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Abstract Heat and mass transfer stretched flow of an incompressible,
electrically conducting Jeffrey fluid has been studied numerically. Nanopar-
ticles are suspended in the base fluid and it has many applications such
as cooling of engines, thermal absorption systems, lubricants fuel cell, nan-
odrug delivery system and so on. Temperature dependent variable thermal
conductivity with Rosseland approximation is taken into account and suc-
tion effect is employed in the boundary conditions. The governing partial
differential equations are first transformed into set of ordinary differential
equations using selected similarity transformations, which are then solved
numerically using Runge-Kutta-Felhberg fourth-fifth order method along
with shooting technique. The flow, heat and mass transfer characteristics
with local Nusselt number for various physical parameters are presented
graphically and a detailed discussion regarding the effect of flow parame-
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ters on velocity and temperature profiles are provided. It is found that,
increase of variable thermal conductivity, radiation, Brownian motion and
thermophoresis parameter increases the rate of heat transfer. Local Nusselt
number has been computed for various parameters and it is observed that,
in the presence of variable thermal conductivity and Rosseland approxima-
tion, heat transfer characteristics are higher as compared to the constant
thermal conductivity and linear thermal radiation.

Keywords: Heat mass transfer; Jeffrey nanofluid; Variable thermal conductivity; Rosse-
land approximation; Suction

Nomenclature

a, b – constant
B0 – uniform magnetic field, Kg S2A1

C – nanoparticle volume fraction
Cw – concentration of nanoparticles at the wall
C∞ – ambient nanofluid volume fraction
c – stretching rate ratio
(cp)f – specific heat coefficient of fluid, J/kg K
(cp)p – specific heat coefficient of nanoparticles, J/kg K
DB – Brownian diffusion coefficient, Kg/m s
DT – thermophoretic diffusion coefficient, Kg/m sK
f, g – dimensionless velocity components
k∞ – thermal conductivity of the ambient fluid, W/m K
k∗ – mean absorption coefficient, 1/m
M – magnetic parameter
Nb – Brownian motion parameter
Nt – thermophoresis parameter
Nux – local Nusselt number
Pr – Prandtl number
Q – heat source/sink coefficient
qr – radiative heat flux, W/m2

Rd – thermal radiation parameter
Rex – local Reynolds number
S – heat source\sink parameter
Sc – Schmidt number
s – suction/injection parameter
T – fluid temperature, K
Tw – fluid temperature at the surface, K
T∞ – ambient fluid temperature, K
k(T ) – temperature dependent thermal conductivity, W/m K
Uw, Vw – velocity of the stretching sheet, m/s
u, v, w – velocity components along z, y, and z directions, m/s
W – suction/injection velocity, m/s
x, y, z – Cartesian coordinates, m
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Greek symbols

β – Deborah number
ε – variable thermal conductivity
η – similarity variable
η∞ – free stream boundary condition
θ – dimensionless fluid temperature
θw – temperature ratio parameter
λ1 – ratio of relaxation time and retardation time
λ2 – retardation time
µ – dynamic viscosity, Pa s
ν – kinematic viscosity, m2/s
ρf – density of the base fluid, kg/m3

ρp – density of the particles, kg/m3

φ – dimensionless nanoparticle volume fraction
σ – electrical conductivity, 1/Ωm
σ∗ – Stefan-Boltzmann constant, W/m2K4

τ – ratio of effective heat capacity of the nanoparticle material to heat
capacity of the fluid

Subscripts and superscripts

w – conditions at the wall
∞ – free stream condition
′ – derivative with respect to η

1 Introduction

As an emerging research field, the class of fluids comprised of nanometer-
sized additives and base fluids which have been given the name nanofluid
have attracted the great attention of researchers for its fascinating thermo-
physical properties as well as enormous potential applications across the
engineering disciplines. The term nanofluid was first introduced by Choi
[1]. This type of fluid shows higher thermal performance compared to the
base fluids. The model used for the nanofluid incorporates the effects of
Brownian motion and thermophoresis. Also, it is interesting to note that,
the Brownian motion of nanoparticles at molecular and nanoscale levels is
a key nanoscale mechanism governing their thermal behaviour. Keblinski
et al. [2] have explored the heat flow mechanisms through the concepts
involved in nanofluid such as Brownian motion, heat transfer nature, clus-
tering and liquid layering at the interface of liquid and particle. Control
volume based finite element method was been employed by Sheikholeslami
et al. [3] to study the nanofluid flow by initiating the magnetic field depen-
dent viscosity. A large number of experimental and theoretical studies have
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been carried out by many researchers on thermal conductivity of nanofluid
with various effects [4–7] and also many researchers used two phase models
[7,8] to present the real phenomenon of heat transfer of nanofluid more
precisely. Rashidi et al. [9,10] have examined the impact of nanoparticle
volume fraction and magnetic field in the nanofluid flow through the verti-
cal channel consisting of sinusoidal walls. Sheikholeslami and Shehzad [11]
have considered Kleinstreuer-Li correlation model for nanofluid to study the
heat transfer rate of CuO nanoparticle in a porous semi annulus. Kumar
et al. [12] investigated the impact of cubic autocatalysis chemical reactions
in three dimensional flow of nanofluid along a rotating sheet.

During the past few years, research on the boundary layer flow of non-
Newtonian fluid becomes a continuous growing part because of its signifi-
cance in many industrial applications. When fluid stress can have a non-
linear or physical dependence on the deformation rate, such materials are
referred to as non-Newtonian fluid. These fluids cannot be sufficiently por-
trayed by the Navier-Stokes theory. Due to the versatility characteristics
in the flow behaviour of these fluids in nature, several models have been
developed to study their characteristics. Among them Jeffrey model is the
simplest non-Newtonian model which possesses the essence of retardation
time and the ratio of relaxation to retardation time. Nadeem et al. [13]
have obtained an analytical solution for the Jeffrey fluid flow and they have
studied the configuration of heat transfer in two cases, i.e., prescribed heat
transfer (PHT) and prescribed heat flux (PHF) with exponential order in
the presence of thermal radiation effect. From the obtained result, it was
found that both the cases are qualitatively similar. Hayat et al. [14] have
investigated the three dimensional Jeffrey fluid flows comprising of tem-
perature dependent variable thermal conductivity by employing homotopy
analysis method (HAM). Ashraf et al. [15] employed heat and mass convec-
tive boundary conditions for the MHD flow of Jeffrey fluid with suspended
nanoparticles over a radially stretching surface. An analysis have been
carried out by Prasannakumara et al. [16] to study the potentialities of
enhancing the heat and mass transfer rate in the Jeffrey fluid flow problem
with suspended nanoparticles. An analytical description of entropy gener-
ation, heat and mass transfer of Casson nanofluid was been explained by
Abolbashari et al. [17] and they illustrate the increase of entropy genera-
tion due to the decrease of Casson parameter through a graph. Ramesh et
al. [18] discussed the influence of suspended nanoparticles in the boundary
layer flow of Maxwell fluid.
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Role of radiation heat transfer is superficial in many engineering pro-
cesses which occur at high temperature. Many authors have studied the
effect of Rosseland approximation on heat transfer for both Newtonian
and non-Newtonian fluids over stretching surfaces. Mushtaq et al. [19]
initiated the Rosseland approximation significance in the problem of two-
dimensional stagnation-point flow of viscous fluid and analyzed the effect
of nonlinear thermal radiation, Joule heating, viscous dissipation in the
presence of thermophoresis and Brownian motion which are generated due
to nanoparticle suspension. In the presence of nonlinear thermal radia-
tion, characteristics of nanofluid in three dimensional MHD flow problem
of Jeffrey fluid was reviewed by Shehzad et al. [20]. An emphasis has
given on the impact of nonlinear thermal radiation and chemical reaction
in two cases, i.e, for constructive and destructive by Prasannakumara et
al. [21] for the slip flow of non-Newtonian nanofluid and they have deter-
mined that, increase of chemical reaction parameter for constructive case
decreases the concentration profile whereas opposite behavior exist for the
destructive case. Mushtaq et al. [22] have constructed a numerical solu-
tion for the three dimensional upper convected Maxwell fluid flow and they
have obtained S shaped structure in the temperature profile for the larger
values of temperature ratio parameter. Besides, applications of suction and
injection process can be found in many industrial fields such as thermal oil
recovery, wire and fiber coating using polymers, etc. Also the concept of
heat source/sink effect has its importance in fluid problems like exother-
mic/endothermic chemical reactions, geonuclear repositions, etc. Bhat-
tacharya [23] employed finite difference method to analyze the effects of
heat source/sink with suction/injection boundary condition for MHD flow
of Newtonian fluid over a shrinking sheet. Dinesh and Jat [24] presented
their analysis on three dimensional boundary layer flow of viscous fluid
over an axisymmetric shrinking sheet and explored the existence condi-
tions for the dual solution in the presence of suction and magnetic param-
eter. Hayat et al. [25] have explained the newly introduced model called
Cattaneo-Christov heat flux which assists to overcome the drawbacks of
Fourier model in three dimensional Jeffrey fluid flow problem.

In most of the aforesaid literature, thermophysical properties of the fluid
such as viscosity, thermal conductivity considered to be are constant. But
realistic condition insists these properties to vary significantly with temper-
ature. These changes can be useful and important in improving materials
processing systems such as glass fibre production, paper production, wire
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drawing and also in lubricating fluids. In order to predict the flow and
heat transfer rates relevantly, it becomes crucial to consider the variable
fluid properties. An attempt has been made by Megahed [26] to examine
the variable properties of the temperature dependent Maxwell fluid flow.
Adegbie et al. [27] described the dynamics of heat and mass transfer of
an upper convected Maxwell fluid by incorporating the variable thermo-
physical properties and stratification effect. An inspection has been made
by Salahuddin et al. [28] to scrutinize the consequence of variable thermal
conductivity on tangent hyperbolic fluid over a stretching cylinder. Meraj
et al. [29] discussed the impact of variable thermal conductivity in Jeffrey
fluid flow by employing Cattaneo-Christov heat flux model.

The main aim of the present problem is to scrutinize the flow behaviour
of Jeffrey nanofluid in the presence of Rosseland approximation and variable
thermal conductivity over a permeable stretching surface. Similarity trans-
formations are used to convert the nonlinear partial differential equations
to ordinary differential equations. The reduced equations are numerically
solved using Runge-Kutta-Fehlberg fourth-fifth order method along with
shooting technique. The effect of various parameters have been studied in
detail with the help of their graphical representations.

2 Mathematical formulation

Consider a steady, boundary layer flow, heat and mass transfer of an in-
compressible Jeffrey nanofluid over a permeable stretching surface at z = 0.
Let u = Uw (x) = ax and v = Vw (y) = by be the velocities of the stretching
sheet along the x- and y-directions respectively and the flow occupies the
region z > 0 as shown in Fig. 1. A constant magnetic field of strength
B0 is applied in the z-direction and induced magnetic field is assumed to
be negligible. In the energy equation, Rosseland approximation and heat
source/sink effects are considered with variable thermal conductivity which
varies linearly in terms of temperature. Under the aforesaid assumptions,
the governing basic equations for the present problem are given by [14]

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (1)
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Figure 1: Schematic representation of the flow problem.
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∂2T

∂z2
, (5)

where u, v, and w are the velocity components along the x, y, and z-
direction, respectively, ν=µ

ρ is the kinematic viscosity of the fluid, µ is
the coefficient of fluid viscosity ρ is the fluid density, σ is the electrical
conductivity of the fluid, k(T ) is the temperature dependent variable ther-
mal conductivity, cf and cp are the specific heat coefficient of fluid and
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nanoparticles, respectively, ρf and ρp are the densities of the base fluid and

nanoparticles respectively, τ=
(ρc)p

(ρc)f
is the ratio of effective heat capacity of

the nanoparticle material to heat capacity of the fluid, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion coefficient, qr is
the radiative heat flux, Q is the heat source/sink coefficient, T is the fluid
temperature and C is the concentration of the fluid.

The associated boundary conditions for the current problem are given
by

u = ax, v = by, w = W, T = Tw, C = Cw at z = 0
u → 0, v → 0, T → T∞, C → C∞ as z → ∞,

}

, (6)

where W > 0 is the suction velocity, Tw and T∞ are the temperature at
the wall and ambient fluid temperature respectively, Cw and C∞ are the
concentration of the nanoparticles at the wall and far away from the surface
respectively, a and b are constant rate having the dimension inverse of time.

Rosseland approximation is applicable only inside optically dense media
at large optical distances from the boundaries and from regions with strong
variation of temperature and medium properties. Using the Rosseland ap-
proximation for radiation, radiation heat flux is simplified as

qr = − 4σ∗

3k∗
∂T 4

∂z
= −16σ∗

3k∗ T 3 ∂T

∂z
, (7)

where σ∗and k∗ are the Stefan-Boltzmann constant and the mean absorp-
tion coefficient respectively.

Variation of thermal conductivity with respect to temperature can be
written as

k (T ) = k∞

(

1 + ε
T − T∞
Tw − T∞

)

, (8)

where k∞ is the thermal conductivity of the ambient fluid and ε is the
variable thermal conductivity parameter.

The momentum, energy and concentration equations can be transformed
into the corresponding ordinary differential equations using the following
similarity variables

u = axf ′ (η) , v = ayg′ (η) , w = −
√

aν
[

f (η) + g (η)
]

, (9)

T = T∞ [1 + (θw − 1) θ (η)] , φ (η) =
C − C∞

CW − C∞
, η =

√

a

ν
z , (10)



Bidirectionally stretched flow of Jeffrey liquid with nanoparticles. . . 41

where θw = Tw

T∞

, θw > 1 being the temperature ratio parameter.
Now, we can see that the Eq. (2) is automatically satisfied, and Eqs. (3)–

(6) are reduced as follows:

f ′′′ + (1 + λ1)
[

(f + g) f ′′ − f ′2]

+β
[

f ′′2 − (f + g) f ′′′′ − g′f ′′′]− (1 + λ1) Mf ′ = 0 , (11)

g′′′ + (1 + λ1)
(

(f + g) g′′ − g′2
)

+β
[

g′′2 − (f + g) g′′′′ − f ′g′′′]− (1 + λ1) Mg′ = 0 , (12)

[

1 + εθ + Rd(1 + (θw−1) θ)3
]

θ′′ + εθ′2 + 3Rd
[

1 + (θw−1) θ
]2

(θw−1) θ′2

+Pr
[

(f + g) θ′ + Nbθ
′φ′ + Ntθ

′2 + Sθ
]

= 0 , (13)

φ′′ + Sc (f + g) φ′ +
Nt

Nb
θ′′ = 0 , (14)

and corresponding boundary conditions becomes

f = s , g = 0 , f ′ = 1 , g′ = c , θ (0) = 1 , φ(0) = 1 at η = 0,

f ′ → 0 , g′ → 0 , θ → 0 , φ → 0 as η → ∞ , (15)

where β = λ2a is the Deborah number, M =
σB2

0
ρa is the magnetic pa-

rameter, Pr =
ν(ρc)f

k∞

is the Prandtl number, Rd = 16σ∗T 3
∞

3k∞k∗ is the radi-

ation parameter, Nb = τDB(Cw−C∞)
ν is the Brownian motion parameter,

Nt = τDT (Tw−T∞)
νT∞

is the thermophoresis parameter, S = Q
a(ρc)f

is the heat

source/sink parameter, Sc = ν
DB

is the Schmidt number, s = − W√
aν

is

the suction/injection parameter, c = b
a is the ratio of stretching rates and

a prime stands for differentiation with respect to η.
The quantities of practical interest is the local Nusselt number which is

described as follows:

Nux =
x

k∞ (Tw − T∞)

[

− k (T )
∂T

∂z
+ (qr)w

]

,

(Rex)− 1
2 Nux = −

[

1 + εθ (0) + Rdθ3
w

]

θ′ (0) ,

where Rex = U2
w

aν is the local Reynolds number.
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3 Numerical method

The system of coupled nonlinear ordinary differential equations (12)–(15)
along with the boundary conditions (16) is solved numerically using Runge–
-Kutta–Fehlberg fourth-fifth order method (RKF-45 method) along with
shooting technique. The efficiency of this method is enhanced due to the re-
duction of computational time. With the help of shooting technique, missed
initial conditions are inferred. Shooting technique is an iterative algorithm
which attempts to identify appropriate initial conditions for a relevant ini-
tial value problem that provides the solution to the original boundary value
problem. We have considered infinity condition at a large but finite value
of η, where negligible variation in velocity, temperature and so on occurs.

After fixing finite value for η∞, integration is carried out with the help
of Runge-Kutta-Fehlberg-45 method. This method has a procedure to de-
termine an accurate solution if the proper step size is being used. At each
step, two different approximations for the solution are made and compared.
If the two answers are in close agreement, the approximation is accepted
otherwise the step size is reduced until to get the required accuracy. For
the present problem, we took step size ∆η = 0.001, η∞ = 5 and accuracy
to the fifth decimal place.

To have a check on the accuracy of the numerical approach used, we
have computed f ′′(0) and g′′(0) that are carried out for viscous fluid for
various values of stretching rate parameter and compared with the avail-
able published results of Liu and Anderson [30] and Mushtaq et al. [31] in
Tab. 1 and they are found to be in excellent agreement.

Table 1: Comparison table for −f ′′(0) and −g′′(0) with λ1 = 0, β = 0, M = 0.

c
Liu and Anderson [30] Mushtaq et al. [31] Present (RKF45 Method)

−f ′′(0) −g′′(0) −f ′′(0) −g′′(0) −f ′′(0) −g′′(0)

0.00 1 0 1 0 1 0

0.25 1.048813 0.194565 1.048811 0.194564 1.048834 0.194565

0.50 1.093096 0.465206 1.093095 0.465205 1.093105 0.465206

0.75 1.134486 0.794619 1.134486 0.794618 1.134491 0.794615

1.00 1.173721 1.173721 1.173721 1.173721 1.173723 1.173721
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4 Result and discussions

In this section clear insight of velocity, temperature and concentration pro-
files are analyzed for various physical parameters through graphs 2–15 in
detail.

Figures 2–4 illustrates the role of the Deborah number (β), ratio of
relaxation and retardation times (λ1), magnetic parameter (M), stretch-
ing rate parameter (c), suction/injection parameter (s) on velocity profiles.
The variation of velocity profiles for β and λ1 can be visually represented
in Fig. 2. As Deborah number depends on retardation time, which makes
the velocity to increase, fluid velocity profile and corresponding bound-
ary layer thickness must increase. Also ratio of relaxation and retardation
times exhibits the characteristics of viscous as well as elastic in aspect.
Hence, whenever viscosity or elasticity increases, flow of the fluid velocity
decreases.

Figure 2: Influence of β and λ1 on f ′ (η) and g′ (η).

Figure 3 preserves the effect of M and c on velocity profile. We can notice
from the Fig. 3 that, velocity profile and corresponding momentum bound-
ary layer is a decreasing function of magnetic parameter. It is because of
the fact of Lorentz force generated by magnetic field, which retards the



44 M. Archana, B.J. Gireesha, M.M. Rashidi, B.C. Prasannakumara and R.S.R. Gorla

Figure 3: Influence of M and c on f ′ (η) and g′ (η).

fluid flow. Also it is found that, the velocity profile f ′ (η) and the thickness
of associated boundary layer thickness decreases, when the stretching rate
parameter increases. Consequently, g′ (η) exhibits the opposite behavior
for the same parameter. This is because, as the stretching rate parameter
describes the ratio of axial and transverse stretching, with the increase of c,
velocity coefficient of x component decreases where as the lateral surface is
moving along y-direction. Hence the velocity profile f ′(η) decreases while
g′(η) increases. It is found from Fig. 4 that, the velocity profile and the
thickness of associated boundary layer decreases for s > 0 and increases for
s < 0. Increasing of this parameter drags the fluid particles close to the
wall which causes the velocity profile to decrease.

Figures 5–11 display several temperature and concentration profiles for
variable thermal conductivity (ε), Brownian motion parameter (Nb) , ther-
mophoresis parameter (Nt) , radiation parameter (Rd) , Prandtl number
(Pr) , temperature ratio parameter (θw), uniform heat source/sink param-
eter (S) in the presence of constant and temperature dependent variable
thermal conductivity as well as in the presence of linear and nonlinear ther-
mal radiation.

The influence of Brownian motion and thermophoresis parameter on
temperature profile can be visualized through Figs. 5 and 6. These param-
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Figure 4: Influence of s on f ′ (η) and g′ (η).

Figure 5: Comparative result of influence of Nb on θ (ε) when ε = 0.0.5 and θw = 1, > 1.

eters represent the presence of nanoparticles in the fluid. As the nanoparti-
cles enhance the thermal conductivity of the fluid, it leads to higher temper-
ature and thicker thermal boundary layer. It is clear from the Fig. 7 that,



46 M. Archana, B.J. Gireesha, M.M. Rashidi, B.C. Prasannakumara and R.S.R. Gorla

Figure 6: Comparative result of influence of Nt on θ (η) when ε = 0.0.5 and θw = 1, > 1.

Figure 7: Comparative result of influence of Pr on θ (η) when ε = 0.0.5 and θw = 1, > 1.

thickness of the thermal boundary layer and temperature are decreasing
functions of Pr. This is because as the Prandtl number increases, thermal
diffusivity decreases there by decreases the temperature.

The description of heat source/sink parameter for the temperature pro-
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file can be viewed through the Fig. 8. It is evident from these figures that
the temperature profile increases for S > 0 and decreases for S < 0 due
to the fact that increase of this parameter generates more heat within the
boundary layer. Figure 9 exhibits the variation of temperature profile for
the radiation parameter. As the radiation parameter releases the heat en-
ergy into the flow, with an increase of radiation parameter, temperature
profile increases.

Figure 8: Comparative result of influence of S on θ (η) when ε = 0.0.5 and θw = 1, > 1.

Figure 10 portraits that, temperature profile is an increasing function of
temperature ratio parameter and variable thermal conductivity parameter.
This phenomenon occurs because temperature ratio parameter describes
the thermal state of the fluid and with the increase of this parameter tem-
perature also increases. Further, increase of ε leads to increase in the wall
temperature which makes the temperature profile to increase.

Figure 11 elucidates the effect of Brownian motion and thermophoresis
parameter on concentration profile. It reveals that, as Nb and Nt increases,
concentration and the associated boundary layer thickness decreases for
the parameter Nb while it increases for Nt. Impact of Schmidt number on
concentration profile can be viewed through Fig. 12. Since Schmidt num-
ber depends on the Brownian diffusion coefficient, larger values of Schmidt
number makes the Brownian diffusion coefficient as lower, which shows
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Figure 9: Comparative result of influence of Rd on θ (η) when ε = 0.0.5 and θw = 1, > 1.

Figure 10: Comparative result of influence θw and ε parameter on θ (η) when ε = 0.0.5
and θw = 1, > 1.

a weaker nanoparticle concentration.

Figure 13 elucidate the effect of ε with θw on local Nusselt number.
It is observed that, local Nusselt number increases for increasing values
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Figure 11: Influence of Nb and Nt parameter on φ (η).

Figure 12: Influence of Sc on φ(η).

of variable thermal conductivity with temperature ratio parameter. The
influence of Brownian motion with thermophoresis parameter on Nusselt
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and Sherwood number are depicted in Figs. 14 and 15, respectively. From
these figures, it is observed that, Nusselt and Sherwood number decreases
for increasing values of Nb with Nt.

Figure 13: Influence of ε with θw for Nusselt number.

The numerical values of local Nusselt number for various values of the pa-
rameters M, β, λ1, c, Nb, Nt, Pr, Rd, θw, s, S, ε, and Sc are manifested
in Tabs. 2, 3 and 4. For the varying values of M, λ, Nb Nt S, Sc, the
rate of heat transfer at the surface decreases whereas it increases for the
increasing parameters of β, c, Pr, Rd, θw and s. It is evident from the
Tabs. 2 and 3 that, in the presence of variable thermal conductivity and
nonlinear thermal radiation, local Nusselt number are higher compared to
the constant thermal conductivity and linear thermal radiation. Also from
Tab. 4, we can observe that the influence of variable thermal conductivity
parameter increases the Nusselt number values in the presence of linear
thermal radiation and decreases for the non-linear thermal radiation effect.
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Table 2: Comparative numerical values of local Nusselt number for various physical
parameters for constant and variable thermal conductivity.

M β λ1 c Nb Nt Pr Rd θw s S Sc (Rex)−
1

2 Nux

when ε = 0.5
(Rex)−

1

2 Nux

when ε = 0

0 0.5 0.5 0.5 0.5 0.5 5 0.5 1.5 0.5 0.5 3 0.971577 0.811147

0.5 0.907371 0.760033

1 0.849021 0.713643

0.5 0.1 0.715370 0.608763

0.2 0.786048 0.664247

0.4 0.876136 0.735326

0.5 0.3 0.948096 0.792362

0.6 0.887415 0.744195

0.9 0.828733 0.697653

0.5 0.2 0.619091 0.514846

0.4 0.820754 0.686205

0.8 1.130819 0.950682

0.5 0.3 1.333006 1.193023

0.6 0.733670 0.587773

0.8 0.45126 0.315645

0.5 0 1.697291 1.526537

0.3 1.188903 1.029201

0.6 0.779759 0.639626

0.5 3 0.820752 0.747077

4 0.902694 0.785106

5 0.907371 0.760033

5 0 0.294932 0.084841

0.4 0.804288 0.643528

0.8 1.5 1.162747 1.051992

0.5 1.3 0.750980 0.582742

0.5 1.6 0.990934 0.854943

1.8 1.162358 1.050206

1.5 0.3 0.153459 0.084835

0.4 0.672218 0.547971

0.6 1.133919 0.965067

0.5 -0.2 2.179125 1.910334

0 1.868401 1.62748

0.2 1.523706 1.314795

0.5 2 0.996502 0.864960

4 0.873187 0.717457

5 0.858025 0.697214
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Table 3: Comparative numerical values of local Nusselt number for various physical
parameters for Linear and Nonlinear thermal radiation.

M β λ1 c Nb Nt Pr Rd θw s S Sc (Rex)−
1

2 Nux (Rex)−
1

2 Nux

0 0.5 0.5 0.5 0.5 0.5 5 0.5 1.5 0.5 0.5 3 0.971577 0.594313

0.5 0.907371 0.557577

1 0.849021 0.524180

0.5 0.1 0.715370 0.449471

0.2 0.786048 0.489096

0.4 0.876136 0.539919

0.5 0.3 0.948096 0.580741

0.6 0.887415 0.546213

0.9 0.828733 0.512770

0.5 0.2 0.619091 0.363774

0.4 0.820754 0.499222

0.8 1.130819 0.707952

0.5 0.3 1.333006 0.998068

0.6 0.733670 0.390033

0.8 0.451260 0.139579

0.5 0 1.697291 1.283361

0.3 0.61.188903 0.806279

0.779759 0.448774

0.5 3 0.820752 0.623965

4 0.902694 0.614403

5 0.907371 0.557577

5 0 0.294932 0.294932

0.4 0.804288 0.508054

0.8 1.5 1.162747 0.696056

0.5 1.3 0.750980 –

1.6 0.990934 –

1.8 1.162358 –

1.5 0.3 0.153459 0.186159

0.4 0.672218 0.375828

0.6 1.133919 0.734108

0.5 -0.2 2.179125 1.555428

0 1.868401 1.308182

0.2 1.523706 1.036070

0.5 2 0.996502 0.683698

4 0.873187 0.503263

5 0.858025 0.475618
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Figure 14: Influence of Nb with Nt for Nusselt number.

Figure 15: Influence of Nb with Nt for Sherwood number.
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Table 4: Numerical values of local Nusselt number for variable thermal conductivity
parameter

ε (Rex)−
1

2 Nux (Rex)−
1

2 Nux

0.3 0.907606 0.48306

0.5 0.907371 0.557577

1.0 0.896329 0.728886

5 Conclusion

The effect of variable thermal conductivity on Jeffrey nanofluid flow under
the influence of magnetohydrodynamic and nonlinear thermal radiation
effect is studied over a porous stretching sheet. The impact of various non
dimensionless parameters are investigated through graphs and table and
corresponding results are summarized as follows:

1. Velocity profiles increases with increase in Deborah number while it
decreases for increasing value of magnetic, ratio of relaxation time to
retardation time and suction/injection parameter.

2. Velocity profile g′(η) and corresponding momentum boundary layer
thickness increases with increase in stretching rate parameter, whereas
velocity profile f ′(η) exhibits opposite behaviour for the same param-
eter.

3. Thermal boundary layer is thicker for the effect of variable thermal
conductivity parameter, Brownian motion parameter, thermophoresis
parameter, radiation parameter, temperature ratio parameter, heat
source/sink parameter.

4. Temperature profile decreases with increasing values of Prandtl num-
ber.

5. Concentration boundary layer thickness is a decreasing function of
Brownian motion parameter, Schmidt number whereas increasing func-
tion for thermophoresis parameter.
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6. Variable thermal conductivity and nonlinear thermal radiation effect
have strong influence on heat transfer characteristics.

7. Local Nusselt number increases for increasing values of variable ther-
mal conductivity with temperature ratio parameter whereas for Brow-
nian motion with thermophoresis parameter both Nusselt number and
Sherwood number decreases.

8. Due to increasing global competitiveness, a number of industries have
a strong need to supplement advanced heat transfer fluids with sig-
nificantly higher thermal conductivities than are presently accessible.
As an example we can consider the radiators in vehicles which are
designed to cool the engine with continuous heat transfer. A sig-
nificant energy savings can be made by incorporating the model of
the nanofluid in such heat exchangers. Further, the behavior of non-
Newtonian fluids is encountered in almost all the chemical and allied
processing industries. Among them, Jeffrey fluid shows the linear
viscoelastic effect of fluid which has many applications in polymer in-
dustries. One of the examples of Jeffrey fluid includes dilute polymer
solution.
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