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Behaviour of fractional discrete-time consensus models with delays
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Abstract. The leader-following consensus problem of fractional-order multi-agent discrete-time systems with delays is considered. In the

systems, interactions between agents are defined like in Krause and Cucker-Smale models, but the memory is included by taking both

the fractional-order discrete-time operator on the left hand side of the nonlinear systems and the delays. Since in practical problems only

bounded number of delays can be considered, we study the fractional order discrete-time models with a finite number of delays. The models

of opinions under consideration are investigated for single- and double-summator dynamics of discrete-time by means of analytical methods

as well as computer simulations.
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1. Introduction

Recently, consensus, i.e. a typical collective behaviour, has

been drawing considerable research interest, due to the ver-

satility of its applications in biological systems, satellite for-

mation, sensor networks and others, see for example [1] and

the references therein. In general, there are two kinds of con-

sensus: with and without leader. When examining the case

with a leader, there are still two approaches to the problem:

without and with control. For the latter case a critical prob-

lem is how to design appropriate protocols and make all the

agents converge to a common value by following the lead-

er. In the literature many positions can be found concerning

continuous- and discrete-time multi-agent systems on leader-

less consensus problems, see for example [2–5]. It is clear

that group consensus without a leader is useful in many cas-

es, however there are many other applications that require a

dynamic leader. As a well known example we can mention

formation control, where the agents regulate their states ac-

cording to their state deviations and attain the expected forma-

tion. Theoretical results on leader following consensus with

multi-agent fractional systems were presented including first-

and second-order integrator (summator) in [6–8] and in the

references therein. However, let us note that research on the

consensus problem with more practical dynamics with delays

is still ongoing today.

Motivated by the above, we investigate the group consen-

sus problems in network of agents with a dynamic leader in

single- and double-summator dynamics for fractional discrete-

time consensus models with delays. Using stability tools of

fractional linear discrete-time systems with delays, we con-

sider the case where the state of leader is available only to

a subset of followers. We propose a protocol for multi-agent

systems with arbitrary delay. The control input for each agent
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relies on its own state and its neighbours’ states. Some nec-

essary and sufficient conditions for consensus are established

in terms of stability of fractional systems with delays. We

analyse the convergence of the protocol and obtain the con-

ditions for the control parameter to ensure that the tracking

process leads the system to consensus. In order to validate the

consensus control, some simulations are carried out.

The paper is an extension of the results given in [8] for

fractional order difference systems. Observe that in [8] sys-

tems with k0 = 1 were considered while in this paper we take

into account arbitrary delay k0 ≥ 1. The paper is organized

in the following manner. In Sec. 2 we gather some basic def-

initions and facts that are needed in the follow-up study. The

main results are presented in Sec. 3, where the conditions

under which the leader-following consensus is achieved for

fractional-order discrete-time systems with delays are given.

In Sec. 2 and 3 we consider a discrete case with step h = 1
while in Sec. 4, step h > 0 is taken into account. In the last

section our consideration is extended to the case with arbitrary

step h > 0, and conditions that guarantee the leader-following

consensus for fractional-order h-difference systems with de-

lays are formulated. Numerical examples that validate the re-

sults obtained show the effectiveness of the design method.

2. Preliminaries

Let us recall some definitions and facts known from fractional

discrete calculus. Let c ∈ R, Nc := {c, c + 1, c + 2, . . .} and

α ∈ R.

The following sequence is defined as follows:

a(α)(k) :=





1 for k = 0,

(−1)k α(α − 1) . . . (α − k + 1)

k!
for ; k ∈ N1.

(1)

Using sequence (1) one can define the following difference

operator.
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Definition 1. Let α ∈ R. The Grünwald-Letnikov difference

operator ∆α of order α of function x : N0 → R is defined

by (∆αx) (k) :=
k∑

s=0
a(α)(s)x(k − s), where a(α)(s) is the

sequence given by (1).

The extension of the Grünwald-Letnikov difference oper-

ator to a vector valued function is made in the component-

wise manner, i.e. for x = (x1, . . . , xn) : N0 → Rn we have

∆αx = (∆αx1, . . . , ∆
αxn).

Note that for α = 0 we get (∆0x)(k) = x(k), while for

α = 1 we have
(
∆1x

)
(k) := x(k) − x(k − 1).

Let us consider the following fractional-order systems of

order α ∈ (0, 1] with the Grünwald-Letnikov difference oper-

ator:

(∆αx) (k) = F (x(k − k0)), k ≥ k0, k0 ∈ N1, (2)

with initial conditions x(0) = x0, x(1) = x1, . . . , x(k0−1) =
xk0−1 ∈ Rn, where x = (x1, . . . , xn)T : N0 → Rn is a vec-

tor function and F : Rn → Rn. The solutions of system (2)

exist according to given initial conditions. System (2) takes

the recursive form

x(k) = −
k∑

s=1

a(α)(s)x(k − s) + F (x(k − k0)) for k ≥ k0

with given initial values x(0), x(1), . . . , x(k0 − 1), k0 ∈ N1.

Let us define, for ϕ ∈ [0, 2π), α ∈ (0, 1] and k0 ≥ 1, the

following function

w(ϕ, α, k0) :=




(
2

∣∣∣∣sin
2ϕ − απ

2(2k0 − α)

∣∣∣∣
)α

, ϕ ∈ [0, π],

(
2

∣∣∣∣sin
2ϕ − απ + 4(k0 − 1)π

2(2k0 − α)

∣∣∣∣
)α

, ϕ ∈ (π, 2π).

In the follow-up study, we are interested in the solutions

of linear systems of the form

(∆αx) (k) = Ax(k − k0) , (3)

where k ≥ k0, k0 ∈ N1, x(·) = (x1(·), . . . , xn(·))T : N0 →
Rn and A ∈ Rn×n. Observe that in order to determine the

solution of (3) one has to know the initial values x(0), . . . ,

x(k0 − 1) of x(·) that are assumed to be given.

In [9] the following characterization of the asymptotic sta-

bility of (3) is given.

Proposition 2. If for all i = 1, . . . , n

arg λi ∈
[
α

π

2
, 2π − α

π

2

]
(4)

and

|λi| < w(arg λi, α, k0), (5)

where argλi and |λi| are, respectively, the main argument and

modulus of λi ∈ Spec(A), then system (3) (with α ∈ (0, 1]
and delay k0) is asymptotically stable.

Additionally, in [9] the condition for the instability of (3)

is given.

Proposition 3. If there exists λi ∈ Spec(A) such that |λi| >
w(arg λi, α, k0), then system (3) (with α ∈ (0, 1] and delay

k0) is not stable.

Finally, we define the following set:

Rα,k0
:=
{
z ∈ C :ϕ = argz ∈

[
α

π

2
, 2π − α

π

2

]

∧ |z| < w(ϕ, α, k0)
}

,
(6)

which is related to the asymptotical stability of the conside-

red systems. Note that the condition that all eigenvalues of

the matrix A belong to Rα,k0
guarantees the asymptotical

stability of system (3).

3. The leader-following consensus for models

with summator dynamics

In this section the conditions under which the leader-following

consensus is achieved for fractional-order discrete-time sys-

tems with delays and with constant adjacency matrix A =
(aij) ∈ Rn×n are stated. Additionally, a consensus control

law for tracking the virtual leader by use of stability analysis

of fractional order systems with delays are given.

Let N := {1, . . . , n} and consider the system with n
agents where the single-summator dynamics of each agent is

given by

(∆αxi) (k)=
n∑

j=1

aij [xj(k−k0)−xi(k−k0)]+ui(k), (7)

where k ≥ k0, k0 ∈ N1, i ∈ N , aij (i, j = 1, 2, . . . , n) is the

(i, j)-th entry of the adjacency matrix A, and α ∈ (0, 1],
xi : N0 → R is the state function for the i-th agent,

ui : N0 → R is the control input function for the i-th agent.

For the simplicity of presentation we assume that all

agents are in a one-dimensional space.

The virtual leader for multiagent system (7) is an isolated

agent such that

(∆αxr) (k) = f(k), (8)

where k ≥ 0, xr : N0 → R is the state function of the virtual

leader.

Let ℓ = 0, 1, . . . , k0−1 and x(ℓ) = (x1(ℓ), . . . , xn(ℓ))T ∈
Rn be the given vector of initial values. Now, let us formu-

late the definition where all agents can track the virtual leader

with local interaction by designing control laws ui.

Definition 4. Multiagent system (7) is said to achieve leader-

following consensus if its solution satisfies lim
k→+∞

|xi(k) −
xr(k)| = 0 for any initial values x(0), x(1), . . . , x(k0 − 1)
and for all i ∈ N .

Let k ≥ k0 and k0 ∈ N1. The consensus control law is

proposed as:

ui(k) = f(k)

+(1 − β)
n∑

j=1

aij (xi(k − k0) − xj(k − k0))

−βbi [xi(k − k0) − xr(k − k0)] ,

(9)
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where f(k) is the nonlinear dynamics, bi = 1 if the dynamics

of the virtual leader is available to agent i and bi = 0 other-

wise, β > 0 is a constant that is called control parameter.

Let B := diag{b1, . . . , bn} ∈ Rn×n, where bi ∈ {0, 1},

be a diagonal matrix with nonzero trace. Let L = (lij),
lii =

∑
j 6=i aij with lij = −aij , i 6= j be the (nonsym-

metric) Laplacian matrix. Let us define M := L + B and

Mβ := βM .

Definition 5. A matrix M ∈ Rn×n is called fractional

discrete-time stable if all eigenvalues of the matrix M satisfy

the conditions (4) and (5), i.e. all eigenvalues of the matrix

M belong to the set Rα,k0
defined by (6).

Theorem 6. If the matrix (−Mβ) is fractional discrete-time

stable, i.e. Spec (−Mβ) ⊂ Rα,k0
, where the set Rα,k0

is de-

fined by (6), then control law (9) solves the consensus problem

for single-summator system (7) with the time-varying dynam-

ics of the virtual leader given by (8).

Proof. Similarly as in [8] one can show that by using control

law (9), system (7) can be written as follows:

(∆αx) (k) = f(k)1− Mβx(k − k0) + βBxr(k − k0)1,

where x(k − k0) = (x1(k− k0), . . . , xn(k − k0))
T ∈ Rn and

1 = (1, 1, . . . , 1)T ∈ Rn. Let x̃i(k − k0) := xi(k − k0) −
xr(k − k0). Then one gets

(∆αx̃) (k) = (∆αx) (k) − (∆αxr) (k)1

= f(k)1− Mβx(k − k0)

+βBxr(k − k0)1− (∆αxr) (k)1

= f(k)1− Mβ(x(k − k0) − xr(k − k0)1)

−Mβxr(k − k0)1 + βBxr(k − k0)1

− (∆αxr) (k)1

= f(k)1− Mβx̃(k − k0) − Lxr(k − k0)1

− (∆αxr) (k)1.

where x̃(k − k0) := (x̃1(k − k0), . . . , x̃n(k − k0))
T =

(x1(k − k0) − xr(k − k0), . . . , xn(k − k0) − xr(k − k0))
T.

Since Lxr(k − k0)1 = 0 and (∆αxr) (k) = f(k), we get the

following system

(∆αx̃) (k) = − Mβx̃(k − k0). (10)

By assumption, the matrix (−Mβ) is fractional discrete-time

stable, thus by Proposition 2 we claim that limk→+∞ x̃i(k) =
0, i ∈ N . Consequently, limk→+∞ |xi(k) − xr(k)| = 0, for

i ∈ N . It means that consensus with the time-varying dynam-

ics of the virtual leader is achieved by control law (9).

�

Remark 7. Let us notice that we can choose matrix B in such

a way that we put bi = 1 for those i for which Jordan block

of matrix L is made of zeros. Then, Spec(M) ⊂ R+ × R,

as by Gershgorin’s Theorem is known that all eigenvalues

of L has their real part larger or equal to 0 (see for exam-

ple [10]). Moreover, in the case when Spec(Mβ) ⊂ R+, to

have Spec (−Mβ) ⊂ (−w(π, α, k0), 0) it is enough to take

β ∈
(
0, w(π,α,k0)

maxi λi

)
, λi ∈ Spec(M).

Example 8. Let us consider system (7) with 6 agents and the

following Laplacian matrix L6:

L6 =




0 0 0 0 0 0

−1 2 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 −1 0

0 −1 0 0 1 0

0 0 0 0 −1 1




and with

B6 = diag{1, 0, 0, 0, 0, 0, 0}.

Let us also consider the dynamics of the virtual leader giv-

en by (8) with f(k) = sin(k/6) and the delay k0 = 2.

Then the consensus is reached for β = 0.3814457866 =
0.95w(π, 0.9, 1)/ maxi λi where λi ∈ Spec(M) =
{2.618033988, 0.381966012, 1}, see Fig. 1. When we change

the delay for k0 = 3 we need to choose smaller β, for exam-

ple β = 0.2510678301 = 0.95w(π, 0.9, 3)/ maxi λi, where

λi ∈ Spec(M) = {2.618033988, 0.381966012, 1}, to receive

consensus, see Fig. 2. Note that for better visualisation the

points which correspond to the solutions of the considered

systems are connected.

Fig. 1. Solutions of system of equations (7) with the control law giv-

en by (9) and the virtual leader; α = 0.9; f(k) = sin(k/6), T = 50
steps, k0 = 2, β = 0.3814457866 = 0.95w(π, 0.9, 2)/ maxi λi

where λi ∈ Spec(M) = {2.618033988, 0.381966012, 1}

Fig. 2. Solutions of system of equations (7) with the control law giv-

en by (9) and the virtual leader; α = 0.9; f(k) = sin(k/6), T = 50
steps, k0 = 3, β = 0.2510678301 = 0.95w(π, 0.9, 3)/ maxi λi

where λi ∈ Spec(M) = {2.618033988, 0.381966012, 1}

3.1. Models for double-summator dynamics. In this sec-

tion, similarly as for single-summator dynamics case, we con-

sider the multiagent system consisting of n agents such that

dynamics of each agent is given by
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(∆αxi) (k) = vi(k − k0),

(∆αvi) (k) =

n∑

j=1

aij [(xj(k − k0) − xi(k − k0))

+ (vj(k − k0) − vi(k − k0))] + ui(k),

(11)

where k ≥ k0, k0 ∈ N1, aij is the (i, j)-th entry of

the adjacency matrix A ∈ Rn×n associated with graph G,

α ∈ (0, 1], xi : N0 → R is the state function of the i-th
agent, vi : N0 → R is the velocity function of the i-th agent,

ui : N0 → R is the control input function for the i-th agent,

i = 1, 2, . . . , n.

The virtual leader for fractional multiagent system (11) is

an isolated agent described by

(∆αxr) (k) = vr(k − k0),

(∆αvr) (k) = f(k),
(12)

where xr is the state of the virtual leader, vr is the velocity

of the virtual leader and f is a continuous function.

Now, let us give the definition of reaching a consensus by

system (11).

Definition 9. The multiagent system (11) is said to achieve

leader-following consensus if its solution satisfies

lim
k→∞

|xi(k) − xr(k)| = 0 (13)

and

lim
k→∞

|vi(k) − vr(k)| = 0 (14)

for any initial values x(ℓ) = (x1(ℓ), . . . , xn(ℓ))T , v(ℓ) =
(v1(ℓ), . . . , vn(ℓ))T , xr(ℓ) and vr(ℓ), ℓ = 0, 1, . . . , k0 − 1,

k0 ∈ N1.

The following control input is considered to achieve

leader-following consensus in multiagent system (11):

ui(k)=f(k)+(1−β)
n∑

j=1

aij(vi(k−k0)−vj(k−k0))

−bi [(xi(k − k0) − xr(k − k0))

+β(vi(k − k0) − vr(k − k0))] ,

(15)

where bi = 1 if the virtual leader state is available to agent i
and bi = 0 otherwise, β > 0 is a constant parameter.

Similarly, as for the single-summator dynamics let B =
diag{b1, b2, . . . , bn}, M = L + B, where L = (lij), lii =∑

j 6=i aij with lij = −aij , i 6= j is the (nonsymmetric) Lapla-

cian matrix. Then using (15), system (11) can be rewritten in

the matrix form as follows

(∆αx) (k) = v(k − k0),

(∆αv) (k) = −M(x(k − k0) + βv(k − k0))

+B[xr(k − k0) + βvr(k − k0)]1 + f(k)1,

(16)

where x(k−k0) = (x1(k−k0), . . . , xn(k−k0))
T , v(k−k0) =

(v1(k−k0), . . . , vn(k−k0))
T and 1 = (1, 1, . . . , 1)T belong

to Rn.

Now let us define

M :=

(
0n×n −In×n

M Mβ

)
∈ R

2n×2n, (17)

where In×n is the n × n identity matrix, 0n×n denotes the

n × n zero matrix, and put

y(k − k0) := (x(k − k0), v(k − k0))
T =

(
x(k − k0)

v(k − k0)

)
.

Then multiagent system (16) can be rewritten as

(∆αy) (k) = −My(k − k0)

+

(
0n×1

B(xr(k − k0) + βvr(k − k0))1

)
+

(
0n×1

f(k)1

)
.

Theorem 10. If the matrix (−M) is fractional discrete-time

stable, i.e. Spec (−M) ⊂ Rα,k0
, where the set Rα,k0

is de-

fined by (6), then control law (15) solves the consensus prob-

lem for double-summator system (11) with the virtual leader

given by (15).

Proof. Similarly as in [8] one can introduce the following

changes of coordinations: x̃i(k− k0) := xi(k− k0)− xr(k−
k0), k ≥ k0+1 and ṽi(k−k0) = vi(k−k0)−vr(k−k0), k ≥
k0, then x̃ = (x̃1, . . . , x̃n)

T ∈ Rn and ṽ = (ṽ1, . . . , ṽn)
T ∈

R
n. Now putting ỹ(k − k0) := (x̃(k − k0), ṽ(k − k0))

T =
(x(k−k0)−xr(k−k0)1, v(k−k0)−vr(k−k0)1)T ∈ R2n in

system (11), using (12) and the facts that Lvr(k − k0)1 = 0,

Lxr(k − k0)1 = 0 and (∆αvr) (k) = f(k), one gets:

(∆αỹ) (k) =

(
(∆αx) (k) − (∆αxr) (k) · 1
(∆αv) (k) − (∆αvr) (k) · 1

)

= −M

(
x(k − k0)

v(k − k0)

)

+

(
0n×1

B(xr(k − k0) + βvr(k − k0))1

)

+

(
0n×1

f(k)1

)
−
(

vr(k − k0)1

f(k)1

)

= −M

(
x(k − k0) − xr(k − k0)1

v(k − k0) − vr(k − k0)1

)

−
(

0n×n −In×n

L + B β(L + B)

)(
xr(k − k0)1

vr(k − k0)1

)

+

(
0n×1

Bxr(k − k0)1 + βBvr(k − k0)1

)

−
(

vr(k − k0)1

01

)

= −M

(
x̃(k − k0)

ṽ(k − k0)

)
= −Mỹ(k − k0).

Therefore in the coordinates ỹ we get the following linear

system

(∆αỹ) (k) = −Mỹ(k − k0).
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By assumption Spec (−M) ⊂ Rα,k0
, thus by Proposition 2

we get limk→+∞ ‖ỹ(k)‖ = 0. Consequently, conditions (13)

and (14) are satisfied. Therefore the consensus with the vir-

tual leader is achieved by control law (15).

�

Now let us assume that all eigenvalues of the matrix M are

positive and formulate the conditions for β that give the lead-

er following consensus in network of agents with a double-

summator dynamics for fractional discrete-time models.

Proposition 11. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n}
be the subset of R+ := (0, +∞), m := 2√

mini λi
, ui :=

min
{

w(π,α,k0)
λi

+ 1
w(π,α,k0)

, 2w(π,α,k0)
λi

}
and u := mini ui.

If the parameter β satisfies the following inequalities:

m ≤ β < u, (18)

then control law (15) solves the consensus problem for double-

summator system (11) with the virtual leader.

Proof. Let λi, i = 1, . . . , k, k ≤ n be the eigenvalues of

the matrix M . Note that one can choose diagonal matrix B
in such a way that zero is not the eigenvalue of the Lapla-

cian matrix L. Then Spec(M) ⊂ R+ = (0, +∞). Therefore

λi 6= 0 for all i = 1, . . . , k.

Observe that m = 2√
mini λi

≥ 2√
λi

for i = 1, . . . , k. Con-

sequently, from 2√
mini λi

≤ β we have 2√
λi

≤ β and using

the fact that β, λi > 0 one gets λ2
i β

2 − 4λi ≥ 0 for all

i = 1, . . . , k. Let wij , j = 1, 2 be the eigenvalues of the

matrix M. Note that if λ2
i β

2 − 4λi ≥ 0 for all i = 1, . . . , k,

then all eigenvalues of the matrix M are positive real num-

bers and by [8, Lemma 2.4] the following relation between

the eigenvalues of matrices M and M holds:

wi1 =
λiβ +

√
λ2

i β
2 − 4λi

2
∧ wi2 =

λiβ −
√

λ2
i β

2 − 4λi

2
.

(19)

Since λi > 0 and β > 0, we get 0 < wi2 < wi1 for

all i = 1, . . . , k. Taking into account u = mini ui for

i = 1, . . . , k, from β < u, we get β < w(π,α,k0)
λi

+ 1
w(π,α,k0)

and consequently, 4w(π, α, k0)λiβ < 4w2(π, α, k0) + 4λi,

where w2(π, α, k0) :=
(
2 sin (2−α)π

2(2k0−α)

)2α

. Then we have

λ2
i β

2 − 4λi < 4w2(π, α, k0) − 4w(π, α, k0)λiβ + λ2
i β

2

= (2w(π, α, k0) − λiβ)2 ,

for all i = 1, . . . , k. Moreover, β < u ≤ ui = 2w(π,α,k0)
λi

for i = 1, . . . , k, so 2w(π, α, k0) − λiβ ≥ 0. Taking into

account λ2
i β

2 − 4λi ≥ 0 and 2w(π, α, k0) − λiβ ≥ 0, one

gets
√

λ2
i β

2 − 4λi < 2w(π, α, k0)−λiβ. Consequently, from

(18) we get

wi1 =
λiβ +

√
λ2

i β
2 − 4λi

2
< w(π, α, k0) .

Hence all eigenvalues of the matrix (−M) belong to the set

Rα,k0
= (−w(π, α, k0), 0) and from Theorem 10 the thesis

holds.

�

Proposition 12. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n}
be the subset of R+, mi := 2√

λi
and η(λi) :=

− 2√
λi

cos
(
απ

2 + (2k0 − α) arcsin
(

1
2λi

1

2α

))
.

If λi <
(
2 sin (2−α)π

2(2k0−α)

)2α

for all i = 1, . . . , k, and

max
1≤i≤k

η(λi) < β < min
1≤i≤k

mi,

then the control law (15) solves the consensus problem for

double-summator system (11) with the virtual leader.

Proof. Let λi, i = 1, . . . , k, k ≤ n be the eigenvalues of the

matrix M . Observe that one can choose diagonal matrix B
in such a way that zero is not the eigenvalue of the Laplacian

matrix L. Then Spec(M) ⊂ R+ = (0, +∞) and λi 6= 0 for

all i = 1, . . . , k.

Since β < mini mi = mini
2√
λi

and obviously,

mini
2√
λi

< 2√
λi

for all i = 1, . . . , k, one gets β < 2√
λi

for all i = 1, . . . , k. Then λ2
i β

2 − 4λi < 0. Let sij , j = 1, 2
be the eigenvalues of the matrix (−M). Since λ2

i β
2−4λi < 0

for all i = 1, . . . , k, we see that all eigenvalues of the matrix

(−M) are complex with nonzero imaginary part and given by

the following pairs of values

si1 =
−λiβ +

√
4λi − λ2

i β
2i

2
,

si2 =
−λiβ −

√
4λi − λ2

i β
2i

2
.

(20)

Then, for i = 1, . . . , k, j = 1, 2, we have that |sij | =
√

λi

and cosϕij = −β
√

λi

2 < 0, sinϕij = ±
√

4−β2λi

2 , where

ϕij := arg sij . Then, for each i = 1, . . . , k, j = 1, 2,

we have ϕij ∈ [π
2 , 3π

2 ], so condition (4) given in Proposi-

tion 2 is satisfied. Considering condition (5) given in Proposi-

tion 2 we claim that |sij | < w(ϕij , α, k0). Since values given

by (20) are conjugate, we can consider only the cases with

sin ϕi1 =

√
4−β2λ

2 > 0, cosϕi1 < 0. Hence π
2 ≤ ϕi1 ≤ π.

Then, in this case

1 − α

2k0 − α
· π

2
≤ ϕi1 − απ

2

2k0 − α
≤ 2 − α

2k0 − α
· π

2
≤ π

2
. (21)

Observe that λi <
(
2 sin (2−α)π

2(2k0−α)

)2α

implies that λ
1

2α

i <

2 sin (2−α)π
2(2k0−α) ≤ 2 for i = 1, . . . , k. From η(λi) < β and

β = − 2 cos ϕi1√
λi

we easily derive that

cosϕi1 < cos

(
α

π

2
+ (2k0 − α) arcsin

(
1

2
λ

1

2α

i

))

and consequently,

ϕi1 > α
π

2
+ (2k0 − α) arcsin

(
1

2
λ

1

2α

i

)

and
ϕi1 − απ

2

2k0 − α
> arcsin

(
1

2
λ

1

2α

i

)
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as α ∈ (0, 1]. Moreover, by (21) we have

λ
1

2α

i

2
< sin

ϕi1 − απ
2

2k0 − α
⇔
√

λi <

(
2 sin

ϕi1 − απ
2

2k0 − α

)α

.

Taking into account conjugate value of sij we get that
√

λi =

|sij | <
∣∣∣2 sin

ϕij−α π
2

2k0−α

∣∣∣
α

, and it is required for sij ∈ Rα,k0
,

i = 1, . . . , k, j = 1, 2. Hence, from Theorem 10 the thesis

holds.

�

Proposition 13. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n}
be the subset of R+. If there exists λi such that λi >(
2 sin (2−α)π

2(2k0−α)

)2α

, then the control law (15) does not solve

the consensus problem for double-summator system (11) with

the virtual leader.

Proof. Let λi ∈ Spec(M). Assume that λi >(
2 sin (2−α)π

2(2k0−α)

)2α

. In the case when β < 2√
λi

we get that

the eigenvalues for all si1 and si2 of the matrix (−M) are

complex with nonzero imaginary part and given by (20).

Then for j = 1, 2 we have |sij | =
√

λi. Similarly, as in

the proof of Proposition 12 we use the fact that si1 and

si2 are conjugate and one can consider only the cases with

sin ϕi1 =

√
4−β2λ

2 > 0, cosϕi1 < 0. Hence π
2 ≤ ϕi1 ≤ π.

Observe that for ϕi1 = argsi1 ∈
[

π
2 , π

]
one gets

sin
2ϕi1 − απ

2(2k0 − α)
≤ sin

(2 − α)π

2(2k0 − α)
. (22)

Hence from the assumption and (22) we get

|si1| =
√

λi >

(
2 sin

2ϕi1 − απ

2(2k0 − α)

)α

.

Then by Proposition 3 the thesis holds for β < 2√
λi

.

Now, let us consider the case when β ≥ 2√
λi

. Then

λ2
i β

2 − 4λi ≥ 0 and the eigenvalues wij , j = 1, 2 of the

matrix M are positive real numbers given by (19). Note that

wi1 =
λiβ +

√
λ2

i β
2 − 4λi

2
≥ λiβ

2
≥

λi
2√
λi

2
=
√

λi.

Therefore using the assumption one gets wi1 ≥
√

λi >(
2 sin (2−α)π

2(2k0−α)

)α

. Then by Proposition 3 the thesis holds

for β ≥ 2√
λi

.

�

From Proposition 13 we get the following necessary con-

dition for reaching the consensus by double-summator system

(11) with the virtual leader.

Corollary 14. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n}
be the subset of R+. If the control law (15) solves the

consensus problem for double-summator system (11) with

the virtual leader, then λi ≤
(
2
∣∣∣sin (2−α)π

2(2k0−α)

∣∣∣
)2α

, for all

λi ∈ Spec(M).

Now let ℓi := η(λi), where η is defined in Proposition 12 by

η(λi) = − 2√
λi

cos

(
α

π

2
+ (2k0 − α) arcsin

(
1

2
λi

1

2α

))

and ui is defined in Proposition 11 as follows

ui = min

{
w(π, α, k0)

λi

+
1

w(π, α, k0)
, 2

w(π, α, k0)

λi

}
.

Theorem 15. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n} ⊂
R+ and λi <

(
2 sin (2−α)π

2(2k0−α)

)2α

, for all λi ∈ Spec(M).

If max1≤i≤k ℓi < β < min1≤i≤k ui, then control law (15)

solves the consensus problem for double-summator system

(11) with the virtual leader.

Proof. Let 0 < λi ∈ Spec(M). The proof is divided onto two

cases, namely 1◦ 2√
λi

≤ β and 2◦ 2√
λi

> β.

1◦ If 2√
λi

≤ β, then using the fact that β, λi > 0 one gets

λ2
i β

2 − 4λi ≥ 0. Then the eigenvalues wij , j = 1, 2, of the

matrix M are positive real numbers. Since β < min1≤i≤k ui,

one can use the same arguments as in the proof of Propo-

sition 11 and show that all eigenvalues of the matrix (−M)
belong to the set Rα,k0

= (−w(π, α, k0), 0) and from Theo-

rem 10 the control law (15) solves the consensus problem for

double-summator system (11) with the virtual leader.

2◦ In the case when 2√
λi

> β one gets the eigenvalues

sij , j = 1, 2, of the matrix (−M) are complex with nonzero

imaginary part given by (20). Since max1≤i≤k ℓi < β, one

can use the same arguments as in the proof of Proposition 12

and show that sij ∈ Rα,k0
, i = 1, . . . , k, j = 1, 2 and from

Theorem 10 the control law (15) solves the consensus prob-

lem for double-summator system (11) with the virtual leader.

Therefore the theorem holds.

�

4. Models with the Grünwald-Letnikov

h-difference operator

Now let us define the Grünwald-Letnikov h-difference opera-

tor ∆α
h of order α of function x : (hN)0 → R with the step

h > 0 defined by

(∆α
hx) (kh) := h−α

k∑

s=0

a(α)(s)x((k − s)h).

Consider the following fractional-order systems of order α ∈
(0, 1] with the Grünwald-Letnikov h-difference operator:

(∆α
hx) (kh) = F (x((k−k0)h)), k ≥ k0, k0 ∈ N1, (23)

with initial conditions x(0) = x0, x(h) = x1, . . . , x((k0 −
1)h) = xk0−1 ∈ Rn, where x = (x1, . . . , xn)T : (hN)0 →
Rn is a vector function and F : Rn → Rn.

It is easy to see that (23) is equivalent to

(∆αx) (k) = hαF (x(k − k0)) , k ≥ k0, k0 ∈ N1,

where x(k) := x(kh) for k ∈ N0.

Then, obviously, the set of asymptotical stability of the

following linear systems:

(∆α
hx) (kh) = Ax((k − k0)h), (24)
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depends on h and it is defined by

Rα,k0,h :=
{
z ∈ C :ϕ = argz ∈

[
α

π

2
, 2π − α

π

2

]

∧ |z| < h−αw(ϕ, α, k0)
}
.

(25)

Note that the condition that all eigenvalues of the matrix A
belong to Rα,k0,h implies the asymptotical stability of sys-

tem (24).

Now, let us formulate the conditions for reaching the con-

sensus by Grünwald-Letnikov h-difference systems with the

virtual leader. Since the proof of the presented below state-

ments are similar to the ones given in the previous sec-

tion, we are will not repeat them. The reader will be re-

ferred to appropriative earlier statements given in the pre-

vious section. Let k0 ∈ N1, k ≥ k0, A = (aij) ∈ Rn×n,

B := diag{b1, . . . , bn} ∈ Rn×n, bi ∈ {0, 1}, L = (lij), M
and Mβ be defined like in the previous section, see Sec. 3.

Observe that for the systems with n agents with the single-

summator dynamics we have the following results:

Theorem 16. If Spec (−Mβ) ⊂ Rα,k0,h, where the set

Rα,k0,h is defined by (25), then control law of the follow-

ing form

ui(kh) = f(kh)

+(1 − β)

n∑

j=1

aij (xi((k − k0)h) − xj((k − k0)h))

−βbi [xi((k − k0)h) − xr((k − k0)h)] ,

(26)

solves the consensus problem for single-summator system of

the form

(∆αxi) (kh) =
n∑

j=1

aij [xj((k − k0)h)

−xi((k − k0)h)] + ui(kh),

(27)

with the time-varying dynamics of the virtual leader given by

(∆αxr) (kh) = f(kh). (28)

Proof. The proof is the same as the proof of Theorem 6.

�

Remark 17. Note that in the case when Spec(Mβ) = {λi, i =

1, . . . , k, k ≤ n} ⊂ R+, the condition 0 < β < h−αw(π,α,k0)
maxi λi

implies the fact that control law (26) solves the consensus

problem for single-summator system (27) with the virtual

leader given by (28).

Now, let us consider double-summator systems with the

Grünwald-Letnikov h-difference operator ∆α
h .

Like in Subsec. 3.1 let aij be the (i, j)-th entry of the adja-

cency matrix A ∈ Rn×n associated with graph G, α ∈ (0, 1],
xi : (hN)0 → R be the state function of the i-th agent,

vi : (hN)0 → R be the velocity function of the i-th agent,

ui : N0 → R be the control input function for the i-th agent,

i = 1, 2, . . . , n. Moreover, let xr be the state of the virtu-

al leader, vr be the velocity of the virtual leader and f be

a continuous function. Similarly as for the systems with the

Grünwald-Letnikov difference operator ∆α one can prove the

following necessary condition for reaching the consensus by

double-summator system with the virtual leader and with the

Grünwald-Letnikov h-difference operator ∆α
h .

Proposition 18. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n}
be the subset of R+. If the control law

ui(kh) = f(kh)

+(1 − β)

n∑

j=1

aij(vi((k − k0)h) − vj((k − k0)h))

−bi [(xi((k − k0)h) − xr((k − k0)h))

+β(vi((k − k0)h) − vr((k − k0)h))] ,

(29)

solves the consensus problem for double-summator system

(∆αxi) (kh) = vi((k − k0)h),

(∆αvi) (kh)=

n∑

j=1

aij [(xj((k−k0)h)−xi((k−k0)h))

+ (vj((k − k0)h) − vi((k − k0)h))] + ui(kh),

(30)

with the virtual leader given by:

(∆αxr) (kh) = vr((k − k0)h),

(∆αvr) (kh) = f(kh),

then λi ≤
(

2
h

∣∣∣sin (2−α)π
2(2k0−α)

∣∣∣
)2α

, for all λi ∈ Spec(M).

Proof. The proof can be done by contradiction in the simi-

lar way as the proof of Proposition 13 and h−αw(π, α, k0)
should be taken instead of w(π, α, k0).

�

Let ℓi := η(λi), where

η(λi) = − 2√
λi

cos

(
α

π

2
+ (2k0 − α) arcsin

(
hα

2
λi

1

2α

))

and ui is defined as follows

ui = min

{
w(π, α, k0)

hαλi

+
hα

w(π, α, k0)
, 2

w(π, α, k0)

hαλi

}
.

Theorem 19. Let Spec(M) = {λi, i = 1, . . . , k, k ≤ n} ⊂
R+ and λi <

(
2
h

sin (2−α)π
2(2k0−α)

)2α

, for all λi ∈ Spec(M). If

max1≤i≤k ℓi < β < min1≤i≤k ui, then the control law (29)

solves the consensus problem for double-summator system

(30) with the virtual leader.

Proof. The proof is the same as the proof of Theorem 15 and

h−αw(π, α, k0) should be taken instead of w(π, α, k0).
�

Remark 20. Let M be defined by (17). Observe that in the

case when Spec(M) ⊂ R+ in order to guarantee the con-

sensus it is enough to take β such that Spec (−hαMβ) ⊂
(−w(π, α, k0), 0) and Spec (−hα

M) ⊂ (−w(π, α, k0), 0) for

the single- and double-summator systems, respectively.

Example 21. Let us consider system (30) with 6 agents and

the Laplacian matrix L6 and the matrix B like in Exam-

ple 8. Then after calculating eigenvalues of L + B we obtain
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Spec(L+B) = {2, 1, 1, 1, 1, 1}. Let the leader have constant

velocity vr = 10.

Considering the system with delay k0 = 2 and h = 1,

any range of coefficients β does not exist for stability. How-

ever, if we change to h = 0.5 with k0 = 2 we have

the interval (1.197066379; 1.490943053). The limits were

calculated by Maple program. For α = 0.9 and for the

range (1.197066379; 1.414213562) we have only pairs of

complex eigenvalues of matrix M and for β from interval

(1.414213562; 1.490943053) we have on pair of complex

eigenvalues and one with a real pair of eigenvalues. In both

cases we have consensus, as shown in Figs. 3 and 4.

a) x values

b) v values

Fig. 3. Values of x and v for double summator model with ma-

trix L6, given in Example 8, with initial condition x(0) = x(1) =
(5, 1, 3, 6, 8, 2), v(0) = v(1) = [1, 1, 1, 1, 1, 1], vr = 10, α = 0.9,

T = 300 steps, n = 6 agents, k0 = 2, β = 1.3, h = 0.5

a) x values

b) v values

Fig. 4. Values of x and v for double summator model with ma-

trix L6, given in Example 8, with initial condition x(0) = x(1) =
(5, 1, 3, 6, 8, 2), v(0) = v(1) = [1, 1, 1, 1, 1, 1], vr = 10, α = 0.9,

T = 100 steps, n = 6 agents, k0 = 2, β = 1.48, h = 0.5

Considering the system with delay k0 = 3 and h = 0.5,

any range of coefficients β does not exist for stability. Then,

we choose smaller h = 0.1 with k0 = 3. Then the range

of β to reach the consensus is (0.3059187677; 2.931854052).
Graphs of trajectories are similar to the previous item.

5. Conclusions

In the paper, the leader-following consensus problem of

fractional-order multi-agent discrete-time system with delays

was considered. We included the memory to the system by

taking both the fractional-order discrete-time operator on the

left hand side of the nonlinear systems and the delays as-

sociated with the system. Models for the single- and double-

summator dynamics of discrete-time fractional order opinions

were investigated in both ways: by analytical methods and by

computer simulations. Considered systems are an extension

of the classical ones with the forms similar to the Krause and

the Cucker-Smale models.
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