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Abstract. The pathologists follow a systematic and partially manual process to obtain histological tissue sections from the biological tissue 
extracted from patients. This process is far from being perfect and can introduce some errors in the quality of the tissue sections (distortions, 
deformations, folds and tissue breaks). In this paper, we propose a deep learning (DL) method for the detection and segmentation of these dam-
aged regions in whole slide images (WSIs). The proposed technique is based on convolutional neural networks (CNNs) and uses the U-net model 
to achieve the pixel-wise segmentation of these unwanted regions. The results obtained show that this technique yields satisfactory results and 
can be applied as a pre-processing step for automatic WSI analysis in order to prevent the use of the damaged areas in the evaluation processes.
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analysis, to train DL models for automating quantitative evalua-
tions and pathological diagnosis. Madabhushi et al. [3] showed 
machine learning methods applied to different digital pathology 
challenges. Meanwhile, the authors in [5, 6] presented the pos-
sibilities and limitations of DL techniques in digital pathology.

DL methods based on neural networks such as convolutional 
neural networks (CNNs) are becoming an important trend in 
assisting pathologists in performing a fast and robust diagnosis 
[4‒7]. They allow a semantic image segmentation to associate 
each image pixel to a class label with a relatively simple con-
figuration thanks to:
–	 Unsupervised feature generation.
–	 The availability of greater datasets to train the model.
–	 The possibility to import pre-trained models to partially set 

up the neural networks.
The main inconveniences of CNNs are both the huge amount 

of computational power and the amount of time necessary to 
train the networks. Chen et al. presented a survey of semantic 
segmentation methods by means of Neural Networks in [8].

In cancer diagnosis, the specimen analysis is central to esti-
mate different parameters of the tumor regions and its prognosis.

Dong et al. [9] proposed a fully automatic method for brain 
tumor segmentation based on deep convolutional networks 
working with magnetic resonance images. They obtained an 
efficient segmentation in a database composed of 220 high-
grade brain tumor and 54 low-grade tumor cases. Xue et al. 
[10] developed a method for semantic segmentation of micro-
vascular morphological types on narrow-band images to aid 
clinical examination of esophageal cancer. They proposed the 
application of double-label to obtain pixel-wise predictions. The 
proposed solution achieved 90% accuracy.

Isaksson et al. [7] presented an algorithm based on convo-
lutional neural networks devoted to semantic segmentation of 
microscopic H & E prostate tissue images. The method achieved 

1.	 Introduction

Deep learning (DL) techniques based on neural networks rep-
resent a major area inside of the machine learning field. The 
dynamic development of the DL in the previous years has been 
related to the increase of the computer processing performance 
and GPU parallel processing. Thanks to these technological 
improvements, building complex deep learning networks and 
their application to real problems are now possible. So far, DL 
applications have been used in distinct areas where machine 
learning can assist humans in their daily tasks. Some examples 
are: self-driving cars [1], advertising [2] and the topic of this 
research, medical diagnosis [3, 4].

In the last group, digital pathology applies image processing 
and machine learning techniques to automate and/or enhance 
traditional pathology tasks. In their work, pathologists apply 
different stains to tissue sections to visualize a special type of 
structures, cells or biological processes inside the tissue slides. 
Hematoxylin and Eosin (H&E), PAS and Ki-67 are examples of 
the most common stains used in the laboratories. In our work, 
we focus on Ki-67 stain, which is used as a cell proliferation 
biomarker. This method allows for the detection of tumor pro-
liferation areas in cancer specimens.

In order to apply digital techniques to pathological tasks, 
the stained tissue slides are digitized by means of whole slide 
scanners, such as Aperio ScanScope XT, 3dhistech, Hamamatsu 
Photonics or Olympus Scanner. The resultant high-resolution 
images are so-called whole slide images (WSIs). WSIs are used 
to analyze the specimens on the screen, and in the case of DL 
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80% accuracy. In [11], the authors proposed a fully automated 
algorithm to segment nuclei from histopathology image data by 
using deep neural networks trained from a set of manually an-
notated images. BenTaieb et al. [12] designed a multi-objective 
learning method that optimizes a single unified deep fully con-
volutional neural network with two distinct loss functions. They 
focused on colon adenocarcinomas and showed how glands clas-
sification can facilitate their segmentation by adding class-spe-
cific spatial priors. Finally in [13], Gallego et al. proposed a DL 
approach based on pre-trained CNNs to automate the glomeruli 
classification and detection from digitized kidney slide segments.

Regarding the CNN models, the network configuration is 
defined by the number and type of layers used. Its design con-
ditions the success of the resultant classification. One solu-
tion, which is garnering recognition and is being used in many 
practical applications, includes using pre-designed CNN models 
tested for generic applications. Some examples are: AlexNet 
from the ImageNet challenge [14], GoogleNet [15] and U-net, 
developed by Ronneberger et al. [16]. While AlexNet and Goo-
gleNet allow for image regions classification, U-net model ar-
chitecture allows to enhance the classification in the case of 
limited data and performs a pixel-wise classification, thus ob-
taining the corresponding region segmentation.

1.1. Problem statement. Previously to the digitization of the 
tissue slides into WSIs, pathologists follow the regular sys-
tematic process used in any pathology laboratory to obtain the 
tissue samples [17]. The process is characterized by:
–	 Formalin-fixed paraffin-embedded (FFPE) tissue samples.

They are obtained by following these steps: tissue fixation, 
specimen transfer to cassettes, dehydration, clearing and 
embedding.

–	 Section thickness of 4 µm by using a microtome tool.

This process is far from being automatic and still presents 
some significant challenges regarding the quality of the slides 
obtained [18]. Those are:
–	 Errors in the manual creation of the tissue sections, which 

include architecture damages like distortions, deformations 
or even folds and tissue breaks.

–	 Color distortions due to the staining process.
–	 Large size of WSIs (GigaByte images), which makes ma-

nipulation and processing difficult.
Both errors in the manual creation and color differences are 

present in the physical slide and are transferred to the digitized 
WSIs. In these areas, the specimens present erroneous architec-
ture which should be excluded during specimen evaluation or 
structure detections. Therefore, in order to enhance the analysis 
of these WSIs, a system to detect the affected regions inside the 
WSIs is needed to avoid these non-informative areas that can 
lead to errors in the final specimen evaluation.

Nowadays, many tumors located in the Central Nervous 
System (NC) are sectioned with the use of laser equipment. This 
method offers a precise tumor excision with (thermal) closing 
of the cut-off plane. Unfortunately, the borders of the resected 
tumor tissue are also exposed to high temperatures, which leads 
to a partially thermal damaging of the histological specimens. 
In the immunohistochemical staining, the damaged regions can 
accumulate a positive stain substance, so the results of antibody 
evaluation can be falsified.

In this paper, we propose a DL method based on CNNs 
– U-net model [16], to automate the detection and segmenta-
tion of the mentioned damaged regions present in the WSIs. 
The classification of these areas is a difficult and complex task 
since they do not present coherent borders and can have diverse 
stain intensities and shapes. Figure 1 presents some examples 
of damaged specimens.

Fig. 1. Examples of damaged (A) and regular (B) parts of specimens

A

B
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The topic of this study is novel, and to the best of our 
knowledge, in the literature no similar methods devoted to 
the detection of architecture damages in WSIs stained with 
KI-67 have been presented. In order to perform our study, we 
worked with brain cancer specimens stained with the Ki-67 
biomarker.

The proposed solution can be applied as a pre-processing 
step for WSI analysis in order to prevent the use of the damaged 
areas in automatic evaluations.

2.	 Materials

This study involved digital slides from the archives of the 
Department of Pathology at the Military Institute of Medi-
cine in Warsaw, Poland. The dataset used in the experiments 
is composed of 34 brain tissue cohorts corresponding to 
brain tumor areas (meningiomas and oligodendrogliomas) 
extracted by expert pathologists. The images were collected 
for a study, and the authors do not have access to any iden-
tifying patient information linked to the images. Each of the 
specimen has been stained with Ki-67 (3,3’-diaminobenzi-
dine tetrahydrochloride, DAB marker, brown color), coun-
terstained with hematoxylin (blue) and was digitized using 
the Pannoramic 250 Flash II (3DHISTECH, Budapest, Hun-
gary) whole slide scanner equipped with a 20£ objective. The 
WSIs have been saved in MRXS file format with pixel size 
0.38895 µm £ 0.38895 µm.

The database has been divided into two groups: training and 
testing. The training dataset includes 10 WSIs, while the testing 
dataset includes 24 WSIs.

Each of the slides has been manually annotated by expert 
pathologists to generate the ground truth data for the two-class 
classifier: i) areas with damaged tissue ii) areas with non-dam-
aged tissue (normal tissue, meninges, empty areas). Training 
data cohort includes significantly more tiles with damages than 
non-damaged tiles in order to train network to detect these types 
of areas.

The annotations include image tiles of 1024 £ 1024 pixels 
and the corresponding binary mask obtained by segmenting 
the two classes: 1-damaged tissue regions and 0-non-damaged 
tissue regions. Figure 2 shows an example of manual annotated 
tiles.

Since the annotated samples may seem barely enough to be 
fed into a Convolutional Neural Network, a data augmentation 
technique was agreed upon to be applied. A combination of 
rotations in 0°, 90°, 180° and 270° and vertical flip were per-
formed. The final number of samples used in the training pro-
cess, each one containing Damaged and non-Damaged tissue, 
was established in 4,115 tiles.

3.	 Method

As mentioned before, we propose a detection and segmentation 
method for damaged tissue regions in Ki-67 brain tumor sec-
tions. The method is based on CNN using U-net model trained 

by using manual annotated database. The workflow of the pro-
posed system consists of the following three steps:
–	 CNN model training
–	 Tissue area segmentation
–	 Damaged tissue segmentation by U-net.

3.1. CNN model training. In this study, we used the U-net deep 
learning network [16] to configure the CNN classifier. This 
convolutional network architecture achieves a fast and precise 
image segmentation suitable for semantic segmentation tasks. 
The U-net architecture was presented by Ronneberger et al. in 
[16]. It is based on a contracting path to capture the context and 
a symmetric expanding path that enables a precise localization 
(see Fig. 3):
–	 The contracting path is based on the repeated application 

of two 3x3 convolutions, each followed by a rectified linear 
unit (ReLU) and a 2£2 max pooling operation with stride 2 
for downsampling. The number of feature channels is dou-
bling in each of downsampling step.

–	 The expansive path consists of an upsampling of the fea-
ture map followed by a 2£2 convolution, a concatenation 
with the correspondingly cropped feature map from the con-
tracting path, and two 3£3 convolutions, each followed by 
a ReLU. Besides, in the final layer, a 1£1 convolution is 
used to map each 64-component feature vector to the desired 
number of classes. Jointly, the network has 23 convolutional 
layers.
It should be noticed that the upsampling part has many fea-

ture channels, which allow the network to propagate context 
information to higher resolution layers. As a result, the expan-
sive path is symmetric to the contracting path and gives a final 
u-shaped architecture (see Fig. 3). In this network, we do not 
have any fully connected layers, only the valid part of each con-
volution is used. This approach allows the seamless pixel-wise 
segmentation of arbitrarily large images by an overlap-tile 

Fig. 2. Examples of annotated tiles. A – original tiles with damaged 
regions (marked by red). B – corresponding masks

A B



852

Z. Swiderska-Chadaj, T. Markiewicz, J. Gallego, G.Bueno, B. Grala, and M. Lorent

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

strategy. Two of the main advantages of the U-net are both the 
possibility to be trained end-to-end with few images and the 
fast performance of this network in classification.

In order to prevent neural network from the overfitting [7], 
we propose to extend the U-net architecture by adding dropout 
layers. The dropout layers are used to randomly drop units from 
the neural network during the training, thus avoiding units from 
co-adapting too much. This approach is useful in the case of 
limited number of training data. We applied the dropout factor 
equal to 0.25, which means that 25% of neurons are randomly 
dropped out.

The model was trained with stochastic Gradient Descent op-
timizer (SGD), learning rate parameter equalto 0.05, binay-cros-
sentropy loss function and it was monitored by the accuracy 
metric. The training set parameters were adjusted based on the 
available literature, our own previous experience [21, 13] and 
the conducted experiments. It should be noticed that both values 
and initialization of the network parameters are central to the 
network training. Incorrect adjusted parameters can lead to an 
incorrect network training. We train the CNN with the training 
dataset (described in Section 2) by downsampling 4 times the 
data resolution to finally work with tiles of 256£256 pixels. 
Our experiments show that this resizing yields correct classifi-
cation results while reducing the computational time.

All calculations have been performed on a computer with 
graphics card Nvidia Quadro 400 and Cuda version 8.0. The 
network has been implemented in Python 3.5 with Keras [19] 
and Tensorflow [20] libraries.

3.2. Tissue area segmentation. WSIs include large empty 
areas without tissue. In order to avoid the classification of 
these image regions, we apply a tissue segmentation to detect 
the tissue localization in the WSI. It can significantly limit the 
amount of data to classify, thus reducing the time of calcula-
tions. The tissue mask is obtained by applying the Otsu image 
thresholding [22] to a 8 times downsampled version of the WSI. 
Figure 4 shows an example of tissue area segmentation.

Fig. 3. Graphical representation of U-net model [16]

Fig. 4. Examples of a whole slide image (A) and mask for whole slide 
image (B)

A B



853

Deep learning for damaged tissue detection and segmentation in Ki-67 brain tumor specimens based on the U-net model

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

3.3. WSI-classification. The original WSI under classification 
is divided into 1024£1024 pixels tiles. Only tissue tiles that 
present more than 30% of tissue, according to the computed 
tissue mask, are analyzed. We apply a 4 times downsampling to 
achieve 256£256 pixel tiles to be classified into both Damaged 
and non-Damaged classes by the U-net. One of the features 
of stained specimens pertains to the significant differences in 
intensity. Hence, a color standardization pre-processing step is 
applied in order to standardize color distribution in the WSI.

The classification for each tile results in a probability map 
of 256£256 pixels, where each pixel ranges from 0 to 1, ac-
cording to the probability belonging to the Damaged tissue 
class. All the probability maps obtained for each tile create 
the whole probability map of the 4 times downsampled WSI. 
Figure 5 shows an example of a resultant Damaged tissue prob-
ability map for a WSI.

Finally, in order to obtain the damaged regions segmentation 
from the probability map, some post-processing operations have 
been applied: first, we apply a Gaussian blurring filter with 
parameter 5, to avoid strong changes in the probability map; 
next, region growing operations are used to obtain the seg-
mentation of Damaged regions (pixels with probability higher 
than 0.6 are selected as starting points) and finally, we apply 
an area filtering to remove spurious detections. We use an area 
threshold of 50 pixels. All the parameters have been selected 
based on experimental tests. Figure 6 presents an example of 
the final segmentation results.

3.4. Performance evaluation. The ground truth created by 
expert pathologists is used to perform the evaluation of our 
classifier. The manual annotations have been compared with 
the classification results in a pixel-wise level. The parameters 
used in this evaluation are:
–	 Sensitivity (True positive rate) = TP/(TP + FP),
–	 Specificity (True negative rate) = TN/(TN + FP),

–	 Accuracy: ACC = (TP + TN)/(TP + FP + FN + TN),
–	 Precision: P = TP/(TP + FP),
–	 Intersection over union: IoU = OA/UA,

where TP is the number of true positive pixels, TN is its coun-
terpart for true negative pixels, FP are the false positive pixels, 
FN are the false negative pixels, OA is the overlapped area 
between annotated masks and the resultant classification and 
UA stands for the area of union between both regions.

Intersection over union (IoU) is a popular metric applied in 
the literature for assessing the results performance in semantic 
segmentation tasks. Since pixel-wise evaluation is very sensi-
tive to contour errors, IoU helps to better evaluate the classi-
fication results.

4.	 Results

In order to evaluate our proposal we have performed quantita-
tive and qualitative evaluations for the proposed classification 

Fig. 6. Examples of damaged regions classification, where In A – orig-
inal tiles, B – probability maps and C – final classification

A B C

Fig. 5. Examples of original WSI (A) and the resultant Damaged tissue probability map (B)

A B
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method. We have used 1,893 images from 24 brain tumor slides 
for algorithm evaluation. As mentioned before, images have 
been annotated and selected by an expert from WSI specimens 
where damaged regions are present.

Qualitative results are shown in Fig. 7. As can be observed, 
the proposed segmentation (red color) is very similar to the 
ground truth annotations carried out by expert pathologists 
(green color). Although some regions can present slightly over 
or under segmentation in the edges, the areas considered as 
damaged tissue regions by the pathologists and our proposed 
detection are similar and allow the automation of this seg-
mentation.

Quantitative results have been obtained by using the testing 
dataset. We have evaluated the performance of the proposed 

system by means of the parameters described in Section 3.4, 
and the achieved results are presented in Table 1. As can be 
observed, the proposed classification and segmentation method 
achieves 90% accuracy with a precision of 80% and IoU of 
69%, which highlight the correct performance of the algorithm 
in terms of regions detection. Meanwhile, their segmentation 
partially matches the manual annotated one mainly due to the 

Fig. 7. Example of qualitative results in damaged regions segmentation. Manual annotations are marked in green color. Results obtained using 
our proposed segmentation are painted in red color

Table 1 
Statistical evaluation of the achieved results

Sensitivity Specificity Precision Accuracy IoU

0.83 0.92 0.80 0.90 0.69
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differences between manual and detected contours localization. 
Since damaged regions present an unclear definition of their 
contours, ensuring their exact positions is a complicated task, 
which can weaken the performance quality in segmentation 
purposes.

5.	 Conclusions

In this work, we have proposed a method to detect and segment 
tissue damaged areas based on U-net model. Since the standard 
benchmark data for this challenge are not available, we devel-
oped and tested our methodology on brain tumor specimens 
acquired at our institution.

The damaged tissue areas can have a significant impact on 
an automatic specimen analysis. They can lead to uncorrected 
structure detection and classification, and finally, to incorrect 
specimen evaluation. The detection of tissue regions with the 
damaged structure is very important in the quantitative analysis 
of immunohistochemical stains.

Achieved results show that the proposed approach allows for 
a correct detection of damaged regions with 90% accuracy. Re-
garding the segmentation, our method achieves an IoU = 69%, 
which means the existence of differences between expert anno-
tations and our result in the contours of the regions.

In the literature, only few methods related to artifacts and 
tissue damage detection have been proposed and evaluated. 
Most of them are devoted to artifacts detection in Hema-
toxylin and Eosin (H & E) stained specimens [23‒25]. The 
H & E staining is a gold standard for many types of disease. 
S. Kothari et al. [23] proposed a method to eliminate tis-
sue-fold artifacts in histopathological H & E whole-slide im-
ages. The method was used to enhance the image-based cancer 
detection, achieving a sensitivity of 47% and a specificity of 
98%. In our research, we propose a DL-based method to detect 
several types of artifacts and damages, not only tissue-folds, 
in Ki67 specimens. Our method achieved sensitivity of 83% 
and a specificity of 92%.

The results obtained show that the proposed approach is 
suitable for WSI pre-processing in order to remove damaged 
areas, which can have a negative impact on automatic specimen 
analysis. Therefore, our future research will focus on improving 
the proposed method by using a larger multi-center dataset to 
work with several stainings and tissue sections.
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