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Abstract. The paper presents a tool for accurate evaluation of high field concentrations near singular lines, such as contours of cracks, notches 
and grains intersections, in 3D problems solved the BEM. Two types of boundary elements, accounting for singularities, are considered: (i) 
edge elements, which adjoin a singular line, and (ii) intermediate elements, which while not adjoining the line, are still under strong influence 
of the singularity. An efficient method to evaluate the influence coefficients and the field intensity factors is suggested for the both types of the 
elements. The method avoids time expensive numerical evaluation of singular and hypersingular integrals over the element surface by reduction 
to 1D integrals. The method being general, its details are explained by considering a representative examples for elasticity problems for a piece-
wise homogeneous medium with cracks, inclusions and pores. Numerical examples for plane elements illustrate the exposition. The method 
can be extended for curvilinear elements.
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accounting for asymptotics near singular points have been al-
ready employed for strongly inhomogeneous media with multiple 
singular points [18]. For three-dimensional problems, because 
of great mathematical and computational difficulties, especially 
as regards to hypersingular integrals, available solutions have 
referred to the simplest singularity, corresponding to cracks in 
a homogeneous medium, when the exponent of the asymptotics 
is 1/2 (e.g. [19‒21]). Results of numerical experiments presented 
in [21] show that using special edge elements (with square root 
density approximation) in frames of Boundary Element Method 
(BEM), based on hypersingular boundary integral equations 
(BIE), specially derived for 3D piece-wise homogeneous media, 
significantly increases the accuracy of evaluation of stress inten-
sity factors (SIFs). However, there are many three-dimensional 
engineering problems, which require accounting for more gen-
eral types of asymptotics, when the exponent α of the power 
asymptotic may be an arbitrary number in the interval (0, 1). Such 
asymptotics are common in fracture mechanics at a vicinity of 
points at neighbouring edges of structural elements with different 
elastic properties; at contours of cracks propagating at the bound-
aries of inhomogeneities, in hydraulic fracturing (specifically, 
α = 2/3 for the viscosity dominated regime of fracture prop-
agation [22]; α = 5/8 for the leak-off dominated regime [23]). 
Thus, there is a need to extend an approach suggested in [21] for 
α = 1/2 to an arbitrary α. The paper aims to make extention for 
elements near the signular line: edge elements and intermediate 
elements. In literature on 3D hydraulic fractures (e.g. [24]) those 
elements are called, respectively, tip and ribbon elements. The 
method of efficient evaluation of influence coefficients is given 
below for such elements with density of the form crα, where r 
is the distance from a singular line, c is a constant and α is an 
arbitrary number in the interval (0, 1). It tends to make a step in 
notable increasing quality of numerical simulation of local fields.

1.	 Introduction

For wide range of scientific, engineering and technological 
problems it is of significance to increase the quality of model-
ling in regions of strong field concentration, such as a vicinity 
of common edges of neighbouring elements, corners, notches, 
fracture fronts, intersections of structural elements, places with 
changes of boundary or contact conditions [1‒5]. The presence 
of “singular points” and “singular lines” causes unfavourable 
physical processes and leads to computational difficulties when 
numerically simulating their influence. For these reasons, in the 
theoretical physics, mechanics and engineering sciences, great 
attention is paid to the studies of the singularities. In parallel with 
the mathematical theory, focusing on formal investigations in ab-
stract spaces, such as the Sobolev space [6], there are researches 
aimed to efficiently evaluate exponents in asymptotic equations 
describing behaviour of fields near singularities and to employ 
them for solving engineering problems [8‒11]. Most of the pub-
lications contain numerical results merely for the simplest partic-
ular cases, such as a crack tip, notch, and common apex of two 
wedges. The way for efficient, accurate and stable finding the as-
ymptotics for an arbitrary configuration of wedges was suggested 
in [12]; it was further developed and employed in a robust sub-
routine in [13]. Extensions to thin contact layers and to function-
ally graded wedges are given in the papers [14‒17]. Therefore, to 
the date, the problem of numerical evaluation of the asymptotic 
exponent is actually solved as concerns with two-dimensional 
problems. For them, the developed methods of evaluation and 
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2.	 Problem formulation

For certainty, consider a domain of P isotropic elastic blocks, 
characterized by the shear modulus µp, and the same Poisson’s 
ratios vp = v (p = 1, 2, …, P) and containing cracks, pores and 
inclusions of arbitrary shapes. Denote S the total boundary of 
all the blocks and surfaces of cracks, pores and inclusions. The 
boundary between adjacent blocks is treated as a single sur-
face on which physical fields may experience discontinuities. 
Problems for such strongly inhomogeneous medium can be 
solved by applying the BEM (e.g. [25]) to specially tailored 
singular and hypersingular BIE [26]. Special attention should 
be paid to contours L of cracks and to intersections of grain 
surfaces because the fields are singular in their vicinity. Thus 
when discretizing the total surface S, it is reasonable to distin-
guish boundary elements, which are under the influence of the 
asymptotics generated by the singular lines. For instance, such 
a line L may be the contour of the cap crack surface S shown 
in Fig. 1. In addition to conventional boundary elements (e.g. 
[25]), shown in white, we consider two specific groups of ele-
ments. They serve to account for fast change of physical quanti-
ties in the zone of strong influence of asymptotics (“asymptotic 
umbrella”). The first group consists of elements adjoining the 
contour L. These are edge elements; they are shown in dark in 
Fig. 1. The other group are elements, which are still under the 
asymptotic umbrella, while not having points on the singular 
line. These are intermediate elements; they are shown in grey 
in Fig. 1. As metioned, in papers on hydraulic fractures, these 
two groups of elements, are called respectively, tip and ribbon 
elements.

After representing the boundary S by M boundary elements 
Sq of the three types, the BIE is [21, 26]:
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where 4tn = tn
+ ¡ tn

¡ is the traction discontinuity; 4u = u+ ¡ u¡ 
is the displacement discontinuity, x j 2 S is a field (collocation) 
point (the number N of these points is taken equal to the number 
of unknowns in approximations of the densities in the integrals 
entering (1), (2)). The normal n(y) is fixed arbitrary on a con-
tact of adjacent blocks, on cracks and inclusions. The index 
“plus” (“minus”) refers to the limiting value from the side with 
respect to which the normal n is outward (inward).

The elements of the matrix U(x, ξ) of fundamental solu-
tions, defined by the Kelvin’s solution are:
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The integrals with these kernels over ordinary elements
are evaluated for densities approximated by smooth functions,
commonly polynomials (e.g. [20, 27]). In this paper, we focus
on evaluation of integrals over edge and intermediate elements.
For them, the densities are approximated by functions account-
ing for the asymptotic behaviour of fields in the vicinity of a
singular line L.

Note that the results for these kernels are also of use when
employing the extendend finite element method (XFEM, see,
e.g. [24, 28]).
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on a contact of adjacent blocks, on cracks and inclusions. The
index "plus" ("minus") refers to the limiting value from the
side with respect to which the normal n is outward (inward).

The elements of the matrix U(x,ξ ) of fundamental solu-
tions, defined by the Kelvin’s solution are:

(U(x,ξ ))i j =
1

16πµp(1−ν)

[
(3−4ν)

δi j

R
+

RiR j
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]
, (3)

where R =
√
(xi −ξi)2, i = 1,2,3 is the distance between a

field point x and integration point ξ . Summation over repeated
Latin index is assumed henceforth. The matrix JS is obtained
by applying the traction operator Tn(x) to the matrix U :

(JS(x,ξ ))i j =
(
Tn(x)U(x,ξ )

)
i j =

1
8π(1−ν)

[
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.

(4)
The matrix

US(x,ξ ) = [JS(x,ξ )]T (5)

defines the kernel of the potential of double-layer.
The hypersingular matrix JH is defined as JH(x,ξ ) =

Tn(x) (JS(x,ξ ))T . For the Kelvin solution its components are:

(JH(x,ξ ))i j =
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The integrals with these kernels over ordinary elements
are evaluated for densities approximated by smooth functions,
commonly polynomials (e.g. [20, 27]). In this paper, we focus
on evaluation of integrals over edge and intermediate elements.
For them, the densities are approximated by functions account-
ing for the asymptotic behaviour of fields in the vicinity of a
singular line L.

Note that the results for these kernels are also of use when
employing the extendend finite element method (XFEM, see,
e.g. [24, 28]).
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where �tn = t+n − t−n is the traction discontinuity; �u = u+−
u− is the displacement discontinuity, x j ∈ S is a field (colloca-
tion) point (the number N of these points is taken equal to the
number of unknowns in approximations of the densities in the
integrals entering (1), (2)). The normal n(y) is fixed arbitrary
on a contact of adjacent blocks, on cracks and inclusions. The
index "plus" ("minus") refers to the limiting value from the
side with respect to which the normal n is outward (inward).

The elements of the matrix U(x,ξ ) of fundamental solu-
tions, defined by the Kelvin’s solution are:

(U(x,ξ ))i j =
1

16πµp(1−ν)

[
(3−4ν)

δi j

R
+

RiR j

R3

]
, (3)

where R =
√
(xi −ξi)2, i = 1,2,3 is the distance between a

field point x and integration point ξ . Summation over repeated
Latin index is assumed henceforth. The matrix JS is obtained
by applying the traction operator Tn(x) to the matrix U :

(JS(x,ξ ))i j =
(
Tn(x)U(x,ξ )

)
i j =

1
8π(1−ν)

[
(1−2ν)

ni(x)R j −Rknk(x)δi j −Rin j(x)
R3 −3

RiRknk(x)R j
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]
.

(4)
The matrix

US(x,ξ ) = [JS(x,ξ )]T (5)

defines the kernel of the potential of double-layer.
The hypersingular matrix JH is defined as JH(x,ξ ) =

Tn(x) (JS(x,ξ ))T . For the Kelvin solution its components are:

(JH(x,ξ ))i j =

µp

4π(1−ν)

{
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R7

}
. (6)

The integrals with these kernels over ordinary elements
are evaluated for densities approximated by smooth functions,
commonly polynomials (e.g. [20, 27]). In this paper, we focus
on evaluation of integrals over edge and intermediate elements.
For them, the densities are approximated by functions account-
ing for the asymptotic behaviour of fields in the vicinity of a
singular line L.

Note that the results for these kernels are also of use when
employing the extendend finite element method (XFEM, see,
e.g. [24, 28]).
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inclusions of arbitrary shapes. Denote S the total boundary
of all the blocks and surfaces of cracks, pores and inclusions.
The boundary between adjacent blocks is treated as a single
surface on which physical fields may experience discontinu-
ities. Problems for such strongly inhomogeneous medium can
be solved by applying the BEM (e.g. [25]) to specially tailored
singular and hypersingular BIE [26]. Special attention should
be paid to contours L of cracks and to intersections of grain
surfaces because the fields are singular in their vicinity. Thus
when discretizing the total surface S, it is reasonable to dis-
tinguish boundary elements, which are under the influence of
the asymptotics generated by the singular lines. For instance,
such a line L may be the contour of the cap crack surface S
shown in Fig.1. In addition to conventional boundary elements

Fig. 1. Approximation of the surface by ordinary (white), edge (dark)
and intermediate (grey) elements

(e.g. [25]), shown in white, we consider two specific groups
of elements. They serve to account for fast change of phys-
ical quantities in the zone of strong influence of asymptotics
("asymptotic umbrella"). The first group consists of elements
adjoining the contour L. These are edge elements; they are
shown in dark in Fig.1. The other group are elements, which
are still under the asymptotic umbrella, while not having points
on the singular line. These are intermediate elements; they are
shown in grey in Fig.1. As metioned, in papers on hydraulic
fractures, these two groups of elements, are called respectively,
tip and ribbon elements.
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where �tn = t+n − t−n is the traction discontinuity; �u = u+−
u− is the displacement discontinuity, x j ∈ S is a field (colloca-
tion) point (the number N of these points is taken equal to the
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integrals entering (1), (2)). The normal n(y) is fixed arbitrary
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index "plus" ("minus") refers to the limiting value from the
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by applying the traction operator Tn(x) to the matrix U :
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The integrals with these kernels over ordinary elements
are evaluated for densities approximated by smooth functions,
commonly polynomials (e.g. [20, 27]). In this paper, we focus
on evaluation of integrals over edge and intermediate elements.
For them, the densities are approximated by functions account-
ing for the asymptotic behaviour of fields in the vicinity of a
singular line L.
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After representing the boundary S by M boundary elements
Sq of the three types, the BIE is [26, 21]:
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where �tn = t+n − t−n is the traction discontinuity; �u = u+−
u− is the displacement discontinuity, x j ∈ S is a field (colloca-
tion) point (the number N of these points is taken equal to the
number of unknowns in approximations of the densities in the
integrals entering (1), (2)). The normal n(y) is fixed arbitrary
on a contact of adjacent blocks, on cracks and inclusions. The
index "plus" ("minus") refers to the limiting value from the
side with respect to which the normal n is outward (inward).
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field point x and integration point ξ . Summation over repeated
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defines the kernel of the potential of double-layer.
The hypersingular matrix JH is defined as JH(x,ξ ) =

Tn(x) (JS(x,ξ ))T . For the Kelvin solution its components are:

(JH(x,ξ ))i j =
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−
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The integrals with these kernels over ordinary elements
are evaluated for densities approximated by smooth functions,
commonly polynomials (e.g. [20, 27]). In this paper, we focus
on evaluation of integrals over edge and intermediate elements.
For them, the densities are approximated by functions account-
ing for the asymptotic behaviour of fields in the vicinity of a
singular line L.

Note that the results for these kernels are also of use when
employing the extendend finite element method (XFEM, see,
e.g. [24, 28]).
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The integrals with these kernels over ordinary elements are 
evaluated for densities approximated by smooth functions, com-
monly polynomials (e.g. [20, 27]). In this paper, we focus on 
evaluation of integrals over edge and intermediate elements. For 
them, the densities are approximated by functions accounting 
for the asymptotic behaviour of fields in the vicinity of a sin-
gular line L.

Note that the results for these kernels are also of use when 
employing the extendend finite element method (XFEM, see, 
e.g. [24, 28]).

3.	 Method of integration

3.1. Approximation of density function. In further discussion 
we assume that the edge and intermediate elements are plane 
having in mind that a curvilinear element may be transformed to 
a planar element by smooth transformation of spatial variables 
(the Jacobian is included into a density). A planar element is 
taken as trapezoid, which in particular cases becomes a rect-
angle, a square, or a triangle. For a plane element, it is conve-
nient to perform integration in the local Cartesian coordinates. 
Specifically, for an element T, the orgin O and the axes y2 and 
y3 are located in its plane with the axis y2 along the singular 
line (Fig. 2). The axis y1 is taken in the direction of the normal 
n to the element.

The asymptotic behavior of the density, in quite general 
cases (see, e.g. [8, 11‒17, 22, 23]), is of the form O(y3

α) with 
0 ∙ α < 1. Thus the density is approximated as
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3. Method of integration
3.1. Approximation of density function In further discus-
sion we assume that the edge and intermediate elements are
plane having in mind that a curvilinear element may be trans-
formed to a planar element by smooth transformation of spatial
variables (the Jacobian is included into a density). A planar el-
ement is taken as trapezoid, which in particular cases becomes
a rectangle, a square, or a triangle. For a plane element, it is
convenient to perform integration in the local Cartesian coor-
dinates. Specifically, for an element T, the orgin O and the axes
y2 and y3 are located in its plane with the axis y2 along the sin-
gular line (Fig.2). The axis y1 is taken in the direction of the
normal n to the element.
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Fig. 2. Special a) trapezoidal and b) triangular elements in the local
system of coordinates

The asymptotic behavior of the density, in quite general
cases (see, e.g.[8, 11, 12, 13, 14, 15, 16, 17, 22, 23]), is of
the form O(yα

3 ) with 0 ≤ α < 1. Thus the density is approxi-
mated as

f (y) = yα
3

(
c0 +

mp

∑
k+l=0

cklyk
2yl

3

)
(7)

with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f

}
.

(8)

If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
integral The integral (9) over an element T defined by (8) can
be expressed as an iterative integral

JM =

h2∫

h1

yα
3




a f y3+b f∫

aby3+bb

dy2(√
x2

1 +(x2 − y2)2 +(x3 − y3)2
)3


dy3,

(10)
where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√

x2+A2
)3 is x

A2
√

x2+A2
. Then (10) is reduced to the

one dimensional integral:

h2∫

h1

−yα
3

x2
1 +(x3 − y3)2


 (x2 − y2)√

x2
1 +(x2 − y2)2 +(x3 − y3)2

+C




a f y3+b f

aby3+bb

dy3,

(11)
where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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contour, α = ½ and c0 is proportional to the conventional stress 
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes 
the speed of the fracture propagation (e.g. [30]) and it is found 
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics. 
For it, an element is actually ordinary, and integration over 
it is performed by well-developed methods (e.g. [20, 21, 27]). 
Below we focus on edge and intermediate elements when 
0 < α < 1. Then the only difference between edge and inter-
mediate elements is that for the first of them h1 = 0, while for 
the second h1 > 0. Therefore, the both groups may be consid-
ered in the same way.

3.2. Reduction to one-dimensional integrals. A typical trape-
zoidal edge (h1 = 0) or intermediate (h1 > 0) element (Fig. 2) 
involves integration over the domain
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sion we assume that the edge and intermediate elements are
plane having in mind that a curvilinear element may be trans-
formed to a planar element by smooth transformation of spatial
variables (the Jacobian is included into a density). A planar el-
ement is taken as trapezoid, which in particular cases becomes
a rectangle, a square, or a triangle. For a plane element, it is
convenient to perform integration in the local Cartesian coor-
dinates. Specifically, for an element T, the orgin O and the axes
y2 and y3 are located in its plane with the axis y2 along the sin-
gular line (Fig.2). The axis y1 is taken in the direction of the
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The asymptotic behavior of the density, in quite general
cases (see, e.g.[8, 11, 12, 13, 14, 15, 16, 17, 22, 23]), is of
the form O(yα

3 ) with 0 ≤ α < 1. Thus the density is approxi-
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f

}
.

(8)

If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
integral The integral (9) over an element T defined by (8) can
be expressed as an iterative integral
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3


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dy2(√
x2
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
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(10)
where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√

x2+A2
)3 is x

A2
√

x2+A2
. Then (10) is reduced to the

one dimensional integral:
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(11)
where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Example of article

3. Method of integration
3.1. Approximation of density function In further discus-
sion we assume that the edge and intermediate elements are
plane having in mind that a curvilinear element may be trans-
formed to a planar element by smooth transformation of spatial
variables (the Jacobian is included into a density). A planar el-
ement is taken as trapezoid, which in particular cases becomes
a rectangle, a square, or a triangle. For a plane element, it is
convenient to perform integration in the local Cartesian coor-
dinates. Specifically, for an element T, the orgin O and the axes
y2 and y3 are located in its plane with the axis y2 along the sin-
gular line (Fig.2). The axis y1 is taken in the direction of the
normal n to the element.

n
h2h1

y1

y3

y2

n
h2h1

y1

y3

y2

a)

n
h2h1

y1

y3

y2

b)

Fig. 2. Special a) trapezoidal and b) triangular elements in the local
system of coordinates
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
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.
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If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
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where x = (x1,x2,x3) is a field point.
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dy2 as −d(x2 − y2) and accounting that the antiderivative of
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where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2
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2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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If a field point x belongs to T, the integrals are singular (Cauchy 
principal value or Hadamard finite part integrals). Otherwise 
the integrals are ordinary (Riemann integrals). For a fixed field 
point, the sum of integrals over an element presents the influ-
ence coefficient of this element on a physical quantity in the 
right hand side of (1) or (2) at the point x. We are looking for 
parts of the influence coefficients generated by particular inte-
grals. The method to evaluate the integrals employs the specific 
geometry of the trapezoidal element: two of its sides are parallel 
to the y2 axis. This serves to reduce the double integrals to 
iterated integrals, internal of which is integrated analytically. 
As a result, we arrive at one dimensional integrals, which in 
their turn, may be Riemann, Cauchy principal value or Had-
amard finite part integrals. The latter are efficiently evaluated 
as explained below.
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Further on, to present the essence of the method and to 
show all its details we consider the representative hypersingular 
integral of the form
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plane having in mind that a curvilinear element may be trans-
formed to a planar element by smooth transformation of spatial
variables (the Jacobian is included into a density). A planar el-
ement is taken as trapezoid, which in particular cases becomes
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dinates. Specifically, for an element T, the orgin O and the axes
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normal n to the element.

n
h2h1

y1

y3

y2

n
h2h1

y1

y3

y2

a)

n
h2h1

y1

y3

y2

b)

Fig. 2. Special a) trapezoidal and b) triangular elements in the local
system of coordinates

The asymptotic behavior of the density, in quite general
cases (see, e.g.[8, 11, 12, 13, 14, 15, 16, 17, 22, 23]), is of
the form O(yα
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f

}
.
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If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
integral The integral (9) over an element T defined by (8) can
be expressed as an iterative integral
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where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√
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)3 is x
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where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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Other integrals are either reduced to this integral, or evaluated 
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems 
for a propagating planar crack (see, e.g. [24])

3.3. Evaluation of influence coefficients for representative 
integral. The integral (9) over an element T defined by (8) can 
be expressed as an iterative integral
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
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contour, α = 1

2 and c0 is proportional to the conventional stress
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0 < α < 1. Then the only difference between edge and in-
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If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
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its sides are parallel to the y2 axis. This serves to reduce the
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grated analytically. As a result, we arrive at one dimensional
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f

}
.

(8)

If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
integral The integral (9) over an element T defined by (8) can
be expressed as an iterative integral

JM =

h2∫

h1

yα
3




a f y3+b f∫

aby3+bb

dy2(√
x2

1 +(x2 − y2)2 +(x3 − y3)2
)3


dy3,

(10)
where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√

x2+A2
)3 is x

A2
√

x2+A2
. Then (10) is reduced to the

one dimensional integral:
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−yα
3
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1 +(x3 − y3)2


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x2
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+C




a f y3+b f
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dy3,

(11)
where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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3. Method of integration
3.1. Approximation of density function In further discus-
sion we assume that the edge and intermediate elements are
plane having in mind that a curvilinear element may be trans-
formed to a planar element by smooth transformation of spatial
variables (the Jacobian is included into a density). A planar el-
ement is taken as trapezoid, which in particular cases becomes
a rectangle, a square, or a triangle. For a plane element, it is
convenient to perform integration in the local Cartesian coor-
dinates. Specifically, for an element T, the orgin O and the axes
y2 and y3 are located in its plane with the axis y2 along the sin-
gular line (Fig.2). The axis y1 is taken in the direction of the
normal n to the element.
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The asymptotic behavior of the density, in quite general
cases (see, e.g.[8, 11, 12, 13, 14, 15, 16, 17, 22, 23]), is of
the form O(yα
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f
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If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])
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where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√
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)3 is x
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where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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ement is taken as trapezoid, which in particular cases becomes
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The asymptotic behavior of the density, in quite general
cases (see, e.g.[8, 11, 12, 13, 14, 15, 16, 17, 22, 23]), is of
the form O(yα

3 ) with 0 ≤ α < 1. Thus the density is approxi-
mated as
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f

}
.

(8)

If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
integral The integral (9) over an element T defined by (8) can
be expressed as an iterative integral

JM =
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
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
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where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√

x2+A2
)3 is x
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√
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. Then (10) is reduced to the
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where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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formed to a planar element by smooth transformation of spatial
variables (the Jacobian is included into a density). A planar el-
ement is taken as trapezoid, which in particular cases becomes
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y2 and y3 are located in its plane with the axis y2 along the sin-
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The asymptotic behavior of the density, in quite general
cases (see, e.g.[8, 11, 12, 13, 14, 15, 16, 17, 22, 23]), is of
the form O(yα

3 ) with 0 ≤ α < 1. Thus the density is approxi-
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f

}
.

(8)

If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
integral The integral (9) over an element T defined by (8) can
be expressed as an iterative integral

JM =
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where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√

x2+A2
)3 is x
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. Then (10) is reduced to the
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where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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variables (the Jacobian is included into a density). A planar el-
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The asymptotic behavior of the density, in quite general
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with c0 being the field intensity factor. The exponent α is pre-
defined and evaluated in advance. In contrast, c0 is found by
solving the BIE. Specifically, in fracture mechanics, for a crack
contour, α = 1

2 and c0 is proportional to the conventional stress
intensity factor (see, e.g. [29]). In problems of hydraulic frac-
turing, c0 is the opening intensity factor, which characterizes
the speed of the fracture propagation (e.g. [30]) and it is found
by solving the problem on time steps.

The case α = 0 corresponds to a non-singular asymptotics.
For it, an element is actually ordinary, and integration over it
is performed by well-developed methods (e.g.[20, 21, 27]).
Below we focus on edge and intermediate elements when
0 < α < 1. Then the only difference between edge and in-
termediate elements is that for the first of them h1 = 0, while
for the second h1 > 0. Therefore, the both groups may be con-
sidered in the same way.

3.2. Reduction to one-dimensional integrals A typical
trapezoidal edge (h1 = 0) or intermediate (h1 > 0) element
(Fig.2) involves integration over the domain

T =
{
(y2,y3) : h1 < y3 < h2, aby3 +bb < y2 < a f y3 +b f
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If a field point x belongs to T , the integrals are singular
(Cauchy principal value or Hadamard finite part integrals).
Otherwise the integrals are ordinary (Riemann integrals). For a
fixed field point, the sum of integrals over an element presents
the influence coefficient of this element on a physical quan-
tity in the right hand side of (1) or (2) at the point x. We
are looking for parts of the influence coefficients generated by
particular integrals. The method to evaluate the integrals em-
ploys the specific geometry of the trapezoidal element: two of
its sides are parallel to the y2 axis. This serves to reduce the
double integrals to iterated integrals, internal of which is inte-
grated analytically. As a result, we arrive at one dimensional
integrals, which in their turn, may be Riemann, Cauchy prin-
cipal value or Hadamard finite part integrals. The latter are
efficiently evaluated as explained below.

Further on, to present the essence of the method and to show
all its details we consider the representative hypersingular in-
tegral of the form

JM =
∫∫

T

yα
3 dy2dy3

R3 , 0 < α < 1. (9)

Other integrals are either reduced to this integral, or evaluated
in the same way. Note also that the integral (9) is the only inte-
gral to be evaluated when solving hydraulic fracture problems
for a propagating planar crack (see, e.g.[24])

3.3. Evaluation of influence coefficients for representative
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where x = (x1,x2,x3) is a field point.

The inner integral in (10) is promptly evaluated by writing
dy2 as −d(x2 − y2) and accounting that the antiderivative of
F(x) = 1(√
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where [G(x)]ba denotes double substitution G(b)−G(a), C is a
constant to be chosen as convenient.

There are three special cases to be considered.
First case. The inequality x2

1 + (x3 − y3)
2 > 0 is fulfilled

for all h1 ≤ y3 ≤ h2. In this simplest situation the integrand
is a continuous function and the integral (11) may be found
by using conventional numerical technique e.g. the Gaussian
quadrature rule.

Second case. The field point x = (0,x2,x3) is located in the
trapezoid plane (x1 = 0) in the strip between the lines y3 =
h1 and y3 = h2, while outside the trapezoid (Fig.3a). In this
case, by setting C = −sign(x2 − abx3 − bb), we have C = 1
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where [G(x)]b
a denotes double substitution G(b) ¡ G(a), C is 
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(C = – 1) when the point x is to the left (right) of the trapezoid. 
By using this value of C in equation (11) we avoid artificial 
singularity, which appears if taking C = 0. Then, as it should 
be, the integral JM is the Riemann’s integral:
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:

h2∫

h1


 yα

3√
(x2 − y2)2 +(x3 − y3)2

(
(x2 − y2)−C

√
(x2 − y2)2 +(x3 − y3)2

)



y2=a f y3+b f

y2=aby3+bb

dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
|1−

hi
x3
|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
the next Section. The Taylor expansion of yε

3 is written as

yα
3 = xα

3

[
1−α

(
1− y3

x3

)
+

n

∑
k=2

(−1)k α(α −1) . . .(α − k+1)
k!

(
1− y3

x3

)k

+O(εn+1)

]
.

(12)
With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):

J2 =− 1
x1−α

3
=

1+ε∫

1−ε

1
(1−η)2




x2
x3
−ξ√

( x2
x3
−ξ )2 +(1−η)2




ξ=a f η+
bb
x3

ξ=abη+
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x3

dη

+
α

x1−α
3

−
1+ε∫

1−ε

1
1−η




x2
x3
−ξ√

( x2
x3
−ξ )2 +(1−η)2




ξ=a f η+
bb
x3

ξ=abη+
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x3

dη+

+
n

∑
k=2

(−1)k+1 α(α −1) . . .(α − k+1)
x1−α

3 k!

Table 1. Values of integrals: J1, J2, J3, JM for α = 0 and for different
parameters of the method

5-point quadrature 10-point quadrature 16–point quadrature
ε = 0.3
J1 1.2956913073 1.2956906655 1.2956906800
J2 -6.8948619920 -6.8948619920 -6.8948619920
J3 1.1912017293 1.1912011421 1.1912011555

JM -4.4079689554 -4.4079701844 -4.4079701565
ε = 0.1
J1 7.9036077572 7.9109116859 7.9109127578
J2 -20.0726689106 -20.0726689106 -20.0726689106
J3 7.7464807727 7.7537847824 7.7537858526

JM -4.4225803806 -4.4079724422 -4.4079703001
ε = 0.05
J1 17.5988320976 17.8942478294 17.8950976921
J2 -40.0361665857 -40.0361665857 -40.0361665857
J3 17.4368311918 17.7322470107 17.7330968716

JM -5.0005032964 -4.4096717457 -4.4079720220
ε = 0.01
J1 64.1534584621 93.6506221500 97.6527190735
J2 -200.0072271415 -200.0072271415 -200.0072271415
J3 63.9899011131 93.4870649002 97.4891618219

JM -71.8638675663 -12.8695400913 -4.8653462461

·
1+ε∫

1−ε


 (1−η)k−2( x2

x3
−ξ )√

( x2
x3
−ξ )2 +(1−η)2




y2=a f y3+b f

y2=aby3+bb

dη +O(εn+1),

(13)
where symbols =

∫
, −
∫

denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trape-

zoid. In this case, the integral (9) is the finite part Hadamard 
integral. If a density were a polynomial, the integral would be 
evaluated analytically. This suggests evaluation of (9) through 
expansion of y3

α in Taylor series in y3 ¡ x3 within a narrow strip 
x3 ¡ εx3 < y3 < x3 + εx3 with x3 at its middle (Fig. 3b). The value  
of y3

ε should be small enough to have the intersection of the strip 

with the trapezoid entirely within the latter: 0 < ε <  min
i = 1, 2 j1 ¡  hi

x3
j.

A proper choice of a particular ε , satisfying this condition and 
providing accurate evaluation of the integral JM, is left to the 
next Section. The Taylor expansion of y3

ε is written as
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:

h2∫

h1


 yα

3√
(x2 − y2)2 +(x3 − y3)2

(
(x2 − y2)−C

√
(x2 − y2)2 +(x3 − y3)2

)



y2=a f y3+b f

y2=aby3+bb

dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
|1−

hi
x3
|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
the next Section. The Taylor expansion of yε

3 is written as

yα
3 = xα

3

[
1−α

(
1− y3

x3

)
+

n

∑
k=2

(−1)k α(α −1) . . .(α − k+1)
k!

(
1− y3

x3

)k

+O(εn+1)

]
.

(12)
With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):

J2 =− 1
x1−α

3
=

1+ε∫

1−ε

1
(1−η)2




x2
x3
−ξ√

( x2
x3
−ξ )2 +(1−η)2




ξ=a f η+
bb
x3

ξ=abη+
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x3

dη

+
α

x1−α
3

−
1+ε∫

1−ε

1
1−η




x2
x3
−ξ√

( x2
x3
−ξ )2 +(1−η)2




ξ=a f η+
bb
x3

ξ=abη+
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x3

dη+

+
n

∑
k=2

(−1)k+1 α(α −1) . . .(α − k+1)
x1−α

3 k!

Table 1. Values of integrals: J1, J2, J3, JM for α = 0 and for different
parameters of the method

5-point quadrature 10-point quadrature 16–point quadrature
ε = 0.3
J1 1.2956913073 1.2956906655 1.2956906800
J2 -6.8948619920 -6.8948619920 -6.8948619920
J3 1.1912017293 1.1912011421 1.1912011555

JM -4.4079689554 -4.4079701844 -4.4079701565
ε = 0.1
J1 7.9036077572 7.9109116859 7.9109127578
J2 -20.0726689106 -20.0726689106 -20.0726689106
J3 7.7464807727 7.7537847824 7.7537858526

JM -4.4225803806 -4.4079724422 -4.4079703001
ε = 0.05
J1 17.5988320976 17.8942478294 17.8950976921
J2 -40.0361665857 -40.0361665857 -40.0361665857
J3 17.4368311918 17.7322470107 17.7330968716

JM -5.0005032964 -4.4096717457 -4.4079720220
ε = 0.01
J1 64.1534584621 93.6506221500 97.6527190735
J2 -200.0072271415 -200.0072271415 -200.0072271415
J3 63.9899011131 93.4870649002 97.4891618219

JM -71.8638675663 -12.8695400913 -4.8653462461
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
 (1−η)k−2( x2

x3
−ξ )√

( x2
x3
−ξ )2 +(1−η)2


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y2=a f y3+b f

y2=aby3+bb

dη +O(εn+1),

(13)
where symbols =

∫
, −
∫

denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:

h2∫

h1


 yα

3√
(x2 − y2)2 +(x3 − y3)2

(
(x2 − y2)−C

√
(x2 − y2)2 +(x3 − y3)2

)



y2=a f y3+b f

y2=aby3+bb

dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
|1−

hi
x3
|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
the next Section. The Taylor expansion of yε

3 is written as
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):

J2 =− 1
x1−α

3
=
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Table 1. Values of integrals: J1, J2, J3, JM for α = 0 and for different
parameters of the method

5-point quadrature 10-point quadrature 16–point quadrature
ε = 0.3
J1 1.2956913073 1.2956906655 1.2956906800
J2 -6.8948619920 -6.8948619920 -6.8948619920
J3 1.1912017293 1.1912011421 1.1912011555

JM -4.4079689554 -4.4079701844 -4.4079701565
ε = 0.1
J1 7.9036077572 7.9109116859 7.9109127578
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where symbols =

∫
, −
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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
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3√
(x2 − y2)2 +(x3 − y3)2

(
(x2 − y2)−C

√
(x2 − y2)2 +(x3 − y3)2

)



y2=a f y3+b f

y2=aby3+bb

dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
|1−
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x3
|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
the next Section. The Taylor expansion of yε

3 is written as
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):
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Table 1. Values of integrals: J1, J2, J3, JM for α = 0 and for different
parameters of the method

5-point quadrature 10-point quadrature 16–point quadrature
ε = 0.3
J1 1.2956913073 1.2956906655 1.2956906800
J2 -6.8948619920 -6.8948619920 -6.8948619920
J3 1.1912017293 1.1912011421 1.1912011555

JM -4.4079689554 -4.4079701844 -4.4079701565
ε = 0.1
J1 7.9036077572 7.9109116859 7.9109127578
J2 -20.0726689106 -20.0726689106 -20.0726689106
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JM -4.4225803806 -4.4079724422 -4.4079703001
ε = 0.05
J1 17.5988320976 17.8942478294 17.8950976921
J2 -40.0361665857 -40.0361665857 -40.0361665857
J3 17.4368311918 17.7322470107 17.7330968716

JM -5.0005032964 -4.4096717457 -4.4079720220
ε = 0.01
J1 64.1534584621 93.6506221500 97.6527190735
J2 -200.0072271415 -200.0072271415 -200.0072271415
J3 63.9899011131 93.4870649002 97.4891618219

JM -71.8638675663 -12.8695400913 -4.8653462461

·
1+ε∫

1−ε


 (1−η)k−2( x2

x3
−ξ )√

( x2
x3
−ξ )2 +(1−η)2




y2=a f y3+b f

y2=aby3+bb

dη +O(εn+1),

(13)
where symbols =
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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those considered in First case. The integral over T2 is evaluated 
through substitution of the expansion (12):
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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
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dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
|1−
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|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
the next Section. The Taylor expansion of yε

3 is written as
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):
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Table 1. Values of integrals: J1, J2, J3, JM for α = 0 and for different
parameters of the method

5-point quadrature 10-point quadrature 16–point quadrature
ε = 0.3
J1 1.2956913073 1.2956906655 1.2956906800
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J3 1.1912017293 1.1912011421 1.1912011555
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where symbols =

∫
, −
∫

denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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)

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y2=a f y3+b f
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dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
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|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
the next Section. The Taylor expansion of yε

3 is written as
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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y2=a f y3+b f
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dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
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and providing accurate evaluation of the integral JM , is left to
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):
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parameters of the method
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ε = 0.3
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J3 1.1912017293 1.1912011421 1.1912011555

JM -4.4079689554 -4.4079701844 -4.4079701565
ε = 0.1
J1 7.9036077572 7.9109116859 7.9109127578
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J3 7.7464807727 7.7537847824 7.7537858526
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ε = 0.05
J1 17.5988320976 17.8942478294 17.8950976921
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J1 64.1534584621 93.6506221500 97.6527190735
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where symbols =

∫
, −
∫

denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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)
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
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dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min
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and providing accurate evaluation of the integral JM , is left to
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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)

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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
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where symbols =
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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)

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y2=a f y3+b f
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dy3.

It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
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|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
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3 is written as
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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)

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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
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Table 1. Values of integrals: J1, J2, J3, JM for α = 0 and for different
parameters of the method

5-point quadrature 10-point quadrature 16–point quadrature
ε = 0.3
J1 1.2956913073 1.2956906655 1.2956906800
J2 -6.8948619920 -6.8948619920 -6.8948619920
J3 1.1912017293 1.1912011421 1.1912011555

JM -4.4079689554 -4.4079701844 -4.4079701565
ε = 0.1
J1 7.9036077572 7.9109116859 7.9109127578
J2 -20.0726689106 -20.0726689106 -20.0726689106
J3 7.7464807727 7.7537847824 7.7537858526

JM -4.4225803806 -4.4079724422 -4.4079703001
ε = 0.05
J1 17.5988320976 17.8942478294 17.8950976921
J2 -40.0361665857 -40.0361665857 -40.0361665857
J3 17.4368311918 17.7322470107 17.7330968716

JM -5.0005032964 -4.4096717457 -4.4079720220
ε = 0.01
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where symbols =

∫
, −
∫

denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
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With this prerequisite, the integral over trapezoid T is repre-
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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(C =−1) when the point x is to the left (right) of the trapezoid.
By using this value of C in equation (11) we avoid artificial
singularity, which appears if taking C = 0. Then, as it should
be, the integral JM is the Riemann’s integral:
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It is evaluated similar to that in the First case.
Third case. The field point x is located within the trapezoid.

In this case, the integral (9) is the finite part Hadamard integral.
If a density were a polynomial, the integral would be evaluated
analytically. This suggests evaluation of (9) through expansion
of yα

3 in Taylor series in y3−x3 within a narrow strip x3−εx3 <
y3 < x3 + εx3 with x3 at its middle (Fig.3b). The value of ε
should be small enough to have the intersection of the strip
with the trapezoid entirely within the latter: 0 < ε < min

i=1,2
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|. A proper choice of a particular ε , satisfying this condition

and providing accurate evaluation of the integral JM , is left to
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With this prerequisite, the integral over trapezoid T is repre-
sented as the sum JM = J1+J2+J3 of integrals over the narrow
strip T2 and the parts T1 and T3, respectively, above and below
the strip (Fig.3b). The integrals over T1 and T3 are those con-
sidered in First case. The integral over T2 is evaluated through
substitution of the expansion (12):
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ε = 0.3
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denote the finite part Hadamard and the
Cauchy integrals, respectively. All the integrals in (13) are
evaluated analytically with exact formulae for n = 4 given in
Appendix. Clearly the quadrature rule (13) should be used with
ε small enough. On the other hand, ε should not be too small,
because when ε → 0, the integrals J1, J3 tend to plus infinity,
while the integral J2 goes to minus infinity; then the method
suggested fails. Therefore, it is crucial to properly select the
parameters of the method to guarantee a prescribed accuracy
with minimal computational cost.

4. Numerical experiments
There is no principal difference between integration over an
intermediate and edge element. The latter presents a partic-
ular case of the former, corresponding to h1 = 0. Therefore,
below we consider the general case of an element (h1 ≥ 0). A
number of numerical experiments (for edge and intermediate
elements) were performed to study sensitivity of the method
for the choice of parameter ε and order n of approximation.
The typical results are presented below.
Choice of parameter ε . Consider in the local system a plane
trapezoid T with vertices: W1 = (0,1,1), W2 = (0,8,1), W3 =
(0,6,3), W4 = (0,3,3). The integral JM is defined by (9) over
T . When choosing the relative width 2ε of the narrow strip, it
is sufficient to set α = 0 to exclude the error caused by approx-
imation of yα

3 .
The field point x = (0,4,2) is located inside the trapezoid
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5-point quadrature 10-point quadrature 16-point quadrature

ε  = 0.3

J1 1.2956913073 1.2956906655 1.2956906800

J2 –6.8948619920 –6.8948619920 –6.8948619920

J3 1.1912017293 1.1912011421 1.1912011555

JM –4.4079689554 –4.4079701844 –4.4079701565

ε  = 0.1

J1 7.9036077572 7.9109116859 7.9109127578

J2 –20.0726689106 –20.0726689106 –20.0726689106

J3 7.7464807727 7.7537847824 7.7537858526

JM –4.4225803806 –4.4079724422 –4.4079703001

ε  = 0.05

J1 17.5988320976 17.8942478294 17.8950976921

J2 –40.0361665857 –40.0361665857 –40.0361665857

J3 17.4368311918 17.7322470107 17.7330968716

JM –5.0005032964 –4.4096717457 –4.4079720220

ε  = 0.01

J1 64.1534584621 93.6506221500 97.6527190735

J2 –200.0072271415 –200.0072271415 –200.0072271415

J3 63.9899011131 93.4870649002 97.4891618219

JM –71.8638675663 –12.8695400913 –4.8653462461
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quadrature. For 16 points, such a choice of parameter ε  guaran-
tees the accuracy of five significant digits, at least.

Choice of order n of approximation. Consider in the local 
system a plane trapezoid T with the vertices: W1 = (0, 1, 2), 
W2 = (0, 4, 2), W3 = (0, 4, 3), W4 = (0, 2, 3) and integral JM 
defined by (9) over T. The collocation point x = (0, 3, 2.5) 
is located inside the domain. According to suggestions of the 
previous Example, the height of inner trapezoid T2 is taken 
h = 2 ¢ 0.05 H. For lower J1 and for upper J3 integrals the 16-
node Gaussian quadrature is employed. An approximate value 
of the integral is obtained analytically for zero, first and sec-
ond-order (n = 0, 1, 2) approximations of the density function 
f (y3) = y3

α. Compare the results with those obtained by an al-
ternative method, available for the particular case α = ½. In 
this case, the integral is reduced to an elliptic integral which 
serves us to employ extremely efficient and accurate Carlson 
algorithms for elliptic integrals [31]. The algorithms provide 
the benchmark value J ext

M  = –13.84273039. Table 2 presents ob-
tained numerical results. It also contains data for α = ⁵⁄₈ and 
α = ²⁄₃ with very accurate values obtained by using software 
Mathematica.

	 [2]	 A.J. Pachoud, P.A. Manso, and A.J.Schleiss, “New parametric 
equations to estimate notch stress concentration factors at butt 
welded joints modeling the weld profile with splines”, Engi-
neering Failure Analysis, 72, 11‒24, 2017.

	 [3]	 T. Davis, D. Healy, A. Bubeck, and R.Walker, “Stress concen-
trations around voids in three dimensions: The roots of failure”, 
Journal of Structural Geology, 102, 193‒207, 2017.

	 [4]	 M. Eskandari-Ghadi, A. Ardeshir-Behrestaghi, and R.Y.S. Pakc, 
”Bi-material transversely isotropic half-space containing pen-
ny-shaped crack under time-harmonic horizontal loads”, Engi-
neering Fracture Mechanics, 172, 152‒180, 2017.

	 [5]	 S. Nategh, A. Khojasteh, and M. Rahimian, “Bonded contact 
of a rigid disk inclusion with a penny-shaped crack in a trans-
versely isotropic solid”, Journal of Engineering Mathematics, 
110, 123–146, 2018.

	 [6]	 V. Maz’ya and B. Plamenevskii, “The coefficients in the asymp-
totic expansion of solutions of elliptic boundary value problems 
in domains with conical points”, Math. Nachr., 76, 29‒60, 1977.

	 [7]	 D.B. Bogy, “Two edge-bonded elastic wedges on different ma-
terials and wedge angles under surface tractions”, Journal of 
Applied Mechanics, 38 (2), 377‒386, 1971.

	 [8]	 J.P. Dampsey and G.B. Sinclair, “On stress singularities in the 
plane elasticity of the composite wedge”, J. Elast., 9, 373‒391, 
1979.

	 [9]	 A. Seweryn and Z. Mróz, “A non local stress failure condition 
for structural elements under multiaxial loading”, Eng. Fracture 
Mech., 51, 955‒973, 1995.

	[10]	 G. Mishuris and G. Kuhn, “Comparative study on an interface 
crack for different wedge interface models”, Arch. Appl. Me-
chanics, 71, 764‒780, 2001.

	[11]	 G.B. Sinclair, “Stress singularities in classical elasticity”, Appl. 
Mech. Rev, 57, (4‒5), 251‒297, 385‒439, 2004.

	[12]	 V. Blinova and A. Linkov, “A method of finding asymptotic 
forms at the common apex of elastic wedges”, J. Appl. Math. 
Mech., 59, 187‒195, 1995.

	[13]	 A. Linkov and V. Koshelev, “Multi-wedge points and multi-
wedge elements in computational mechanics: evaluation of ex-
ponent and angular distribution”, Int. J. Solids and Structures, 
71, 764‒780, 2005.

	[14]	 A. Linkov and L. Rybarska-Rusinek, “Numerical method and 
models for anti-plane strain of a system with thin elastic wedge”, 
Arch. Appl. Mech., 78, 821‒831, 2008.

	[15]	 A. Linkov and L. Rybarska-Rusinek, “Plane elasticity problem 
for a multi-wedge system with a thin wedge”, Int. J. Solids and 
Structures, 47, 3297‒3304, 2010.

	[16]	 A. Linkov and L. Rybarska-Rusinek, “Interface conditions sim-
ulating influence of a thin elastic wedge with smooth contacts”, 
Arch. Appl. Mech., 81, 1203‒1214, 2011.

	[17]	 A. Linkov and L. Rybarska-Rusinek, “Evaluation of stress con-
centration in multi-wedge systems with functionally graded 
wedges”, Int. J. Eng. Sci., 61, 87‒93, 2012.

	[18]	 E. Rejwer, L. Rybarska-Rusinek, and A. Linkov, “The complex 
variable fast multipole boundary element method for the analysis 
of strongly inhomogeneous media”, Eng. Anal. Bound. Elem., 
43, 105–116, 2014.

	[19]	 H. Li, C. Liu, Y. Mizuta, and M. Kayupov, “Crack edge element 
of three-dimensional displacement discontinuity method with 
boundary division into triangular leaf elements”, Comm Numer 
Meth. Eng., 17(6), 365–78, 2001.

	[20]	 L. Rybarska-Rusinek, D. Jaworski, and A. Linkov, “On efficient 
evaluation of integrals entering boundary equations of 3D poten-
tial and elasticity theory”, Journal Math. Appl., 37, 85‒96, 2014.

Table 2 
Values of integral: JM for approximation of density function by 

polynomials

approximation α = ½ α = ⁵⁄₈ α = ²⁄₃
zero order –13.8349802198 –15.5123882325 –16.1138530746

first order –13.8350016591 –15.5124182838 –16.1138863768

second order –13.8438508174 –15.5217211278 –16.1230501171

exact –13.84273039 –15.52054272 –16.12188862

It can be seen that the second order approximation provides 
four correct significant digits. This is notably more accurate, 
than using fourth-order approximation on the entire trapezoid 
without distinguishing the thin strip near the field point. Then 
JM = –12.5055392507, that is the relative error is about 17%.

The method developed has appeared quite efficient and 
accurate. It is implemented in a subroutine, which may be in-
cluded into conventional codes of the BEM.

Our experience with square-root edge elements (α = ½) 
shows that using special edge and intermediate elements results 
in significant increasing accuracy of modelling regions of strong 
field concentration under actually unchanged time expense.

Acknowledgements. The author appreciate the support of the 
National Science Centre Poland (Project Number 2015/19/B/
ST8/00712).

References
	 [1]	 N.P. Patel and D.S. Sharma, “Composite Structures On the stress 

concentration around a polygonal cut-out of complex geometry 
in an infinite orthotropic plate”, Composite Structures, 179, 
415‒436, 2017.



75

On evaluation of influence coefficients for edge and intermediate boundary elements in 3D problems involving strong field concentrations

Bull.  Pol.  Ac.:  Tech.  67(1)  2019

	[21]	 D. Jaworski, A. Linkov, and L. Rybarska-Rusinek, “On solving 3D 
elasticity problems for inhomogeneous region with cracks, pores 
and inclusions”, Computers and Geotechnics, 71, 295‒309, 2016.

	[22]	 D.A. Spence and P.W. Sharp, “Self-similar solutions for elasto-
hydrodynamic cavity flow”, Proc. Royal Soc. London, Series A, 
400, 289–313, 1985.

	[23]	 B. Lenoach, “The crack tip solution for hydraulic fracturing in 
a permeable solid”, J. Mech. Phys. Solids, 43, 1025–1043, 1995.

	[24]	 A. Peirce, “Implicit level set algorithms for modelling hydraulic 
fracture propagation”, Phil. Trans. R. Soc. A, 374: 20150423, 2016.

	[25]	 P.K. Banerjee and R. Butterfield, Boundary element methods in 
engineering science, McGrawHill Book Co., UK, 1981.

	[26]	 A. Linkov, “Real and complex hypersingular integrals and in-
tegral equations in computational mechanics”, Demonstratio 
Mathematica, 28 (4), 759‒769, 1995.

	[27]	 D. Nikolskiy, M. Zammarchi, S. Mogilevskaya, and A. Sal-
vadori, ”A Three-dimensional BEM analysis of stress state 
near a crack-borehole system”, Eng. Anal. Bound. Elem., 73, 
133‒143, 2016.

	[28]	 K. Pierzyński and Ł. Madej, “Numerical modeling of fracture 
during nanoindentation of the TiN coatings obtained with the 
PLD process”, Bull. Pol. Ac.: Tech., 61 (4), 973–978, 2013.

	[29]	 J. Rice, “A path-independent integral and the approximate anal-
ysis of strain concentration by notches and cracks”, Journal of 
Applied Mechanics, 35, 379–386, 1968.

	[30]	 A. Linkov, “The particle velocity, speed equation and universal 
asymptotics for the efficient modelling of hydraulic fractures”, 
J. Appl. Math. Mech., 79, 54–63, 2015.

	[31]	 B. Carlson, “A Table of elliptic integrals: one quadratic factor”, 
Math Comput, 56 (193), 267–280, 1999.

Appendix

Formulas for analytical evaluation of integrals for n-order approximation (n ∙ 4):

n = 1

n = 0

n = 2

n = 3

L. Rybarska-Rusinek

[16] A. Linkov, L. Rybarska-Rusinek, "Interface conditions simu-
lating influence of a thin elastic wedge with smooth contacts",
Arch. Appl. Mech., 81, 1203-1214, 2011.

[17] A. Linkov, L. Rybarska-Rusinek, "Evaluation of stress con-
centration in multi-wedge systems with functionally graded
wedges", Int. J. Eng. Sci., 61, 87-93, 2012.

[18] E. Rejwer, L. Rybarska-Rusinek, A. Linkov, "The complex
variable fast multipole boundary element method for the anal-
ysis of strongly inhomogeneous media", Eng. Anal. Bound.
Elem., 43, 105–116, 2014.

[19] H. Li, C. Liu, Y. Mizuta, M. Kayupov, "Crack edge element
of three-dimensional displacement discontinuity method with
boundary division into triangular leaf elements", Comm Numer
Meth. Eng., 17(6), 365–78, 2001.

[20] L. Rybarska-Rusinek, D.Jaworski, A. Linkov, "On efficient
evaluation of integrals entering boundary equations of 3D po-
tential and elasticity theory", Journal Math. Appl., 37, 85-96,
2014.

[21] D. Jaworski, A. Linkov, L. Rybarska-Rusinek, "On solving
3D elasticity problems for inhomogeneous region with cracks,
pores and inclusions", Computers and Geotechnics, 71, 295-
309, 2016.

[22] D. A. Spence, P. W. Sharp, "Self-similar solutions for elastohy-
drodynamic cavity flow", Proc. Royal Soc. London, Series A,
400, 289–313, 1985.

[23] B. Lenoach, "The crack tip solution for hydraulic fracturing in a
permeable solid", J. Mech. Phys. Solids, 43, 1025–1043, 1995.

[24] A. Peirce, "Implicit level set algorithms for modelling hydraulic
fracture propagation", Phil.Trans.R.Soc.A, 374: 20150423,
2016.

[25] P. K. Banerjee, R. Butterfield, Boundary element methods in
engineering science, McGrawHill Book Co., UK, 1981.

[26] A. Linkov, "Real and complex hypersingular integrals and in-
tegral equations in computational mechanics", Demonstratio
Mathematica, 28 (4), 759-769, 1995.

[27] D. Nikolskiy, M. Zammarchi, S. Mogilevskaya, A. Salvadori,
"A Three-dimensional BEM analysis of stress state near a
crack-borehole system", Eng. Anal. Bound. Elem., 73, 133-143,
2016.
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[28] K. Pierzyński, Ł. Madej, "Numerical modeling of fracture dur-
ing nanoindentation of the TiN coatings obtained with the PLD
process", Bull. Pol. Ac.: Tech., 61 (4), 973–978, 2013.

[29] J. Rice, "A path-independent integral and the approximate anal-
ysis of strain concentration by notches and cracks", Journal of
Applied Mechanics, 35, 379–386, 1968.

[30] A. Linkov, "The particle velocity, speed equation and universal

asymptotics for the efficient modelling of hydraulic fractures",
J. Appl. Math. Mech., 79, 54–63, 2015.

[31] B. Carlson, "A table of elliptic integrals: one quadratic factor",
Math Comput, 56 (193), 267–80, 1999.

Appendix
Formulas for analytical evaluation of integrals for n-order ap-
proximation (n ≤ 4):
n = 0

I0 =
∫

(ay+b− x2)dy

(x3 − y)2
√

(x3 − y)2 +(x2 −ay−b)2
=

=−
√

(x3 − y)2 +(x2 −ay−b)2

(y− x3)(ax3 +b− x2)
+C

n = 1

I1 =
∫

(ay+b− x2)dy

(x3 − y)
√

(x3 − y)2 +(x2 −ay−b)2
=

=−log(y− x3)−
a√

a2 +1
·

log(
√

(a2 +1
√

(x3 − y)2 +(x2 −ay−b)2 +a(ay+b− x3)+ y− x3)+

log(
√

(x3 − y)2 +(x2 −ay−b)2 +ay+b− x2)+C

n = 2

I2 =
∫

(ay+b− x2)dy√
(x3 − y)2 +(x2 −ay−b)2

=
a
√

(x3 − y)2 +(x2 −ay−b)2

a2 +1
+

+
ax3 +b− x2√

(a2 +1)3
+ log(

√
(a2 +1

√
(x3 − y)2 +(x2 −ay−b)2 +a(ay+b−x3)+y−x3)+C

n = 3

I3 =
∫

(ay+b− x2)(x3 − y)dy√
(x3 − y)2 +(x2 −ay−b)2

=

=
1
2

(
3a(ax3 +b− x2)

2
√

(a2 +1)5
log(

√
(a2 +1

√
(x3 − y)2 +(x2 −ay−b)2 +a(ay+b− x3)+ y− x3) +

−
(
(a−2a3)x3 +a3y−a2b+(a2 −2)x2 +ay+2b

)
(a2 +1)2

√
(x3 − y)2 +(x2 −ay−b)2

)
+C)

n = 4

I4 =
∫

(ay+b− x2)(x3 − y)2dy√
(x3 − y)2 +(x2 −ay−b)2

=
1
2

(
(4a2 −1)(ax3 +b− x2)

3
√

(a2 +1)7

log(
√

(a2 +1
√

(x3 − y)2 +(x2 −ay−b)2 +a(ay+b− x3)+ y− x3) +

−
(
−(a2 +1)(2a2 −3)(y− x3)(ax3 +b− x2)+a(2a2 −13)(ax3 +b− x2)

2 +2a(a2 +1)2(y− x3)
2
)

3(a2 +1)3

√
(x3 − y)2 +(x2 −ay−b)2

)
+C

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

L. Rybarska-Rusinek

[16] A. Linkov, L. Rybarska-Rusinek, "Interface conditions simu-
lating influence of a thin elastic wedge with smooth contacts",
Arch. Appl. Mech., 81, 1203-1214, 2011.

[17] A. Linkov, L. Rybarska-Rusinek, "Evaluation of stress con-
centration in multi-wedge systems with functionally graded
wedges", Int. J. Eng. Sci., 61, 87-93, 2012.

[18] E. Rejwer, L. Rybarska-Rusinek, A. Linkov, "The complex
variable fast multipole boundary element method for the anal-
ysis of strongly inhomogeneous media", Eng. Anal. Bound.
Elem., 43, 105–116, 2014.

[19] H. Li, C. Liu, Y. Mizuta, M. Kayupov, "Crack edge element
of three-dimensional displacement discontinuity method with
boundary division into triangular leaf elements", Comm Numer
Meth. Eng., 17(6), 365–78, 2001.

[20] L. Rybarska-Rusinek, D.Jaworski, A. Linkov, "On efficient
evaluation of integrals entering boundary equations of 3D po-
tential and elasticity theory", Journal Math. Appl., 37, 85-96,
2014.

[21] D. Jaworski, A. Linkov, L. Rybarska-Rusinek, "On solving
3D elasticity problems for inhomogeneous region with cracks,
pores and inclusions", Computers and Geotechnics, 71, 295-
309, 2016.

[22] D. A. Spence, P. W. Sharp, "Self-similar solutions for elastohy-
drodynamic cavity flow", Proc. Royal Soc. London, Series A,
400, 289–313, 1985.

[23] B. Lenoach, "The crack tip solution for hydraulic fracturing in a
permeable solid", J. Mech. Phys. Solids, 43, 1025–1043, 1995.

[24] A. Peirce, "Implicit level set algorithms for modelling hydraulic
fracture propagation", Phil.Trans.R.Soc.A, 374: 20150423,
2016.

[25] P. K. Banerjee, R. Butterfield, Boundary element methods in
engineering science, McGrawHill Book Co., UK, 1981.

[26] A. Linkov, "Real and complex hypersingular integrals and in-
tegral equations in computational mechanics", Demonstratio
Mathematica, 28 (4), 759-769, 1995.

[27] D. Nikolskiy, M. Zammarchi, S. Mogilevskaya, A. Salvadori,
"A Three-dimensional BEM analysis of stress state near a
crack-borehole system", Eng. Anal. Bound. Elem., 73, 133-143,
2016.
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(a2 +1)2

√
(x3 − y)2 +(x2 −ay−b)2

)
+C)

n = 4

I4 =
∫

(ay+b− x2)(x3 − y)2dy√
(x3 − y)2 +(x2 −ay−b)2

=
1
2

(
(4a2 −1)(ax3 +b− x2)

3
√

(a2 +1)7

log(
√

(a2 +1
√

(x3 − y)2 +(x2 −ay−b)2 +a(ay+b− x3)+ y− x3) +

−
(
−(a2 +1)(2a2 −3)(y− x3)(ax3 +b− x2)+a(2a2 −13)(ax3 +b− x2)

2 +2a(a2 +1)2(y− x3)
2
)

3(a2 +1)3

√
(x3 − y)2 +(x2 −ay−b)2

)
+C

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

Ã !


