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Abstract: An analysis of a given electrical circuit using a fractional derivative. The state-
space equation was developed. The dynamics of tensions described by Kirchhoff’s laws
equations. The paper used the definition of the integral derivative Caputo and CDF con-
formable fractional definition. An electrical circuit solution using Caputo and CDF defini-
tions for rectangular with zero initial conditions was developed. The results obtained using
the Caputo and CDF definitions were compared. The solutions are shown for capacitor
voltages, for fractional derivative orders of 0.6, 0.8, 1. The results were compared using
graphs.
Key words: fractional order system, Caputo definition, conformable fractional definition,
fractional electrical circuit

1. Introduction

New fabrication technologies and systems have created a need for new mathematical tools to
describe the dynamic processes occurring in their components and systems. The solution for that
is a fractional order. The fractional calculus was developed mainly in the nineteenth century by
Riemann and Liouville, who were the first to present the definition of the fractional derivatives
[10]. Currently, many works on the calculus of an incomplete order have been published, such
as, for example, the one by Caputo and Grunwald–Letnikov, describing another definition of the
fractional order, where the subject has been comprehensively analyzed [9, 17, 18]. Fractional
differential equations were analyzed in [17].

The method for determining the stability of nonlinear or non-stationary systems is the stability
analysis according to Lyapunov [3–5]. The Lyapunov function allows one to determine the stability
without solving state equations. The disadvantage of this method is the problem of determining
the Lyapunov function for a given system. There is no general effective approach to determine
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these functions. To designate the Lyapunov function, a trial and error method was used. Due to
this, the solution was achieved by the application of the state equation, in this paper.

The analysis of the transient electrical circuits is depicted using the Caputo definition, de-
scribed in [6, 10, 13, 15, 18]. The solution of the state equations for the electrical circuits was
introduced by means of a linear continuous series of an incomplete order, described by equations
contained in [1, 2, 12].

In this paper we will consider the solutions of the fractional circuit equations using the
Caputo and CFD definitions. The CDF definition is a new and a simple well-behaved definition
of the fractional derivative, called the conformable fractional derivative, described by R. Khalil,
M. Horani, A. Yousef and M. Sababheh [2]. For the state-space description of the fractional
electrical circuit we will consider solutions for a general case (with non-zero inputs and initial
conditions) as well as a non-zero input and zero initial conditions and a zero input and non-zero
initial conditions.

The paper is organized as follows: section 2 describes the solution of the electrical circuit
equation of the state, obtained by the use of the fractional order derivatives, given by the Caputo
and CFD definitions. The result has been used in the calculation part of this paper. The general
description of the problem and fractional electrical circuit are considered in section 3. The
realization problem for the Caputo and CDF definitions are in section 4. Concluding remarks are
given in section 5.

2. Fractional order state-space equations

The equation of state has the following form [16]:

Dαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (1)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state, input and output vectors and A ∈ ℜn×n, B ∈ ℜn×m are
the matrices with constant coefficients, Dαk

t xk (t) is the fractional order derivative of the vector
x(t), described by the Caputo or CFD definition.

In the next sections we will use fractional order state-space Equations (1) with fractional order
derivatives given by the Caputo and CFD definitions.

The Caputo fractional order derivative is given by [16]:

C
0 Dα

t f (t) =
1

Γ(n − α)

t∫
0

f (n) (τ)
(t − τ)a+1−n d τ, (2)

where n − 1 < α < n, n ∈ N , Γ(x) is the Euler gamma function and f (n) (t) =
d n f (t)

d tn
.

The solution to state-space Equation (1) with derivative (2) is given by [7, 13, 14, 16].

u(t) = Φ0(t)u0 +

t∫
0

Φ(t − τ)Be(τ) d τ, (3a)
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where

Φ0(t) = Eα
(
Atα

)
=

∞∑
k=0

Ak tkα

Γ(kα + 1)
,

Φ(t) =
∞∑
k=0

Ak t (k+1)α−1

Γ [(k + 1)] α

(3b)

and x(0) is the initial condition, Eα (z) is a single parameter of the Mittag–Leffler function.
If n < α ≤ n + 1, n ∈ N0, then the conformable fractional derivative (CFD) of an n-

differentiable function at t function f (where t > 0) is defined as [16]:

CFD
0 Dα

t ( f )(t) = lim
ε→0

f ([α]−1)
(
t + εt[α]−α

)
− f ([α]−1) (t)

ε
, (4)

where [α] is the smallest integer greater than or equal to α.
The solution to Equation (1) with the CFD definition of fractional order derivative (4) for

0 < α ≤ 1 is given by [1]:

u(t) = Φ0(t)u0 +

t∫
0

Φ(t − τ) Be(τ) d τ, (5a)

where

eA tα

α =

∞∑
k=0

Ak tkα

αk k!
. (5b)

3. Fractional electrical circuit and general description of the problem

In this paper we will consider the fractional electrical circuit shown in Fig. 1 with conduc-
tance’s G0, G1, G2 capacitances C1, C2 and source voltage e.

Fig. 1. The fractional electrical circuit
(Source: own)

Using Kirchhoff’s laws we obtain the equations describing the dynamics of tensions u1(t),
u2(t) on the corresponding capacitors in response to the control voltage e(t). The corresponding
circuit analysis has been concluded in [18].
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The electrical circuit is described by state-space Equation (1) with state vector

x(t) =


u1(t)

u2(t)

 ,
input vector u(t) = [e(t)] and matrices [18]

A =


−G1(G0 + G2)

GC1

G1G2

GC1
G1G2

GC2
−G2(G0 + G1)

GC2


=


a11 a12

a21 a22

 , (6a)

B =


G0G1

C1G
G0G2

C2G


, (6b)

where G = G0 + G1 + G2.
The initial conditions (the initial voltages across the capacitors) are given in the form:

x(0) =


u01

u02

 =


u1(0)

u2(0)

 . (7)

4. The solutions with fractional definitions

In this section the following lemma will be used.
Lemma 1. For matrix A = [ai j]i, j=1,2 with real eigenvalues λ1 , λ2 there always exists

nonsingular similarity matrix P ∈ ℜ2×2 such that

A = PΛP−1, Λ = diag[λ1, λ2]. (8)

The matrix P can be formed using the eigenvectors of the matrix A.

P =

λ1−q22 λ2−q22

a21 a21

 . (9)

Now we will consider the solution to the fractional electrical circuit for two types of derivatives.

4.1. Solution (3a) with zero initial conditions and rectangular function input

Due to the fact that x(0) =


0
0

 , the first component of solution (3a) disappears.

The forced response of system (1) for the Caputo definition takes the form:

x(t) =

t∫
0

Φ(t − τ) Bu(τ) d τ. (10)
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Consider the source voltage u(τ), where

u(τ) =


0 for τ < 0
E for nT ≤ τ < nT + T0 n ∈ N0

0 for nT + T0 ≤ τ < (n + 1)T
(11)

and where T is the period of oscillation and occurs as 0 < T0 < T .
For times t ≥ 0, n≤ t

T
<n+1, then n=

[ t
T

]
, where [z] is the integer part of the number of z.

Then solution (10) takes the form:

x(t) =

nT∫
0

Φ(t − τ) Bu(τ) d τ +
t∫

nT

Φ(t − τ) Bu(τ) d τ =

=

n−1∑
m=0

(m+1)T∫
mT

Φ(t − τ) Bu(τ) d τ +
t∫

nT

Φ(t − τ) Bu(τ) d τ.

(12)

Each of the integrals under the sign of sum in Formula (12) can be broken down into sums:
(m+1)T∫
mT

Φ(t − τ) Bu(τ) d τ =
mT+T0∫
mT

Φ(t − τ) Bu(τ) d τ +
(m+1)T∫

mT+T0

Φ(t − τ) Bu(τ) d τ. (13)

After substituting Formula (11) to (13) we obtain:
(m+1)T∫
mT

Φ(t − τ) Bu(τ) d τ =
mT+T0∫
mT

Φ(t − τ)BE d τ +
(m+1)T∫

mT+T0

Φ(t − τ) B0 d τ =

=


mT+T0∫
mT

Φ(t − τ) d τ

 BE.

(14)

We change variables in order to compute the integral that appeared in Formula (14).
mT+T0∫
mT

Φ(t − τ) d τ =
t−mT∫

t−mT−T0

Φ(ξ) d ξ. (15)

We use the function deployment Φ(ξ) in series (3b), and we replace the order of summation
with integration

mT+T0∫
mT

Φ(t − τ) d τ =
t−mT∫

t−mT−T0

∞∑
k=0

Akξ (k+1)α−1

Γ [(k + 1)α]
d ξ =

∞∑
k=0

Ak

Γ [(k + 1)α]

t−mT∫
t−mT−T0

ξ (k+1)α−1 d ξ =

=

∞∑
k=0

Akξ (k+1)α

Γ [(k + 1)α + 1]

�����
t−mT

t−mT−T0

= A−1
∞∑
k=1

Akξkα

Γ(kα + 1)

�����
t−mT

t−mT−T0

,

(16)

since Γ [(k + 1)α + 1] = (k + 1)αΓ [(k + 1)α].
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In Formula (16), we recognize incomplete functions Φ0(τ).

mT+T0∫
mT

Φ(t − τ) d τ = A−1
[
Φ0(τ) − I

] t−mT

t−mT−T0
=

[
Φ0(t − mT ) − Φ0(t − mT − T0)

]
A−1. (17)

Substituting (17) for (14) yields:

(m+1)T∫
mT

Φ(t − τ) Bu(τ) d τ =
[
Φ0(t − mT ) − Φ0(t − mT − T0)

]
A−1BE. (18)

The result of the integration of Formula (18) is inserted into (12).

x(t) =
n−1∑
m=0

[
Φ0(t − mT ) − Φ0(t − mT − T0)

]
A−1BE +


t∫

nT

Φ(t − τ)u(τ) d τ
 B. (19)

Depending on the time t, the integral of Formula (19) is:

t∫
nT

Φ(t − τ)u(τ) d τ =



E

t∫
nT

Φ(t − τ) d τ for 0 ≤ t − nT < T0

E

nT+T0∫
nT

Φ(t − τ) d τ for T0 ≤ t − nT < T

. (20)

In order to calculate the integrals we proceed in the same way as in Formula (17).

t∫
nT

Φ(t − τ)u(τ) d τ =


E A−1
[
Φ0(ξ) − I

] t−nT
0

for 0 ≤ t − nT < T0

E A−1
[
Φ0(ξ) − I

] t−nT
t−nT−T0

for T0 ≤ t − nT < T
. (21)

Taking into account the limits and getting additional transformations we obtain:

t∫
nT

Φ(t − τ)u(τ) d τ =


[
Φ0(t − nT ) − I

]
E A−1 for 0 ≤ t − nT < T[

Φ0(t − nT ) − Φ0(t − nT − T0)
]
E A−1 for T0 ≤ t − nT < T

. (22)

The result of (22) is inserted into (19).

x(t) =




n−1∑
m=0

[
Φ0(t − mT )−Φ0(t − mT − T0)

]
+Φ0(t − nT ) − I

 A−1BE

for 0 ≤ t − nT < T0
n−1∑
m=0

[
Φ0(t − mT )−Φ0(t − mT − T0)

]
+Φ0(t − nT ) − Φ0(t − nT − T0)

 A−1BE

for T0 ≤ t − nT < T

. (23)
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We simplify Equation (23) .

x(t) =




n∑

m=0
Φ0(t − mT ) −

n−1∑
m=0
Φ0(t − mT − T0) − I

 A−1BE for 0 ≤ t − nT < T0

n∑
m=0

[
Φ0(t − mT ) − Φ0(t − mT − T0)

]
A−1BE for T0 ≤ t − nT < T

. (24)

Using (6a) and (6b) we can show that

−A−1BE =


E

E

 . (25)

We substitute (25) for (24) and substitute Mittag-Leffler functions (3b).

x(t) =




n−1∑
m=0

Eα (A(t − mT − T0)α)−
n∑

m=0
Eα (A(t − mT )α)+I




E

E

 for 0 ≤ t−nT < T0

n∑
m=0

[
Eα (A(t − mT − T0)α) − Eα (A(t − mT )α)

] 
E

E

 for T0 ≤ t−nT < T

. (26)

In order to describe the vectorx(t)by coordinates, we use the dependence derived from (8)
and (9).

Ak


1
1

 =
(
PΛP−1

)k 
1
1

 = PΛkP−1


1
1

 =

γ1λ

k
1 + γ2λ

k
2

γ3λ
k
1 + γ4λ

k
2

 , (27)

where coefficients γ1, γ2, γ3, γ4 of (27) can substituted (k = 0, 1), as:

γ1 =
a22 − a12 − λ1

λ2 − λ1
, γ2 =

λ2 + a12 − a22

λ2 − λ1
,

γ3 =
λ2 + a21 − a22

λ2 − λ1
, γ4 =

a21 + a22 − λ1

λ2 − λ1
.

(28)

With

Eα
(
Atα

) 
E

E

 = E
∞∑
k=0

Ak tkα

Γ(kα+1)


1
1

 = E
∞∑
k=0


γ1λ

k
1 + γ2λ

k
2

γ3λ
k
1 + γ4λ

k
2

 tkα

Γ(kα+1)
=

= E

γ1

γ3


∞∑
k=0

λk1 tkα

Γ(kα+1)
+ E


γ2

γ4


∞∑
k=0

λk2 tkα

Γ(kα+1)
= E


γ1

γ3

 Eα (λ1tα) + E

γ2

γ4

 Eα (λ2tα) =

= E

γ1Eα (λ1tα) + γ2Eα (λ2tα)

γ3Eα (λ1tα) + γ4Eα (λ2tα)



(29)



796 E. Piotrowska Arch. Elect. Eng.

and using (29) to solve (26) we obtain:

u1(t) =



E


1 + γ1


n−1∑
m=0

Eα
(
λ1(t − mT − T0)α

) − n∑
m=0

Eα
(
λ1(t − mT )α

) +
+γ2


n−1∑
m=0

Eα
(
λ2(t − mT − T0)α

) − n∑
m=0

Eα
(
λ2(t − mT )α

)


for 0 ≤ t − nT < T0

E
n∑

m=0


γ1

[
Eα

(
λ1(t − mT − T0)α

) − Eα
(
λ1(t − mT )α

)]
+

+γ2
[
Eα

(
λ2(t − mT − T0)α

) − Eα
(
λ2(t − mT )α

)] 
for T0 ≤ t − nT < T

, (30a)

u2(t) =



E


1 + γ3


n−1∑
m=0

Eα
(
λ1(t − mT − T0)α

) − n∑
m=0

Eα
(
λ1(t − mT )α

) +
+γ4


n−1∑
m=0

Eα
(
λ2(t − mT − T0)α

) − n∑
m=0

Eα
(
λ2(t − mT )α

)


for 0 ≤ t − nT < T0

E
n∑

m=0


γ3

[
Eα

(
λ1(t − mT − T0)α

) − Eα
(
λ1(t − mT )α

)]
+

+γ4
[
Eα

(
λ2(t − mT − T0)α

) − Eα
(
λ2(t − mT )α

)] 
for T0 ≤ t − nT < T

. (30b)

4.2. CFD definition for zero initial conditions u01 = u02 = 0

Due to the fact that x(0) =
[

0
0

]
, the first component of solution (5a) disappears.

The forced response of system (1) for the CFD definition takes the form:

x(t) = eA tα

α

t∫
0

e−A
τα

α Bu(τ)τα−1 d τ. (31)

Then solution (31) takes the form:

x(t) = eA tα

α


nT∫

0

e−A
τα

α Bu(τ)τα−1 d τ +
t∫

nT

e−A
τα

α Bu(τ)τα−1 d τ

 =
(32)

= eA tα

α


n−1∑
m=0

(m+1)T∫
mT

e−A
τα

α Bu(τ)τα−1 d τ +
t∫

nT

e−A
τα

α Bu(τ)τα−1 d τ

 .
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Each of the integrals under the sign of sum can be written as:
(m+1)T∫
mT

e−A
τα

α Bu(τ)τα−1 d τ =
mT+T0∫
mT

e−A
τα

α Bu(τ)α−1 d τ +
(m+1)T∫

mT+T0

e−A
τα

α Bu(τ)τα−1 d τ. (33)

Then, Formula (11) is inserted into (33).
(m+1)T∫
mT

e−A
τα

α Bu(τ)τα−1 d τ =
mT+T0∫
mT

e−A
τα

α BEτα−1 d τ +
(m+1)T∫

mT+T0

e−A
τα

α B0τα−1 d τ =

(34)

=


mT+T0∫
mT

e−A
τα

α τα−1 d τ

 BE.

We change variables in order to compute the integral that appeared in Formula (34).

mT+T0∫
mT

e−A
τα

α τα−1 d τ =

(mT+T0 )α

α∫
(mT )α

α

e−Aζ d ζ = −A−1e−Aζ
����

(mT+T0 )α

α

(mT )α
α

=

(35)
=

[
e−A

(mT )α
α − e−A

(mT+T0 )α

α

]
A−1.

The result of injection from Formula (35) is replaced by Formula (34).
(m+1)T∫
mT

e−A
τα

α Bu(τ)τα−1 d τ =
[
e−A

(mT )α
α − e−A

(mT+T0 )α

α

]
A−1BE (36)

The result of the integration of Formula (36) is inserted into (32).

x(t) = eA tα

α


n−1∑
m=0

[
e−A

(mT )α
α − e−A

(mT+T0 )α

α

]
A−1BE +


t∫

nT

e−A
τα

α u(τ)τα−1 d τ
 B

 . (37)

Depending on time t the integral of Formula (37) is:

t∫
nT

e−A
τα

α u(τ)τα−1 d τ =



E

t∫
nT

e−A
τα

α τα−1 d τ for 0 ≤ t − nT < T0

E

nT+T0∫
nT

e−A
τα

α τα−1 d τ for T0 ≤ t − nT < T

. (38)

In order to calculate the integrals we proceed in the same way as in Formula (35).

t∫
nT

e−A
τα

α u(τ)τα−1 d τ =


−E A−1e−Aζ

����
tα

α

(nT )α
α

for 0 ≤ t − nT < T0

−E A−1e−Aζ
����

(nT+T0 )α

α

(nT )α
α

for T0 ≤ t − nT < T

. (39)
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After replacing borders and additional transformations we get:

t∫
nT

e−A
τα

α u(τ)τα−1 d τ =


E A−1

[
e−A

(nT )α
α − e−A

tα

α

]
for 0 ≤ t − nT < T0

E A−1
[
e−A

(nT )α
α − e−A

(nT+T0 )α

α

]
for T0 ≤ t − nT < T

. (40)

The result of (40) is inserted into (37).

x(t) =



eA tα

α


n−1∑
m=0

[
e−A

(mT )α
α − e−A

(mT+T0 )α

α

]
+ e−A

(nT )α
α − e−A

tα

α

 A−1BE

for 0 ≤ t − nT < T0

eA tα

α


n−1∑
m=0

[
e−A

(mT )α
α − e−A

(mT+T0 )α

α

]
+ e−A

(nT )α
α − e−A

(nT+T0 )α

α

 A−1BE

for T0 ≤ t − nT < T

. (41)

We simplify Equation (41).

x(t) =


eA tα

α


n∑

m=0
e−A

(mT )α
α −

n−1∑
m=0

e−A
(mT+T0 )α

α − e−A
tα

α

 A−1BE for 0 ≤ t − nT < T0

eA tα

α

n∑
m=0

[
e−A

(mT )α
α − e−A

(mT+T0 )α

α

]
A−1BE for T0 ≤ t − nT < T

. (42)

We use Formula (25) in Formula (42).

x(t) =


eA tα

α


n−1∑
m=0

e−A
(mT+T0 )α

α −
n∑

m=0
e−A

(mT )α
α + e−A

tα

α




E

E

 for 0 ≤ t − nT < T0

eA tα

α

n∑
m=0

[
e−A

(mT+T0 )α

α − e−A
(mT )α

α

] 
E

E

 for T0 ≤ t − nT < T

. (43)

Using Formulas (27) and (28) we obtain:

eA tα

α e−A
τα

α


E

E

 = eA tα−τα
α


E

E

 = E
∞∑
k=0

Ak (tα − τα)k

αk k!


1
1

 =
= E

∞∑
k=0


γ1λ

k
1 + γ2λ

k
2

γ3λ
k
1 + γ4λ

k
2

 (tα − τα)k

αk k!
=

= E

γ1

γ3


∞∑
k=0

λk1 (tα − τα)k

αk k!
+ E


γ2

γ4


∞∑
k=0

λk2 (tα − τα)k

αk k!
=

= E

γ1

γ3

 e
λ1 (tα−τα )

α + E

γ2

γ4

 e
λ2 (tα−τα )

α = E

γ1e

λ1 (tα−τα )
α + γ2e

λ2 (tα−τα )
α

γ3e
λ1 (tα−τα )

α + γ4e
λ2 (tα−τα )

α

 . (44)
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Equation (44) allows us to hold Formula (43) on the coordinates.

u1(t) =



γ1eλ1
tα

α


n−1∑
m=0

e−λ1
(mT+T0 )α

α −
n∑

m=0
e−λ1

(mT )α
α +e−λ1

tα

α

 E+

+γ2eλ1
tα

α


n−1∑
m=0

e−λ1
(mT+T0 )α

α −
n∑

m=0
e−λ1

(mT )α
α +e−λ1

tα

α

 E

for 0 ≤ t − nT < T0


γ3eλ1

tα

α

n∑
m=0

(
e−λ1

(mT+T0 )α

α − e−λ1
(mT )α

α

)
+

+γ4eλ2
tα

α

n∑
m=0

(
e−λ2

(mT+T0 )α

α − e−λ2
(mT )α

α

)


E for T0 ≤ t − nT < T

,

(45a)

u1(t) =



γ1eλ1
tα

α


n−1∑
m=0

e−λ1
(mT+T0 )α

α −
n∑

m=0
e−λ1

(mT )α
α +e−λ1

tα

α

 E+

+γ2eλ1
tα

α


n−1∑
m=0

e−λ1
(mT+T0 )α

α −
n∑

m=0
e−λ1

(mT )α
α +e−λ1

tα

α

 E

for 0 ≤ t − nT < T0


γ3eλ1

tα

α

n∑
m=0

(
e−λ1

(mT+T0 )α

α − e−λ1
(mT )α

α

)
+

+γ4eλ2
tα

α

n∑
m=0

(
e−λ2

(mT+T0 )α

α − e−λ2
(mT )α

α

)


E for T0 ≤ t − nT < T

,

(45b)
where γ1, γ2, γ3, γ4 are given by Formula (28).

5. Numerical analysis

In this section we will present numerical solutions of the fractional electrical circuit shown
in Fig. 2 and Fig. 3 described by state Equation (1) with the matrices (13). The parameters of
simulations are conductances – G0 = 1.1 Ω−1, G1 = 2.1 Ω−1, G2 = 1.5 Ω−1, capacitances –
C1 = 1.0 F, C2 = 2.0 F, initial voltages – u01 = 0.0 V, u02 = 0.0 V, times – T = 4 s, T0 = 2 s.

The graphs show voltage variations on the first supercapacitor during alternating charging
and discharging.

Maximum and minimum values of the voltage on the capacitors, suitable for long times t, have
been growing steadily in subsequent periods at times t, ascon templated by the Caputo definition.

When using the CDF definition for the sustained times t, the maxima of the large voltage
across the capacitor decrease and the minima grow.
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Fig. 2. Solution using the Caputo definition for the first capacitor for α = 0.6, 0.8, 1

Fig. 3. Solution using the CFD definition for the first capacitor for α = 0.6, 0.8, 1

Fig. 4. Comparison of solutions using Caputo and CFD definitions for the first
capacitor for α = 0.6, 0.8

6. Conclusions

The study investigated the electrical circuit using fractional derivatives in the case of a control
signal in the form of a non-symmetric rectangular. The solutions have been achieved by the use
of fractional derivatives, according to the Caputo and new CDF definitions. The obtained results
were compared with each other and the following conclusions were drawn.
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The maximum local voltages on the superconductor (the end of charging, and the beginning
of discharge) increased their values in subsequent periods with time. The same applies to the
minimum voltages on the supercondenser (the end of discharge and beginning of charging). In
subsequent periods as the derivative order increases, the values of the respective maxima and
minima increase as well.

Comparing the results of the maxima of the voltages obtained with the Caputo definition it
was concluded that they had higher values than the maxima of the voltages obtained by the CDF
definitions for the same order of the derivative. The smallest values of the solutions for the same
order of the derivative have lower values of the achieved minimum voltages obtained with the
Caputo definition from the CFD definition (fractional derivative of alpha 0.6). In summary, the
maximum and minimum voltage values are the higher the greater is the derivative order.
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