1. High shear disperser and emulsified kerosene
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2.3. Method

Flotation tests were performed with one-liter flotation machine. During the flotation tests, 
the solid content was kept constant at 10% by weight and depressant dosage at 1000 g/t at 
natural pH (8). Once agitation process was performed for the slurry mixture in the flotation cell 
for 3 minutes in each test, the desired amount of collector, frother, and depressant were added 
respectively. During this process, suspension was conditioned for 3 minutes after addition of 
each reagent. Afterwards, the air was given into the cell and the froth product was collected 
for 3 minutes. Each flotation product was dehydrated and weighed. Then, the ash content 
measurement was performed (wt. % on dry basis). The experimental studies were carried out 
in two stages. In the first stage, the effect of the proper emulsified kerosene was investigated. 
In the second stage, performance and optimization of the operating variables were determined 
by using RF and GA.

2.4. Random forest (RF)

Being a statistical learning algorithm RF utilizes a large ensemble of decision trees for both 
regression and classification tasks. Its strengths involve striking classification performance as 
well as relatively simple training and tuning (Menze et al., 2009; Mahreng et al., 2018). The 
algorithm shows performance based on the selected variables (Verikas et al., 2011; Genuer et 
al., 2010; Tyralis & Papacharalampous, 2017), the number of trees (Oshiro et al., 2012; Probst 
& Boulesteix, 2017) and the number of examples in each cell, below which the cell is not split 
(Biau, 2016; Tyralis & Papacharalampous, 2017). The data were split into nodes via a threshold 
which was selected to obtain the minimum residual sum of squares, called as the regression 
criteria (Rss), given below (Kucukyıldız et al., 2017):
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ss i r i rleft right
R y y y y   (1)

Here, yi is the value for the corresponding feature for the i-th sample, yi and yr are the mean values 
for the feature of the samples assigned to the left and the right nodes, respectively. 

In this classification, the RF algorithm utilizes a set of classification trees, whereas each tree 
is built on a bootstrapped sample of the original data (Breiman, 2001; Mahreng et al., 2018). The 
classification trees are built according to recursive binary splits, as, a randomly-chosen subset 
of input variables is used to determine the best binary split for each split. The following formula 
was used to calculate the output of the RF (RO):

 1
1 M

ii
RO T

M
  (2)

M is the number of the grown trees and Ti is the output of i-tree (Kucukyıldız et al., 2017).

2.5. Genetic algorithm (GA)

GAs are a heuristic solution-search or optimization technique, originally motivated by 
the Darwinian principle of evolution through (genetic) selection (Mcall, 2004). The GA can be 
easily adapted to the mathematical optimization problems which cannot be formulated in exact 
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and accurate mathematical forms. GA has a number of advantages compared to the traditional 
techniques. These advantages are expressed as follows (Ghobadi et al., 2011):

– Due to its probabilistic quality, GA does not need initial guess of the decision variables 
and requires only their lower and upper bounds.

– GA works only with the objective functions instead of their gradients.
– GA can be used for solution of single-objective, multi-objective, and multi-modal opti-

mization problems.
– GA can deal with a number of decision variables and constraints efficiently (Guria et al., 

2005).

GA is also used for various applications in mineral processing as well as process control, 
circuit design, and pattern recognition of multivariate data, optimization of parameters, crushing, 
and comminution (Nakhaei et al., 2016).

3. Results and Discussion 

3.1. The effect of emulsified kerosene

The flotation tests were carried out to determine the effect of emulsified kerosene on ultrafine 
coal with the rougher concentrate. Figure 2 shows the results.

Fig. 2. The effect of emulsified kerosene on γC % (a) and  % (b) (MIBC dosage: 75 g/t, Na2 SiO3 dosage: 
1000 g/t, impeller speed: 1400 rpm)

Figure 2a shows that γC % increased with increasing collector dosages. At the lower col-
lector dosage (100 g/t) γC % was nearly the same for the dosages of kerosene and emulsified 
kerosene. When the emulsified kerosene dosage increased from 100 g/t to 500 g/t, γC % increased 
from 18.95% to 62.90%. As for kerosene, γC % also increased from 17.92% to 56.28% for the 
same collector dosages. γC % obtained with the emulsified kerosene was higher compared to 
the kerosene for all the same collector dosages. As seen from Figure 2b, when collector dosage 
is increased from 100 g/t to 500 g/t,  % increased from 16.64% to 26.46% for the emulsified 
kerosene and 15.79% to 24.89% for the kerosene. The ash content in the concentrate obtained 
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from the emulsified kerosene was higher than kerosene. This could be associated with the fact that 
selectivity of the flotation process might have been decreased due to higher amount of surfactant 
adsorbed on the particle surface (Aktas & Woodburn, 1995; Asplin et al., 1998; Li et al., 2013).

Fig. 3. The effect of collector dosage on ε % (MIBC dosage: 75 g/t, Na2 SiO3 dosage: 1000 g/t, 
impeller speed: 1400 rpm)

As seen in Figure 3 ε % increased with increasing collector dosage. ε % values obtained 
using emulsified kerosene were higher compared to kerosene at all dosages. This difference was 
especially higher in the range of 200-400 g/t collector dosage. Experimental studies indicated 
that the usage of emulsified kerosene as a collector instead of kerosene improved the flotation 
recovery remarkably. It is necessary to predict the optimal operating variables to clarify the dif-
ference between emulsified kerosene and kerosene usage and reveal the efficiency of the process. 
This could be evaluated by FR and GA.

3.2. Prediction and optimization of the process 
by RF and GA

The aim of the coal flotation is to obtain low ash content of concentrates with high yield 
and combustible matter recovery. To achieve this phenomena, it is necessary to reveal the ef-
fect of main variables on the flotation performance and determine optimal parameters. For this 
purpose, RF and GA were employed to find out the correlation between the selected operating 
parameters (EMD, FD, and IS) and process responses (γC %,  %, and ε %). Figure 4 shows the 
methodology used in this study. 

A total of 19 tests were randomly performed using the laboratory flotation machine. Table 2 
shows the range of the selected operating flotation parameters and actual responses. 

The algorithms used in this study were developed in MATLAB environment, various val-
ues were tested and evaluated for parameters in order to determine the optimal RF model for 
prediction: ntree = 50-150 with step size 10. A totally of 19 tests were randomly performed in 
laboratory flotation machine. Randomly selected 15 samples of data were used for training of 
RF model and the remaining part of the data used for testing the RF model. Table 3 shows the 
variation of the RF Models’ correlation coefficients owing to tree number.
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TABLE 2

The range of operating parameters and actual responses

Variables Minimum Maximum Mean Std. Deviation
Inputs

Emulsifi ed kerosene dosage (ECD) (g/t) 100 500 336.84 121.15
MIBC dosage (FD) (g/t) 50 125 88.15 24.1
Impeller speed (IS) (rpm) 1200 1800 1521 207.03

Outputs
Con. yield (γC %), (%) 35.76 67.27 55.94 8.14
Con. ash content ( %) (%) 16.11 26.46 23.55 3.32
Combustible matter recovery (ε %) (%) 55.78 88.17 79.30 8.79

The performance of the model was analyzed by the determination coefficient (R2). The 
training stages for the models were stopped after generation of 80 trees for γC % and ϑ % models 
and 110 trees for ε % model. Optimal models were determined by using the correlation coef-
ficients R2. R square for the concentrate yield of clean coal was calculated as 0.878 (Fig. 5a). 
In this case, the value of determination coefficient (R2 = 0.878) indicated that three independent 
variables for the right side of the equation represent 87.8% of the variation in concentrate yield 
in the regression model. Likewise, R2 values for the concentrate ash content and combustible 
recovery were calculated as 0.74 and 0.929, respectively (Fig. 5b and Fig. 5c). The results 
showed that RF models can predict the γC %, ϑ % and ε % based on the selected operating vari-
ables of EKD, FD, and IS. 

Fig. 4. Flowchart of the developed algorithm
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TABLE 3

Correlation (R2) coefficients for the RF Models

Tree Number RF Model for γC % RF Model for ϑ % RF Model for ε %
50 0.151 0.091 0.002
60 0.040 0.039 0.732
70 0.066 0.091 0.002
80 0.878 0.740 0.001
90 0.840 0.039 0.732
100 0.066 0.057 0.001
110 0.066 0.039 0.929
120 0.006 0.039 0.001
130 0.040 0.740 0.002
140 0.878 0.039 0.929
150 0.066 0.057 0.001

(a)  

  

 

(c) 

              (bb) 

Fig. 5. Correlation between observed and predicted values for (a) γC %, (b) ϑ %, and (c) ε % by RF

In this study, the multiobjective fitness function of the GA was determined as maximum 
γC %, minimum ϑ %, and maximum ε %. Fitness function values of the optimization problem 
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at each step were calculated with the optimal models which were built in training stage. Table 4 
shows the results.

TABLE 4

Optimal results obtained with GA

Optimization Variables Best results
Operating Variables

Emulsifi ed kerosene dosage (g/t) 330.39
MIBC dosage (g/t) 75.50
Impeller speed (rpm) 1644

Responses
Concentrate recovery (%) 58.51
Ash content (%) 21.70
Combustible matter recovery (%) 82.83

Under optimal conditions, the experimental tests were carried out both using kerosene and 
emulsified kerosene to compare the test results. The results showed that kerosene consumption 
using the emulsified kerosene decreased by about 20% by disregarding the consumption of the 
surfactant.

4. Conclusions

This study indicated that the flotation performance of ultrafine coal was significantly im-
proved by employing emulsified kerosene. Emulsified kerosene oil enhanced dispersion of the 
pulp, which would reduce the size of emulsified kerosene droplets by improving adsorption onto 
the ultrafine coal surface and so improving the flotation performance. Further, RF and GE were 
used to recognize some operating parameters on coal flotation and determine the optimal operating 
conditions. In this context, three important parameters affecting the flotation performance were 
examined. The results indicated that models obtained for γC %, ϑ % and ε % were statistically 
significant and could explain the correlation between flotation parameters and their responses. 
Results obtained from flotation tests carried out under optimal conditions determined by using 
GA were in good agreement with the predicted values. 
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