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DYNAMIC FIRE RISK PREVENTION STRATEGY IN UNDERGROUND COAL GASIFICATION 
PROCESSES BY MEANS OF ARTIFICIAL NEURAL NETWORKS

DYNAMICZNA STRATEGIA ZAPOBIEGANIA RYZYKU POŻAROWEMU Z UŻYCIEM SZTUCZNYCH 
SIECI NEURONOWYCH W PROCESACH PODZIEMNEGO ZGAZOWANIA WĘGLA 

Based on data collected during an UCG pilot-scale experiment that took place during 2014 at Wieczorek 
mine, an active mine located in Upper Silesia (Poland), this research focuses on developing a dynamic fire 
risk prevention strategy addressing underground coal gasification processes (UCG) within active mines, 
preventing economic and physical losses derived from fires. 

To achieve this goal, the forecasting performance of two different kinds of artificial neural network 
models (generalized regression and multi-layer feedforward) are studied, in order to forecast the syngas 
temperature at the georeactor outlet with one hour of anticipation, thus giving enough time to UCG ope-
rators to adjust the amount and characteristics of the gasifying agents if necessary. 

The same model could be used to avoid undesired drops in the syngas temperature, as low temperature 
increases precipitation of contaminants reducing the inner diameter of the return pipeline. As a consequence 
the whole process of UGC might be stopped. Moreover, it could allow maintaining a high temperature 
that will lead to an increased efficiency, as UCG is a very exothermic process.

Results of this research were compared with the ones obtained by means of Multivariate Adaptative 
Regression Splines (MARS), a non-parametric regression technique able to model non-linearities that 
cannot be adequately modelled using other regression methods. 

Syngas temperature forecast with one hour of anticipation at the georeactor outlet was achieved 
successfully, and conclusions clearly state that generalized regression neural networks (GRNN) achieve 
better forecasts than multi-layer feedforward networks (MLFN) and MARS models.

Keywords: Dynamic alarm strategy, Fire risk prevention, Underground coal gasification (UCG), Gene-
ralized Regression Neural Networks (GRNN), Multi-Layer Feedforward Networks (MLFN), 
Multivariate Adaptative Regression Splines (MARS)

Przedstawione w niniejszej pracy badania koncentrują się na opracowaniu dynamicznej strategii 
zapobiegania ryzyku pożarowemu w procesach podziemnego zgazowania węgla (PZW) w czynnych 
kopalniach. Celem badań jest zapobieganie ekonomicznym i fizycznym stratom wynikającym z poża-
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rów. W pracy wykorzystano dane zebrane podczas pilotowego eksperymentu podziemnego zgazowania 
węgla, który odbył się w 2014 r. w czynnej Kopalni Węgla Kamiennego „Wieczorek”, zlokalizowanej 
na Górnym Śląsku.

W artykule przeanalizowano działanie dwóch różnych modeli sztucznych sieci neuronowych, tj. sieci 
neuronowych realizujących uogólnione regresje GRNN oraz wielowarstwowych sieci perceptronowych 
MLFN, w celu prognozowania temperatury gazu syntezowego na wyjściu z georeaktora z godzinnym 
wyprzedzeniem. Informacja na temat temperatury na godzinę „do przodu” daje wystarczająco dużo 
czasu operatorowi procesu PZW na dostosowanie ilości i właściwości czynników zgazowujących do 
zaistniałej sytuacji. 

Ten sam model można zastosować do uniknięcia niepożądanych spadków temperatury gazu syntezowe-
go. Niska temperatura gazu sprzyja wytrącaniu się osadu (substancji smolistych), powodując zmniejszanie 
średnicy rurociągu odbioru gazu, co w konsekwencji może prowadzić do całkowitego zatrzymania procesu 
zgazowania. Model pozwala również na utrzymanie wysokiej temperatury, która prowadzi do zwiększonej 
wydajności procesu PZW, szczególnie biorąc pod uwagę, że PZW jest procesem bardzo egzotermicznym.

Wyniki zrealizowanych badań porównano z rezultatami uzyskanymi za pomocą modelu MARS –
nieparametrycznej metody regresji zdolnej do modelowania zależność nieliniowych, których nie można 
odpowiednio modelować przy użyciu innych metod regresji.

Prognoza temperatury gazu na godzinę „do przodu” na wylocie georeaktora została osiągnięta 
z powodzeniem, a wnioski jasno pokazują, że sieci neuronowe realizujące uogólnione regresje (GRNN 
– Generalized Regression Neural Networks) osiągają lepsze rezultaty niż wielowarstwowe sieci jedno-
kierunkowe (MLFN – Multi-Layer Feedforward Networks) i modele MARS (Multivariate Adaptative 
Regression Splines).

Słowa kluczowe: Dynamiczna strategia zapobiegania ryzyku, Prewencja ryzyka pożarowego, Podziemne 
zgazowanie węgla (PZW), Generalized Regression Neural Networks (GRNN), Multi-
-Layer Feedforward Networks (MLFN), Multivariate Adaptative Regression Splines 
(MARS)

1. Introduction

Hard coal resources located in protective pillars (shaft pillars, crosscut pillars, etc.) and in 
thin coal seems cannot be extracted in most of the cases by longwall mining methods. Also an 
unfavorable spatial location of coal seams, the existence of geological disturbances or a small 
amount of resources limit the possibility of their excavation using conventional mining exploita-
tion methods. Those adverse conditions do not affect the use of underground coal gasification 
(UCG) technology.

The main advantage of UCG, apart from increasing coal resources with promising eco-
nomics (Bhutto et al., 2013), is the production of gas directly where the coal is, leaving the 
waste underground (Białecka, 2008) and reducing the amount of preparation works during the 
process. The technology has also limitations, i.e. problems with process control (Burton et al., 
2006), environmental hazards associated with the possibility of UCG products leakage into the 
surrounding strata and aquifers as well as surface deformations (Kapusta et al., 2013). Another 
aspect are the risks associated with the technology itself, the place of the experiment and the 
conditions of ground and underground infrastructure, especially in case of active hard coal mines.

UCG in an active or ready-to-abandon mine requires the application of demanding safety 
criteria. In first place, the process has to be controlled in order to prevent gas hazard in the ven-
tilation galleries located in the proximity of the georeactor. Thus, to maintain a near-atmospheric 
pressure in the georeactor decreases the risk of toxic hazards (Wiatowski et al., 2012) as well as 
the pollution of groundwater by condendsed components. The location of the UCG georeactor 
in the zone of distress after previous longwall with caving exploitation also prevents or limits 
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an adequate control of the gasification process. Increased gas permeability of the rockmass sur-
rounding the georeactor may cause uncontrolled migration of the syngas to the ventilation gal-
leries, creating gas hazard and further causing uncontrolled flow of mine air from the ventilation 
galleries, creating a potencial risk of explosion in the georeactor (Krause et al., 2015).

A second aspect that has to be taken into account concerns the temperature of the syngas 
produced in the georeactor, as the process has to be designed in order to fulfil mining safety 
requirements. Although ideal temperatures for UCG were estimated by Burton et al. (2006) of 
being around 1,000°C, considering that it is a very exothermic process (Stańczyk et al., 2010) 
and that the pre-heating of the seam improves the quality of the syngas (Wang et al., 2017), the 
Polish State Mining Authority imposed an additional limit of 550°C regarding the maximum 
temperature of the syngas at the georeactor outlet, in order to prevent fire risk as well as self-
ignition in case that it leaks into a gallery. Krause et al. (2015) established that self-ignition may 
happen when the temperature is above 600°C.

This paper will focus on developing a dynamic fire risk prevention strategy addressing 
underground coal gasification processes (UCG) within active mines, preventing economic and 
physical losses derived from fires, as dynamic alarm strategies could play an important control-
ling role (Zhu et al., 2016).

To achieve this goal, the forecasting performance of two different kinds of artificial neural 
network models (generalized regression and multi-layer perceptron) are studied, in order to 
forecast the syngas temperature at the georeactor outlet with one hour of anticipation, thus giving 
enough time to UCG operators to adjust the amount and characteristics of the gasifying agents if 
necessary. Results were compared with the ones obtained by Krzemień (2019) using Multivariate 
Adaptative Regression Splines (MARS), a non-parametric regression technique able to model 
non-linearities that cannot be adequately modelled using other regression methods.

2. Experimental data

This paper will analyse data obtained from an UCG pilot-scale experiment that took place 
during 2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland). The UCG 
process was developed during 60 days, addressing coal seam nº 501, with a thickness of 5.4 m 
and located 460 m deep. Its theoretical gasifying capacity was of 600 kg/h of coal (maximum) 
with a lower calorific value of 28.9 MJ/kg, and an equivalent gas contained enthalpy of around 
3 MW (Mocek et al., 2016). 

The UCG process was conducted with low-pressure method. Georeactor was located close to 
the shaft and keeping some distance from the zone of distress after previous longwall with caving 
exploitation in order to minimize the risk of uncontrolled gas migration. Three channels were 
drilled in order to supply gasifying agents, to collect the produced syngas, to supply inertization 
agent and to remove the excess of water during the drilling operations (Fig. 1).

The supply channel and the production channel were drilled from the experimental gallery 
at the level of 400 m, while the third channel was drilled from the incline transporting drift in 
coal seam 510. The distance of the experimental gallery to coal seam 501 was of 2.6 m. 

The main aim of the experiment was to analyse the behaviour of the process by using 
alternative gasifying agents: air, oxygen-enriched air and air combined with CO2, N2 or water. 
The volume and temperature of the syngas as well as its dry composition after cleaning were 
measured at the outlet of the georeactor on an hourly basis. Also the pressure of the syngas was 
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measured but, as only a limited amount of measures was available, it was not possible to consider 
this variable within the model.

Table 1 presents the variables used in the model, their units as well as the names given for 
developing the study.

The different phases of the experiment are presented in Figure 2, comprising more than 
1,300 hours including the cooling down. Phase I started by igniting with a pyrotechnic charge 
the georeactor, using as gasifying agent oxygen-enriched air. Phase II consisted in gasifying only 
with air, although in specific moments water was also used in order to analyse the behaviour 
of the reactor. During this phase a technological downtime occurred, due to problems in one of 
the separators related with high levels of condensation. Phase III used air and carbon dioxide as 
gasifying agents, allowing to test the influence of carbon dioxide. Phase IV used again only air as 
gasifying agent, in order to re-heat the process after the descend of temperature caused by the use 
of carbon dioxide in the previous phase. Phase V used a decreasing amount of air and an increas-
ing amount of nitrogen in order to start extinguishing the experiment. Finally, and with the use of 
nitrogen, the experiment was cooled down. This final stage was not considered within the analysis.

Table 2 presents the linear correlations among all the variables used in the model.
The temperature of the syngas (Temp_out) has a significant positive correlation with the 

amount of air (air_in), something reasonable as it was the main gasifying agent used. Moreover, 
this correlation is congruent with the most exothermic reactions within a gasification process 
(Wiatowski et al., 2016). It also has significant positive correlation with the amount of CH4 
(CH4_out) produced during the gasification process, followed by the syngas volume (flow). 

Fig. 1. UCG georeactor scheme
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TABLE 1

Variables used in the model

Gasifying agents Variable name Units
Air air_in Nm3/h
O2 O2_in Nm3/h

CO2 CO2_in Nm3/h
N2 N2_in Nm3/h

H2O H2O_in Nm3/h
Syngas

Temperature Temp_out °C
Volume fl ow Nm3/h

Calorifi c value cal MJ/Nm3

Dry syngas composition after cleaning
O2 O2_out %vol.

CO2 CO2_out %vol.
CO CO_out %vol.
CH4 CH4_out %vol.
H2 H2_out %vol.
N2 N2_out %vol.

Fig. 2. Temperature of the syngas and amounts of gasifying agents in Nm3/h used during the UCG process 
during the different phases of the experiment
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Regarding the calorific value of the syngas (cal), the biggest positive correlations are with the 
amount of N2 (N2_out) and H2 (H2_out) produced during the gasification. 

3. Methodology

During this research two types of artificial neural network models were used in order to 
develop a dynamic alarm strategy addressing fire risk prevention: Generalized Regression Neural 
Networks (GRNN) and Multi-Layer Feedforward Networks (MLFN), also referred to as Multi-
Layer Perceptron Networks (MLPN), with one or two hidden layers. The tool that was used to 
develop the neural network models is NeuralTools 7.5, from Palisade Corporation (Ithaca, New 
York). 

GRNN are very close to probabilistic neural networks (PNN). GRNN are used for predict-
ing numerical functions, while PNN are used for predicting categories and classification. Both 
of them were presented by Specht (1991). In these artificial neural networks, the prediction of 
an unknown dependent value is achieved interpolating training cases, giving more weight to 
neighbouring cases. During the training, the optimal interpolation parameters are determined. 
One big advantage of these neural networks is that there is no need to configurate them at all.

Figure 3 presents a GRNN with four independent numeric variables. The pattern layer con-
tains one node for each training case, assuming in this case that there are just four training cases. 

The presentation of a training case in this network consists in presenting four independent 
numerical values. Each neuron in the pattern layer calculates its distance from the case presented. 
The values transferred to the summation layer (numerator and denominator node) are functions 
of both distance and the dependent value: the two nodes add up their input values, while the exit 
node divides them to generate the prediction.

TABLE 2

Linear correlations of the variables used in the model

air_in N2_
in

CO2_
in

O2_
in

H2O_
in

O2_
out

CO2_
out

CO_
out

CH4_
out

H2_
out

N2_
out fl ow cal TEMP_

out
air_in 1.000 –0.363 0.076 –0.041 0.049 –0.397 0.306 –0.032 0.537 –0.392 –0.395 0.644 –0.272 0.648
N2_in –0.363 1.000 –0.097 –0.107 –0.071 –0.051 0.275 –0.268 –0.240 –0.110 –0.155 –0.254 –0.279 –0.108

CO2_in 0.076 –0.097 1.000 –0.098 –0.065 –0.033 –0.017 0.569 0.149 –0.099 –0.162 0.175 –0.096 0.030
O2_in –0.041 –0.107 –0.098 1.000 –0.072 –0.036 –0.634 0.393 –0.449 0.647 0.642 0.031 0.157 –0.311

H2O_in 0.049 –0.071 –0.065 –0.072 1.000 –0.046 0.023 0.073 0.104 –0.110 –0.041 0.054 –0.043 0.067
O2_out –0.397 –0.051 –0.033 –0.036 –0.046 1.000 –0.052 –0.147 –0.229 0.095 0.073 –0.475 0.232 –0.470

CO2_out 0.306 0.275 –0.017 –0.634 0.023 –0.052 1.000 –0.646 0.546 –0.941 –0.964 0.015 –0.556 0.366
CO_out –0.032 –0.268 0.569 0.393 0.073 –0.147 –0.646 1.000 –0.333 0.520 0.492 0.207 0.046 –0.154
CH4_out 0.537 –0.240 0.149 –0.449 0.104 –0.229 0.546 –0.333 1.000 –0.730 –0.675 0.368 0.089 0.527
H2_out –0.392 –0.110 –0.099 0.647 –0.110 0.095 –0.941 0.520 –0.730 1.000 0.964 –0.125 0.454 –0.422
N2_out –0.395 –0.155 –0.162 0.642 –0.041 0.073 –0.964 0.492 –0.675 0.964 1.000 –0.112 0.498 –0.417
fl ow 0.644 –0.254 0.175 0.031 0.054 –0.475 0.015 0.207 0.368 –0.125 –0.112 1.000 –0.224 0.495
cal –0.272 –0.279 –0.096 0.157 –0.043 0.232 –0.556 0.046 0.089 0.454 0.498 –0.224 1.000 –0.289

TEMP_
out 0.648 –0.108 0.030 –0.311 0.067 –0.470 0.366 –0.154 0.527 –0.422 –0.417 0.495 –0.289 1.000

Figures in bold represent all the correlations greater than |0.5|
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The distance functions that are computed in the pattern layer use “smoothing factors”, hav-
ing every input its own value. The greater the value of the smoothing factor, the more significant 
distant training cases become for the predicted value. With multiple inputs, the smoothing factor 
relates to the distance along one dimension in multi-dimensional space.

On the other hand, a Multi-Layer Feedforward Network (MLFN) is a feedforward neural 
network model that maps different sets of input data into an appropriate output set. They are 
a variation of the standard linear perceptron (Sánchez Lasheras et al., 2010). The MLFN archi-
tecture consists in one input layer of neurons, one or two hidden layers of neurons and an output 
layer. They are able to approximate complex relationships between independent variables and 
a dependent variable.

Figure 4 shows a MLFN with the following topology: four independent variables in the 
input layer, one dependent variable in the output layer, two nodes in the first hidden layer and 
three nodes in the second hidden layer. Nevertheless, to achieve a better prediction accuracy, the 
second hidden layer is hardly ever needed.

Fig. 3. Generalized Regression Neural Network (GRNN) 
with three training cases in the pattern layer 

and four independent numeric variables in the input layer

Fig. 4. Multi-Layer Feedforward Network 
with four independent numeric variables 

in the input layer 

Nowadays, MLFN using a backpropagation algorithm can be considered as a standard algo-
rithm for supervised learning pattern recognition. In a MLFN the learning takes place by means of 
connection weight changes after processing each piece of data, based on a comparison between the 
amount of error and the expected result. The behaviour of the net is determined by the topology, 
a parameter assigned to each connection (weight) and a parameter assigned to each node (bias 
term), plus an activation function that is used to convert the inputs of each node into an output.

A sigmoid function, specifically a hyperbolic tangent function in the case of NeuralTools 7.5, 
is used as activation function within hidden layer nodes, returning the output node the weighted 
sum of the inputs. 

In order to determine the optimum topology of a MLFN, mainly focused on calculating the 
amount of neurons in hidden layers, there are two alternatives: to undergo a design of experi-
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ments (DOE) or to undergo a best net search by testing randomly selected cases. The last one 
will be used in this research. 

After determining which artificial neural network model fits the best the UCG process, its 
results will be compared with the ones obtained by Krzemień (2019), who used a Multivariate 
Adaptative Regression Splines (MARS) model, a supervised learning predictive technique of 
artificial intelligence that uses non-parametric regression techniques able to model non-linearities 
that cannot be adequately modelled using other regression methods, and that were firstly intro-
duced by Friedman (1991). This model was developed by means of the R language (R Core Team, 
2017) with the EARTH package (Milborrow, 2017).

In order to compare both models (neural networks and MARS model), the percentile 95 of 
the absolute differences between real values and forecasts will be used. Also, the importance of 
the variables that take part in both models will be analysed. In the case of the MARS models, 
the estimated importance of the basis functions is established by means of the generalized cross-
validation (GCV), that counting for each variable the number of subsets n or nsubsets, calculates 
the residual sum of squares (RSS) divided by a smoothing parameter or a penalty depending 
on the model complexity (Sekulic & Kowalski, 1992; Álvarez Antón et al., 2013; Menéndez 
Álvarez et al., 2017):
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 1C M M d M   (3)

being y the dependent continuous variable, f̂M (x) the expression of the MARS model, M the 
number of basis functions and d the penalty for each basis function. 

4. Discussion

In first place, a best net search was developed by testing randomly selected cases using GRNN 
and MLFN with 2 to 6 nodes in the first hidden layer. As it was said before, the second hidden 
layer is hardly ever needed to achieve better prediction accuracy, thus it was not considered in 
the research. For the training an aleatory 80% of the data set was used, while the remaining 20% 
was used for testing. Training and testing results are shown in Table 3.

Although the MLFN with 4 nodes achieved the best testing results, as GRNN training 
results were much better, both nets were trained using the 100% of the data set. Finally, GRNN 
was selected as 10% tolerance, the root mean square error (RMSE), the mean absolute error 
(MAE) as well as the standard deviation of absolute error were much lower than in the MLFN 
with 4 nodes in the first hidden layer. 

Figure 5 shows the scatterplot of predicted versus actual values of the syngas temperature 
and Figure 6 shows the histogram of residuals obtained in the training of the GRNN.
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Fig. 5. Predicted versus actual values of the syngas temperature in the training of the GRNN

The GRNN model calculates the temperature for the next hour in the 95% of the cases 
with a difference of less than 9°C (Table 4). On the other hand, the MARS model was able to 
forecast the temperature in the 95% of the cases with a difference of less than 15°C (Krzemień, 
2019). Thus, the superiority of the GRNN model can be stated. It has to be remarked that 9°C 
represents less than 2% of 550°C, which was the temperature limit imposed in order to prevent 
fires within the mine.

Table 5 presents a comparison of the relative variable impacts from both models is presented. 

TABLE 3

Training and testing results of the different neural network configurations

Confi guration GRNN MLFN
(2 nodes)

MLFN
(3 nodes)

MLFN
(4 nodes)

MLFN
(5 nodes)

MLFN
(6 nodes)

Training
Number of Cases 987 987 987 987 987 987

% Bad Predictions (10% Tolerance) 0.2026% 1.0132% 0.9119% 0.8105% 0.9119% 0.9119%
Root Mean Square Error 4.173 9.201 9.095 8.912 8.986 9.445

Mean Absolute Error 1.769 4.154 4.674 4.107 4.296 5.025
Std. Deviation of Abs. Error 3.780 8.210 7.802 7.910 7.892 7.997

Testing
Number of Cases 247 247 247 247 247 247

% Bad Predictions (10% Tolerance) 2.4291% 1.2146% 1.2146% 0.4049% 0.8097% 0.4049%
Root Mean Square Error 8.536 7.876 9.462 6.359 6.362 7.702

Mean Absolute Error 4.469 4.263 5.282 4.177 4.136 5.270
Std. Deviation of Abs. Error 7.272 6.622 7.850 4.795 4.835 5.616

Coloured figures represent the best training results that were achieved
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TABLE 4

Percentiles of the absolute differences of real values and forecasts for all the phases of the experiment

Phase 10% 20% 80% 90% 95% 99%
All 0.2 0.6 3.8 5.7 8.4 24.4
I 0.5 0.9 3.8 5.6 9.0 13.8
II 0.0 0.1 2.3 3.6 5.1 18.4
III 0.0 0.0 0.0 0.2 0.3 1.4
IV 0.2 0.4 2.9 4.5 6.7 19.1
V 0.1 0.4 3.6 4.6 6.2 14.8

Apart from the Temperature (Temp_out) of the syngas, the two most relevant variables for 
the GRNN model are the amount of N2 (N2_in) used as gasifying agent, followed closely by the 
percentage of O2 in the syngas (O2_out). In the case of the MARS model the two most relevant 
variables are, at the same level, the percentage of O2 in the syngas (O2_out) and the syngas flow 
(flow). 

The fact that the percentage of O2 in the syngas (O2_out) has such a relevance was dem-
onstrated by Kačur & Kostúr (2017), that claimed to have solved the UCG process control by 
means of stabilizing both the temperature and the concentration of O2 in the syngas. On the 
other hand, the syngas flow (flow) is very relevant for the MARS model as it does not use all 
the different gasifying agents but N2 (N2_in), while for GRNN model is almost irrelevant, as it 
uses all the gasifying agents.

In order to test the robustness of the GRNN model, five re-trainings were developed using 
an aleatory 80% of the data as a training subset, and the remaining 20% as a validation subset. 
Table 6 present the percentiles of absolute differences of real versus forecasted values in the five 
repetitions. In all of them, temperature is predicted in the 95% of cases with a difference of less 
than 11°C. Thus, the model can be considered robust.
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Fig. 6. Histogram of residuals in the training of the GRNN
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TABLE 5

Relative variable impacts for the GRNN model and for the MARS model (Krzemień, 2019) 
for the whole experiment

Variable GRNN nsubsets RSS GCV
Temp_out 46.8% 17 100.0 100.0

O2_out 10.5% 14 7.5 7.1
Flow 0.0% 14 7.5 7.1

CH4_out 0.6% 14 7.3 6.8
H2_out 0.3% 13 6.7 6.2
N2_in 10.7% 12 5.5 5.0
Cal 4.2% 11 5.3 4.8

N2_out 3.5% 7 3.6 3.0
CO_out 2.9% 5 2.6 2.0
CO2_out 7.9% — — —
H2O_in 5.5% — — —
O2_in 4.5% — — —

CO2_in 2.6% — — —
Air_in 0.3% — — —

TABLE 6

Percentiles of absolute differences of real versus forecasted values in the five re-trainings

10% 20% 80% 90% 95% 99%
1st re-training 0.2 0.5 3.3 5.2 10.8 27.3
2nd re-training 0.2 0.5 3.3 5.2 8.2 25.7
3rd re-training 0.1 0.4 3.2 5.4 8.8 27.7
4th re-training 0.2 0.4 3.1 5.0 8.4 25.6
5th re-training 0.1 0.3 3.0 4.8 8.3 21.1

Analysing now the different phases of the experiment separately and, starting by Phase I, 
a best net search was developed again. Table 7 shows the training results in terms of RMSE, 
achieving the GRNN the best result.

TABLE 7

Training results of the different neural network configurations for Phase I

Confi guration RMSE
GRNN 5.14

MLFN 2 Nodes 5.80
MLFN 3 Nodes 5.51
MLFN 4 Nodes 10.29
MLFN 5 Nodes 7.48
MLFN 6 Nodes 6.11

Building a GRNN model only for Phase I where oxygen-enriched air was the gasifying 
agent, the model is able to predict temperature values of one hour ahead with a difference of less 
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than 9°C in the 95% of cases (Table 4). In the case of the MARS model (Krzemień, 2019), it was 
able to predict the temperature values with a difference of less than 11°C in the 95% of cases. 

Figure 7 presents the importance of the variables that took part in the GRNN model of 
Phase I. The GRNN model uses all the variables (eleven, as N2, CO2 and H2O are not used as 
gasifying agents during this phase) while the MARS model (Krzemień, 2019) uses only eight 
terms, achieving quite a similar result although a little less accurate.
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Fig. 7. Relative variable impacts that take part in the GRNN model for Phase I

Again, the percentage of O2 in the syngas (O2_out) is the most important variable after the 
temperature of the syngas (Temp_out) for the GRNN, in line with Kačur & Kostúr (2017), while 
for the MARS model (Krzemień, 2019) the amount of O2 in the gasifying agent (O2_in) and the 
percentage of CH4 in the syngas (CH4_out) are the most important variables.

Addressing now Phase II which used air as the main gasifying agent (although in specific 
moments water was also used, as well as O2 and N2), the GRNN model is able to forecast the 
temperature in the 95% of cases with a difference of less than 6°C (Table 4), while the MARS 
model (Krzemień, 2019) predicted the temperature in the 95% of cases with a difference of less 
than 19°C. During this phase a technological downtime occurred, due to problems in one of the 
separators related with high levels of condensation. Figure 8 presents the importance of the vari-
ables that took part in the GRNN model of Phase II. 

In Phase III, that used as gasifying agents air and CO2, the GRNN model was able to predict 
temperature in the 95% of cases with a difference of less than 1°C (Table 4), while the MARS 
model (Krzemień, 2019) achieved in the 95% of cases a difference of less than 5°C. Figure 9 
presents the importance of the variables that took part in the GRNN model of Phase III. 
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Fig. 8. Relative variable impacts that take part in the GRNN model for Phase II
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Fig. 9. Relative variable impacts that take part in the GRNN model for Phase III

In Phase IV, that used only air as gasifying agent in order to reheat the georeactor after 
the CO2 stage, the GRNN model was able to forecast the temperature in the 95% of cases with 
a difference of less than 7°C (Table 4). The MARS model (Krzemień, 2019) was able to forecast 
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the temperatures in the 95% of cases with a difference of less than 8°C. Figure 10 presents the 
importance of the variables that took part in the GRNN model for Phase IV. 
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Fig. 10. Relative variable impacts that take part in the GRNN model for Phase IV
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Fig. 11. Relative variable impacts that take part in the GRNN model for Phase V
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In this case, the GRNN model uses only one variable more than the MARS model (Krzemień, 
2019): the volume of syngas (flow), that has a relative impact of only 0.2%. This can explain the 
fact that both forecasts have very similar values. Moreover, the difference between the forecasts 
(1°C) is equal to the 0.2% of the maximum temperature (550°C). 

Phase V used air and N2 as gasifying agents to start extinguishing the georeactor. The GRNN 
model forecast the temperature in the 95% of cases with a difference of less than 7°C (Table 4), 
while the MARS model (Krzemień, 2019) was able to forecast the temperature in the 95% of 
cases with a difference less than 11°C. Figure 11 shows the importance of the variables that took 
part in the GRNN model of Phase V.

Finally, Table 8 presents a comparison between GRNN and MARS models’ results for the 
whole experiment as well as for its different phases. In all the cases GRNN models are superior to 
MARS models, and use a larger amount of variables as well. The smaller the difference between 
the number of variables used by both methods, the lower the difference between the forecasts. 
Nevertheless, in case of Phase II the bigger difference may have been caused because of the 
technical downtime that occurred during this phase.

TABLE 8

Percentile 95 of the absolute differences of real values and forecasts for the GRNN models and for the MARS 
models (Krzemień, 2019) and the number of variables used by each model

Phase
GRNN MARS

Percentile 95% nº of variables Percentile 95% nº of variables
All 9ºC 14 15ºC 9
I 9ºC 11 11ºC 8
II 6ºC 13 19ºC 8
III 1ºC 11 5ºC 6
IV 7ºC 10 8ºC 9
V 7ºC 11 11ºC 6

5. Conclusions

This paper focuses on developing a dynamic alarm strategy addressing fire risk prevention 
within UCG processes using data obtained from a pilot-scale experiment that took place during 
2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland). 

To achieve this goal, artificial neural network models were developed addressing the feasi-
bility of forecasting the temperature of the syngas with one hour of anticipation. Two different 
kinds of artificial neural networks were analysed: GRNN and MLFN. 

GRNN model gives more accurate forecasts of the syngas temperature than the different 
MLFN models tested. GRNN model was able to predict the temperature of one hour ahead in 
the 95% of the cases with an error less than a 2% of the maximum temperature allowed by the 
Mining Authority in order to prevent within an active mine the risk of fires (550°C). 

Results were compared with the ones obtained by Krzemień (2019) while analysing the same 
data using a MARS model. GRNN model prediction was more accurate (9°C against 15°C in the 
95% of cases), thus demonstrating its superiority. While the GRNN model used all the variables 
involved in the experiment, the number of variables used by the MARS model was lower and, 
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subsequently, achieved a worst prediction. Nevertheless, while neural networks achieve their 
results through a process that is a ‘black box’ for the user, MARS models present the advantage 
that results are expressed as a formula. Thus, it is possible to understand how the model undergoes 
calculations, something that could be of interest in some cases. 

The study also set the significance of the variables involved within the GRNN model. After 
the syngas temperature, the amount of N2 used as gasifying agent was the most important vari-
able, followed very closely by the percentage of O2 in the syngas. As the N2 was only used for 
extinguishing the georeactor, these results are in line with the relevance of the percentage of O2 
in the syngas that was demonstrated by Kačur & Kostúr (2017), who claimed to have solved the 
UCG process control by means of stabilizing both the temperature and the concentration of O2 
in the syngas.

After these results, the GRNN technique was applied to the different phases of the experi-
ment on an individual basis. A better forecast was obtained in all of the phases, improving always 
results given by the MARS models. 

Summarizing, GRNN models can predict with high precision the interaction between 
the different UCG process parameters. Thus, they allow developing a sound dynamic fire risk 
prevention strategy, even with a limited amount of measures. This aspect is critical for the 
economic and technical success of UCG as the higher the temperature, the better the efficiency 
of the whole process. The same model could be used to avoid undesired drops in the syngas 
temperature, as low temperature increases precipitation of contaminants reducing the inner 
diameter of the return pipeline. As a consequence the whole process of UGC might be stopped 
(Dubiński & Turek, 2015). 

Finally and as stated in Krzemień (2019), a period of five days is considered appropriate in 
order to develop a new GRNN model, as it is coincident with the duration of the phase that had 
the smallest duration in the experiment and which allowed to train a GRNN model on its own.
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